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THE POINCARÉ SERIES OF STRETCHED COHEN-
MACAULAY RINGS 

JUDITH D. SALLY 

There are relatively few classes of local rings (R, m) for which the 
question of the rationality of the Poincaré series 

oo 

Pnit) = £ dim» Tor,*(*,*)<*, 

where k = R/m, has been settled. (For an example of a local ring with 
non-rational Poincaré series see the recent paper by D. Anick, "Const ruc
tion of loop spaces and local rings whose Poincaré—Bett i series are non-
rat ional" , C. R. Acad. Sc. Paris 290 (1980), 729-732.) In this note, we 
compute the Poincaré series of a certain family of local Cohen-IYIacaulay 
rings and obtain, as a corollary, the rationali ty of the Poincaré series of 
^-dimensional local Gorenstein rings (R, m) of embedding dimension a t 
least e + d — 3, where e is the multiplicity of R. I t follows tha t local 
Gorenstein rings of multiplicity a t most five have rational Poincaré series. 

Recall [1] tha t the embedding dimension v of a ^-dimensional local 
Cohen-Macaulay ring (R, m) of multiplicity e satisfies d^vSe + d— 1. 
If (R, m) is a local Cohen-Macaulay ring of embedding dimension d or 
d + 1 it is, of course, well known tha t PR{t) is rational. If (R, m) is a 
local Cohen-Macaulay ring of embedding dimension e + d — 1 or a local 
Gorenstein ring of embedding dimension e + d — 2, then PR(t) is also 
rational [6] but , as we shall see, such local rings are ' ' s t re tched" so the 
rationality of PR(t) in these two cases will follow from the result in 
this paper. 

Let (R, m) be a local Artin ring of length e and embedding dimension 
v ( = dimR/m(m/m2)). Then me~v+l = 0. R is said to be stretched, cf. [7], 
if e — v is the least integer i such tha t mi+l = 0. If R is not a field, R is 
stretched if and only if m1 is principal. If (R, m) is a ^-dimensional local 
Cohen-Macaulay ring of multiplicity e, R is said to be stretched if there is 
a minimal reduction x = x\, . . . , xd of m (i.e., there exist d elements 
Xi, . . . , xd of m such tha t mr+1 = (xi} . . . , xd)m

r for some non-negative 
integer r, cf. [4]) such tha t R/xR is stretched. 

We will compute the Poincaré series of stretched local Cohen-Macaulay 
rings. We have not developed new methods for computing T o r / 2 ^ , k) 
but rather we show tha t the s tructure of a stretched Cohen-Macaulay 
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ring is such that the computation of Tor^(&, k) yields to "old" methods. 
We use three changes of ring. The first is a result of Avramov and 

Levin [3] and of Rahbar-Rochandel [5]. 
(1) [3], [5]. If (R, m) is a zero-dimensional local Gorenstein ring of 

embedding dimension greater than 1, then 

Pnit) = P«/(o:OT)(0/l + t*PBmm)(t). 

(2) [2]. Let (R,m) be a local ring and let x £ m\m2 such that xm = 0, then 

PR{1) = PR/xR(t)/l - tPB/xB(t). 

(3) [8]. Let x be a nonzero divisor in the local ring (R, m). If x £ m\m2, 
then 

PR{t) = (1 + t)PB,xB(t). 

Ifx G m2, then 

PR(t) = (1 - t2)PRlxR{t). 

We begin the computation by examining the structure of stretched 
Artin local rings. Let (R, m) be a stretched local Artin ring of length e and 
embedding dimension e — h. The structure of R is essentially determined 
by the dimension r of the socle (0 : m) of R over R/m. 

If h = 1, then m = (0 : m) and r = e — 1. Assume that h > 1, i.e., 
that m2 7^ 0. We have mh C (0 : m). If mh ^ (0 : m), i.e., if r > 1, there 
are r — 1 elements wi, . . . , w r-i in m\m2 such that ^ i , . . . , wr_i and some 
generator of mh form a basis of (0 : m) over i£/ra. It is clear that we may 
choose elements zu . . . , ze-h-r+i in w\m2 so that Wi, . . . , wr_i, Si, . . . , 
jsg_a_r+i is a minimal basis for m. Note that 

(R, in) = (R/(wi, . . . , wr-i)Rj m/ (w\, . . . , wT-i)R) 

is a stretched Gorenstein ring. 
If h = 2, m3 = 0 and for all i, 7 G {1, . . . , e — h — r + 1} either 

ztZj = 0 or 2^2^ = m2. Moreover for each such i there is a7 such that 
ZiZj 7* 0 . 

If h > 2, there is an index i such that m2 = 2 ^ . Otherwise, s*2 G m3 

for all i and there indices p, q such that m2 = zvzqR. This gives m3 = 
zP

2zqR C m4 and the contradiction m3 = 0. Next, note that we may assume 
that ztZj = 0 for 7 ^ i in {1, . . . , g — /& — r + l j . For if ztZj 7^ 0, 
ZfZj = uzt

n with u a unit in i£ and n > 1. Then 2 (̂2^ — itZin~l) = 0 so we 
may take z ; — iiz?~l instead of s ;. In summary, we have the following 
theorem. 

THEOREM 1. Let (R, m) be a stretched local Artin ring of length e} embed
ding dimension e — h and dim^/^O : m) = r. Assume that h > 2 and 
e — h — r > 0. Then there is a basis Wi, . . . , wr-i, zu . . . , ze-h-r+i for m 
having the following properties : 

https://doi.org/10.4153/CJM-1980-094-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-094-0


COHEN-MACAULAY RINGS 1263 

(i) WiYU = 0 for alii Ç { l , . . . , r — 1), 
(ii) ms = ZisRfor s > \,andzxZj = Oforj £ {2, . . . ,e — h — r + l j , 

(iii) for i,j£ {2, . . . , e — h — r + 1}, e^Âer ztZj = 0 or there is a unit 
Uij in R so that zfZj = Uifx1. Moreover, for each such i, there is a j in 
{2, . . . , e — h — r + 1} so that ztZj 9e 0. / / the characteristic of R/m is 
not 2 and if R is a homomorphic image of a regular local ring of dimension 
e — h, then there is such a regular local ring S with maximal ideal n gener
ated by W\y . . . , Wr-i, Z\, . . . , Ze-h.-T+i and units uv in S such that 

R = S/({ WW,, W,Z1} W,ZP, Z1ZP, ZPZQ, Zp* - upZl
h; 

i,j£ | l , . . , r - l ) ; ^ ^ {2, . . . ,e - h- r + 1}}). 

Proof. Only the final statement remains to be proved. This follows 
because (R, m) is a stretched Gorenstein ring. The images of z2, . . . , 
ze-h-r+i span the vector space (0 : rnl)/mh~~l over R/m and this vector 
space supports a nonsingular inner product induced by the products of 
the images of the zps in (R, m). If characteristic R/m is not 2, the inner 
product can be diagonalized. 

Remark. If h = 2 and characteristic R/m is not 2, then a minimal basis 
for m can be diagonalized in an analogous fashion, cf. [6]. 

If (R, m) is a stretched local Artin ring of length e, embedding dimension 
e — h, h > 2, anddim^ /m(0 : m) = r, a basis Wi, . . . , wr-\, Zi, . . . , se_^_r+i 
for m as in Theorem 1 will be called a standard basis. Such a basis for a 
stretched Gorenstein local ring was constructed in a slightly different 
way in [7]. 

Now we compute the Poincaré series of a ^-dimensional stretched local 
Cohen-Macaulay ring. Recall that from (3) we get 

(4) If (R, m) is an Artin local ring with nonzero principal maximal ideal, 
then 

PB{t) = i / ( i - o. 

Also recall that the type of a ^-dimensional local Cohen-Macaulay ring 
(R, m) is by definition dim/j»/m ExtR

d(R/m, R). 

THEOREM 2. Let (R, m) be a d-dimensional stretched local Cohen-
Macaulay ring of multiplicity e, embedding dimension e + d — h, 1 S h ^ e, 
and type r. Then 

P /A = / ( I + 0 7 1 - (e - h)t, ifr = e-h 

Proof. Let x = Xi, . . . , xd be a minimal reduction of m such that 
R/xR is stretched. P«(0 = (1 + t)dPB/xR(t) by (3) so we may assume 
that d = 0, i.e., that (R, m) is a stretched local Artin ring. If e — h = 1, 
then r — 1, m is nonzero principal and (4) applies. Assume e — h > 1. 
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If h = 1, then r = e — 1, m = (0 : m) is a vector space over R/rn and 

Pn(t) = £ ( c - 1)V '= 1 / ( 1 - (e- l)t). 
1 = 0 

Assume that fe > 1. We take a basis w\, . . . , w r-i, Zi, . . . , ze-h-r+i for w 
with Wi, . . . , wr-1 G (0 : m) and we set 

(jR, w) = (R/(wi, . . . , «;r-i)i?, m/(wu . . . , w r_i)P). 

By (2) and induction, 

P*(0 = ^ « ( 0 / 1 - (r - 1 ) ^ ( 0 -

If r = e — h, we apply (4). We assume that r j* e — h so that (R, m) is 
a zero-dimensional Gorenstein ring with nonprincipal maximal ideal. By 
(1), 

PR{t) =Ps(t)/l+t*P8(t), 

where 

(S,n) = (R/(0 : m), m/(0 : m)). 

If & = 2, 5 has maximal ideal of square zero so 

Ps(t) = 1/(1 - (e - r - 1)0 

and a simple computation gives the required result. Finally, take h > 2. 
We assume that the basis Wi, . . . , wr_i, Zi, . .J. , ze-h-r+i is standard and 
let 2i, . . . , ze-h-r+i be the images of the z's in 5. For 2^p^e — h — r 
+ 1, zp?z = 0. Consequently, again by (2) and induction, 

Ps(t) = P s ( / ) / l " (e - h - r)tPs(t), 

where 

(S, U) = (S/(z2, • • • , Ze_ft_r+i)S, w / f e , • • • , Ze-h-T+l)S). 

But (5, w) has nonzero principal maximal ideal so Ps(t) = 1/(1 — /). 
Another simple computation then gives the desired result and concludes 
the proof. 

COROLLARY 3. Let (R, m) be a d-dimensional local Gorenstein ring of 
multiplicity e and embedding dimension e + d — h. If h = 1, 2 or 3, 
PR(t) is rational. More precisely, the following statements hold. 

(i) If h = 1 and e = 1, PR(t) = (1 + t)d. If h = 1 and e > 1, then 
e = 2andPR{t) = (1 + 0 7 ( 1 - 0-

(ii) If h = 2 or 3 and e - h = 1, ^ew P*(0 = (1 + 0 7 ( 1 - 0- # 
A = 2 or 3 and e - h > 1, /fee» P*(0 = (1 + 0 7 ( 1 - (e - h)t + * 2 j . 

Proof. We may assume that i?/m is infinite so that there exists x = 
Xi, . . . , xd a minimal reduction of m. We also assume e > 1. Then the 
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fact that the socle of R/xR is one dimensional over R/m gives, in each of 
the cases h = 1, 2, 3 that rn/xR 9^ 0 and that (rn/xR)2 is principal so 
that R is stretched and Theorem 2 applies. 

Many examples of stretched local rings can be found in [6] and [7]. 
We conclude this note with the following: 

Example. If (R, m) is a ^-dimensional local Gorenstein ring of multi
plicity at most 5, then PR{t) is rational. For let the embedding dimension 
of R be e + d — h, where 1 ^ h ^ e. Since e ^ 5, the only case not 
covered by Corollary 3 is h = 4 and g = 5. But this case is no problem 
since the embedding dimension must then be d + 1. 
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