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THE TURAEV-VIRO INVARIANT
FOR 3-MANIFOLDS IS A SUM OF
THREE INVARIANTS

M. V. SOKOLOV

ABSTRACT.  We show that every Turaev-Viro invariant for 3-manifolds is a sum of
three new invariants and discuss their properties. We also find a solution of a conjecture
of L. H. Kauffman and S. Lins. Tables of the invariants for closed orientable 3-manifolds
of complexity < 3 are presented at the end of the paper.

0. Introduction. In 1990 Turaev and Viro obtained an infinite set of 3-manifold
numerical invariants TV;, [7]. The invariants are parameterized by pairs (r, p) of non-
negative coprime integers with r > p > 0 and r > 2.

We show that every Turaev-Viro invariant is a sum of three new invariants and discuss
their properties. The paper also answers (negatively) a conjecture due to L. H. Kauffman
and S. Lins [2] and studies the case » = 4 (for the case » = 3 see [7]). At the end of the
paper we present tables of the invariants with » < 8 for closed orientable 3-manifolds of
complexity < 3. (For complexity theory see [3].)

The author would like to thank Prof. S. V. Matveev for his considerable amount of help
in this work, A. Yu. Makovetsky and M. A. Ovchinnikov for much useful information.
Special thanks to Prof. Richard B. Paine for his help in preparation of the manuscript.

1. Definition and preliminaries. A 2-dimensional connected polyhedron X is
called special if it satisfies the following conditions: 1) the link of any point of X is
homeomorphic to a circle, a circle with two radii, or a circle with three radii; 2) every
connected component of the set of 2-manifold points of X is a 2-cell. A special polyhe-
dron X is called a special spine of a compact 3-manifold M> with 6M? # () if there exists
an imbedding i: X — M? such that M3 \, i(X), i.e., M° collapses onto i(X). A special
polyhedron X is called a special spine of a closed 3-manifold M if X is a special spine
of M3 with an open ball removed. It is known that every compact connected 3-manifold
has a special spine ([1], [4]).

We shall describe elementary moves on special polyhedra. The move M changes a
small neighborhood of some edge in a fashion indicated in Fig. 1. The move M ~! is the
inverse of M (see [4] for details). We call two special polyhedra M -equivalent if one
can be obtained from the other by a finite sequence of moves M*! | Let X, be a special
spine of 3-manifold M* and let X; be a special polyhedron. Let both X; and X> have more
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than one vertex. Then in order for X; also to be a special spine of M?, it is necessary and
sufficient that X; and X, be M -equivalent (See [4], [5]).

Let X be a special spine of a 3-manifold M>. We fix a pair (r, p) of coprime integers
with» >p > 0andr > 2. Let Iy, ..., I, be the 2-components of X. By a coloring of X
we mean an arbitrary mapping o: {['y,..., T} — Z,—1 = {0, 1,...,r — 2}. A coloring
¢ is called admissible if for all triples of 2-components I';, T';, I'y meeting on the same
edge we have:

2r—4 > o)+ o))+ ¢ =0 (mod 2),
lo(T)) — o(@)| < ox) < @) + @(T)).

Let us denote the set of admissible colorings of X by Adm X.

Let I';, I, I’y be 2-components incident to an edge £ of X and let ¢ € AdmX. We
shall say that a triple (<p(F i), o(T}), <p(l"k)) is a color of edge E. There are six distinct 2-
components incident to any vertex of a special spine. Suppose for a vertex v they receive
tJ
1
v if (i, j, k) is a color of some edge incident to v and (i, J), (j, m), (k, n) are the pairs of

colors of opposite 2-components incident to v.
Let us recall how to compute the Turaev-Viro invariant for compact connected 3-
manifold M? with special spine X. For an integer n > 0 set

[n] = sin(npm [r)/ sin(pm /),
[r]! = [n][n —1]--- [2][1].
Set also [0] = [0]! = 1. For a color (i, j, k) of an edge set

li+)— K i+k—j) [ +k— i\ '/
[i+j+k+1]!

under ¢ the valuesi,j, k,I,m,n € Z,_,. A 6-tuple ﬁ) is called a color of vertex

AG,j, k) = (

where i = i/2. Note that the expression in the round brackets presents a real number.

By the square root x!/2 of a real number x we mean the positive root of |x| multiplied by
Vv—lifx <0.
Let ; rjn ﬁ) be a color of some vertex v. A symbol of v is computed by the fol-
lowing formula
_|iJ ok
7] = ‘ I m n
= (VI NG A, mmAG LA Lm)[§ T K],
where
[0 2 K] = S i R i m ) e~ ) e~k

X[i+j+l+m—z)[i+k+I+n—z]![j+k+m+n—z]!}"".
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Here z runs through the non-negative integers such a way that all expressions in the
square brackets are non-negative. For i € Z,_| put

wi(r,p) = (V=1)[i +1]'/2.
For ¢ € Adm X put
b d
|Xl<p(",P) = Hl Wi(n) Hl lvaL
i= j=

where vy, ..., vy are the vertices of X. The number
TV, (M) = w D 57 X, (r,p)
pEAdm X

is the Turaev-Viro invariant for 3-manifold M3, where w = ++/2r/ (2 sin(pr / r)) and
X(X) is Euler characteristic of X. (See [7] for details.)
The set of 2-components that receive odd colors under an admissible coloring ¢ forms
a closed surface embedded in X. We shall denote this surface by S(y). Present the set
Adm X as a disjoint union of subsets Admg X, Adm; X, and Adm; X, where
0) ¢ € Admg X & (p € AdmX) & (S(p) = 0);

1) ¢ € Adm X & (p € AdmX) & (X(S(cp)) =1 (mod 2));
2) ¢ € Adm X & (p € AdmX) & (S(p) # 0) & (x(S(cp)) =0 (mod 2)).

Here X(S(Lp)) is Euler characteristic of surface S(¢). If ¢ € Admy X, where N = 0, 1,
or 2, then we say that N is the index of coloring ¢.

2. Main theorem.

THEOREM 2.1. Let M be a compact 3-manifold and X; be its special spine. Then
the numbers

M= Y |Xlp)

pEAdmy X
IMsll(r,P): Z 'X1|<P(r,p)a
thAdml X|
MPLep)= > Xile.p)
<p€Adm2X|

are invariants of M® and

TV, , (M) = w XD |o(r, p) + M|, (. p) + M2, p)).

PROOF. Let X, denote the spine, which is obtained from X; by a single elementary
move M. It suffices to prove that

E |X1|<p(r,p) = Z |X2|(p(r,p)

pEAdmy X, pEeAdmy X,
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for every N € {0, 1, 2}.

By definition of the M -move, there exist imbeddings i;: Py — X, and ip: P, — X
such that X7 — i;(P) = X5 — ip(P,), where P; and P, are the polyhedra in Fig. 1. It is
evident that for any ¢, € AdmX; and ¢, € Adm.X; such that ¢;|x,_i,p,) = 2| Xo—in(Py)
the indices of colorings ¢ and ¢, are the same, i.e., there exists a unique number N €
{0, 1,2} such that ¢; € Admy X; and > € Admy X,. The remaining part of the Proof
coincides with the Proof of 4.4.B from [7]. n

The following Lemma shows that the invariants |M?|y(r, p) are not independent.

LEMMA 2.2. Let M® be a compact orientable 3-manifold. Then
1) For all parameters (r, p) we have |M?|x(r, p) = (—V)V|M?|n(r, ¥ — p), where
Ne{o, 1,2}
2 MG, 1) = M3, 2)= 1.

PROOF. 1) It is easily proved that for any orientable 3-manifold M> with special
spine X and for any ¢ € Adm X we have

(1) IX]o(r,p) = (= 1}SD|X],(r,r — p)

(for proof see [6]). It remains to check that x (S(¢)) = N (mod 2).
2) If r = 3 then Admy X = {0}, where ¢ is the zero—coloring. It is known that

X3, 1) = 1. .

3. The Kauffman-Lins conjecture. The case r=4. Throughout this section, TV;,
will be the Turaev-Viro invariant without the factor w=2X¥_ j e

V()= 3 |Xl,(p).
pEAdm X
(Without this factor the invariant depends on removing open balls from M>. But this fact
is irrelevant here.)
In [2] L. H. Kauffman and S. Lins put forward the following conjecture.

CONJECTURE. Consider an arbitrary closed 3-manifold M3, and let X be a special
spine for M3. Let n, be the number of closed surfaces contained in X that have even
Euler characteristic and n, the number of closed surfaces in X that have odd Euler char-
acteristic. Then (i) either n, = n,, or n, = 0, and this alternative is invariant for every
special spine of M?; (i) n, = 0 & TV (M) = TV, (M%) € Z.

Note that if M is an orientable manifold, then part (i) of the conjecture follows from
8.3-8.4 in [7]. If M? is a nonorientable manifold, then there exists a counter example
offered by S. V. Matveev. It is the manifold RP? x S!; a neighborhood of the 1-skeleton
of a special spine for RP? x S! is shown on Fig. 2a. For this spine we have: n, = 1 and
n. = 3. This disproves the part (i) of the conjecture. (Let us give some explanation of
Fig. 2a. The manifold RP? x S! with open ball B* removed collapses onto M x S' Uy, D?,
where M is Mobius band and D? is a disk attached along oM. The manifold M x S!
collapses onto torus ' x S!, so RP? x S' — B? collapses onto S' x S! with disk D?,
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Ly, S| Lsa| Lai| RPP| Lsy| Lya| Lss|S¥Qs| Lea| Lea| Lios| Lua| Lis| Lis|SY0n
(3,1) 1 0.500 | 0.500 | 0.500 | 1.000 | 0.000 | 0.500 | 0.500 | 1.000 | 2.000 {0.000 [0.500 | 0.000 | 0.500 {1.000 |0.500 | 1.000

(3,2) 1 0.500 {0.500 | 0.500 |1.000 | 1.000 [ 0.500 | 0.500 |1.000 |2.000 {1.000 |0.500 | 1.000 |0.500 {1.000 {0.500 | 1.000

(4,1) | 0.250 } 0.250 | 0.250 | 0.500 | 0.146 | 0.250 | 0.250 { 1.000 | 2.500 [ 0.853 }0.250 | 0.853 | 0.250 | 0.500 | 0.250 | 0.500

(4,3) | 0250 | 0.250 | 0.250 | 0.500 | 0.853 | 0.250 | 0.250 | 1.000 | 2.500 | 0.146 [ 0.250 | 0.146 | 0.250 [ 0.500 | 0.250 | 0.500

(5,1) {0362 10.1380.000 | 0.276 | 0.000 | 0.500 | 0.362 | 0.724 {2.553 | 0.000 | 0.138 | 0.000 | 0.138 [ 0.724 }0.362 | 1.276

(5,4) 1 0362 10.138 | 0.000 | 0.276 §0.724 | 0.500 | 0.362 | 0.724 |2.553 | 0.276 | 0.138 | 0.000 | 0.138 }0.724 | 0.362 | 1.276

(5,2) | 1.382 ] 0.362 | 0.000 | 0.724 | 0.276 | 0.500 | 0.138 | 0.276 | 3.447 | 0.724 | 0.362 | 0.000 | 0.362 | 0.276 | 0.138 | 1.724

(5,3) | 1.382 | 0.362 | 0.000 | 0.724 | 0.000 [ 0.500 | 0.138 | 0.276 | 3.447 | 0.000 | 0.362 | 0.000 | 0.362 | 0.276 | 0.138 | 1.724

(6,1) [ 0.250 | 0.083 | 0.083 | 0.333 | 0.045 | 0.083 | 0.083 | 0.333 |2.333 | 0.500 {0.250 | 0.622 | 0.083 [ 1.000 | 0.083 | 1.333

(6,5) | 0.250 | 0.083 | 0.083 | 0.333 | 0.622 |0.083 | 0.083 | 0.333 |2.333 | 0.500 | 0.250 | 0.045 | 0.083 [ 1.000 | 0.083 | 1.333

(7,1) ] 0.175 | 0.054 [ 0.272 | 0.349 | 0.000 | 0.272 | 0.000 | 0.108 | 2.043 | 0.000 | 0.272 | 0.000 [ 0.175 | 0.543 | 0.054 | 0.758

(7,6) | 0.175 | 0.054 | 0.272 | 0.349 | 0.543 | 0.272 | 0.000 | 0.108 [2.043 }0.108 [0.272 | 0.349 | 0.175 | 0.543 {0.054 | 0.758

(7,2) | 0.272 ] 0.175 ] 0.054 | 0.543 | 0.108 | 0.054 | 0.000 | 0.349 | 4.268 | 0.349 | 0.054 | 0.543 }0.272 ] 0.108 | 0.175 | 0.806

(7,5) 1 0.272 | 0.175 | 0.054 | 0.543 | 0.000 | 0.054 | 0.000 | 0.349 | 4.268 | 0.000 | 0.054 | 0.000 {0.272 | 0.108 | 0.175 | 0.806

(7,3) | 0.054 {0.272{0.175 | 0.108 | 0.000 |{0.175 | 0.000 |0.543 | 3.689 |{0.000 | 0.175 | 0.000 | 0.054 | 0349 {0.272 | 1436

(7,4)]10.054 10.2720.175 | 0.108 | 0.349 | 0.175 | 0.000 | 0.543 |3.689 | 0.543 | 0.175 | 0.108 | 0.054 | 0.349 | 0.272 | 1.436

TABLE 1

attached to it such that 8D? winds twice around S! x {x}. There is an isotopy of 6D? in
the torus S! x S! transforming our polyhedron to special one with neighborhood of the
1-skeleton pictured on Fig. 2a. Union of 2-components marked by I, I, III is the torus
S! x S', unmarked curve is the boundary of the disk D?.)

Let us consider the manifold $®/ Q16 (A neighborhood of the 1-skelton of a spe-
cial spine for $®/ Q16 is shown on Fig. 2b, see [3]). We can see that TV} (S®/ Q1) =
TV 5(S%/ Q16) = 6, but n, 5 0 for this manifold. So the implication < of part (ii) in the
conjecture is not true. But if n, = 0 then TV} ,(M?) = TV, ;(M?) € Z. 1t follows from
the next Lemma. (Let us remark that TV;,(M®) = TV;,_,(M®) in the case 1, = 0 for any
(r, p) and any compact orientable 3-manifold M. It follows from the equation (1)).

Let us denote by S;(¢) the union of 2-components I'; C X such that o(I';) = i.

LEMMA 3.1. Let X be a special spine of a compact 3-manifold M?, let r = 4, and

¢ € AdmX. Then
) 1X],(4, 1) = (—V2XS @1y,
2') 1X1,(4,3) = (V2S @1y,

where n is the number of vertices in the graph G = 0S,(p).

PROOF. Values of symbols for vertices and weights for 2-cells of the spine X in the
case r = 4 are given in [2]. Their products give necessary equalities. n

COROLLARY 3.2. If M? is a compact orientable 3-manifold, then

[MP|o(4,1) = |M3|o(4,3) = TV5,(M).
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Ly| S| Ls2| L RP| Lsy| Lia| Lss| SY0Os Lei| Loz Liosz| Lua| Lis| Liss| SY0n
(3,1)0]1.000 | 1.000]1.000 |1.000 1.000 {1.000 | 1.000 {1.000 { 1.000 1.000 | 1.000 1.000 {1.000 | 1.000 | 1.000 | 1.000

(3,1)1{0.000 |0.000}0.000 [0.000 | —1.000 |0.000 [0.000 |0.000 | 0.000 [—1.000 |0.000 |—1.000 [0.000 |0.000 |0.000 | 0.000
(3,1)210.000 }0.000{0.000 [1.000 | 0.000 |0.000 {0.000 {1.000 [ 3.000 | 0.000 [0.000 | 0.000 | 0.000 |1.000 |0.000 | 1.000

(4,1)0]1.000 [ 1.0001.000 {2.000 [ 2.000 | 1.000 | 1.000 |2.000 [ 4.000 | 2.000 [1.000 | 2.000 | 1.000 |2.000 |1.000 [ 2.000

(4,11 10.000 |0.000 | 0.000 |0.000 | —1.414 {0.000 [0.000 |0.000 | 0.000 1.414 10.000 1.414 10.000 {0.000 {0.000 | 0.000

(4,1)210.000 10.000{0.000 {0.000 | 0.000 {0.000 {0.000 {2.000 [ 6.000 | 0.000 {0.000 | 0.000 {0.000 |0.000 {0.000 | 0.000

(5,1)02.618 | 1.0000.000 [1.000 | 2.618 |3.618 |2.618 |2.618 | 4.618 1.000 {1.000 | 0.000 | 1.000 [2.618 |2.618 | 4.618
(5,11 {0.000 {0.000{0.000 |0.000 | —2.618 {0.000 {0.000 [0.000 | 0.000 | —1.000 [0.000 | 0.000 |0.000 |0.000 {0.000 | 0.000

(5,1)210.000 {0.000{0.000 |1.000 | 0.000 |0.000 {0.000 {2.618 |13.854 | 0.000 {0.000 [ 0.000 | 0.000 |[2.618 [0.000 | 4.618

(5,2)010.382 [1.000(0.000 {1.000 [ 0382 |1.382 |0.382 [0.382 | 2.382 1.000 {1.000 | 0.000 {1.000 |0.382 |0.382 | 2.382
(5,2)110.000 |0.000 | 0.000 |0.000 | 0.382 |0.000 [0.000 [0.000 | 0.000 | 1.000 |0.000 | 0.000 | 0.000 |0.000 | 0.000 | 0.000

(5,2)210.000 |0.0000.000 |1.000 [ 0.000 {0.000 }0.000 {0.382 | 7.146 | 0.000 |0.000 | 0.000 | 0.000 {0.382 |0.000 | 2.382

(6,1)013.000 {1.000{1.000 {4.000 | 4.000 |1.000 |1.000 {4.000 {10.000 | 6.000 {3.000 | 4.000 | 1.000 |6.000 {1.000 {10.000
(6,1)1{0.000 [0.000]0.000 |0.000 [—3.464 |0.000 [0.000 [0.000 | 0.000 | 0.000 [0.000 { 3.464 |0.000 |[0.000 [0.000 [ 0.000
(6,1)210.000 |0.000 | 0.000 [0.000 | 0.000 | 0.000 {0.000 {0.000 |18.000 | 0.000 {0.000 | 0.000 | 0.000 |6.000 |0.000 | 6.000

(7,1)0(3.247 | 1.000 [ 5.049 |3.247 | 5.049 |5.049 [0.000 [1.000 [ 9.494 1.000 |5.049 | 3.247 | 3.247 | 5.049 | 1.000 | 7.049

(7,1)10.000 [0.000]0.000 {0.000 [—5.049 |0.000 [0.000 |{0.000 | 0.000 | —1.000 [0.000 {—3.247 |0.000 {0.000 |[0.000 | 0.000

(7,1)210.000 |0.000}0.000 |3.247 | 0.000 ]0.000 |0.000 | 1.000 |28.482 | 0.000 |0.000 | 0.000 | 0.000 |5.049 |0.000 | 7.049

(7,2)0|1.555 11.000{0.308 [1.555 | 0.308 |0.308 {0.000 |1.000 | 6.110 1.000 {0.308 1.555 1 1.555 {0.308 |1.000 | 2.308

(7,2)1{0.000 {0.0000.000 {0.000 [ 0.308 {0.000 |0.000 {0.000 [ 0.000 1.000 {0.000 1.555 10.000 | 0.000 |0.000 | 0.000

(7,2)210.000 }0.000{0.000 {1.555 | 0.000 | 0.000 |0.000 {1.000 {18.330 | 0.000 {0.000 | 0.000 | 0.000 |0.308 | 0.000 | 2.308

(7,3)0]1.198 11.000{0.643 [0.198 | 0.643 | 0.643 [0.000 | 1.000 | 3.396 1.000 | 0.643 | 0.198 | 0.198 | 0.643 | 1.000 | 2.643

(7,3)110.000 {0.000|0.000 |0.000 | —0.643 |0.000 | 0.000 |0.000 | 0.000 | —1.000 |0.000 | —0.198 | 0.000 | 0.000 |0.000 | 0.000

(7,3)210.000 ]0.000}0.000 {0.198 | 0.000 |0.000 |0.000 |1.000 |10.188 | 0.000 {0.000 | 0.000 | 0.000 |0.643 |0.000 | 2.643

TABLE 2

PROOF. Let X be a special spine of M>. If ¢ € Admy X, then X(S,(cp)) and n in (2)
and (2/) are equal to 0, so we have |M3|o(4, 1) = |M?|o(4, 3) = | Admy X]. Consider the
coloring ¢:{I'1,...,T} — Z such that p(I;) = ¢([})/2 for every 1 < i < b. The
mapping ¢ +— ¢ gives a bijection between Admo X in the case r = 4 and Adm X in the
case r = 3. The equation TV; ,(M?) = | Adm X] follows from 8.3 in [7]. "

4. The tables. We computed the values for invariants TV, (M%) and |M3|y(r, p)
with r < 7 for all prime closed orientable 3-manifolds of complexity < 6. The computed
values allowed us to conjecture that the sums ¥, 2 |M* |o(r, p) and ¥, /2 [MPJs(r, p)
for any closed orientable 3-manifold M? are integers. Analysis of computation shows
that the invariants with » < 7 identify 45 manifolds from 61 of complexity < 6. There
are two pairs and four triples of 3-manifolds with the same computed invariants.

We present the tables of invariants for the prime closed orientable 3-manifolds of
complexity < 4. The first table contains the original Turaev-Viro invariants TV, ,(M°).
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a)RP? x §! b) $3/0"®

The second table contains the invariants |M3|y(r, p) (see section 2). The names we have
chosen for the manifolds are taken from [3]. The numbers in the brackets in the first
columns of tables are the parameters (r, p); the number 0, 1, or 2 after the brackets in the
first column of the second table shows what kind of three invariants |M3|o(r, p), |M?| (7,
p), or |M3|5(r, p) is presented in this line. The second table does not contain invariants
with parameters p > r/2 because it has been proved in Lemma 2.2 that [M3|y(r, p) =
(=D |M3|n(r, ¥ — p).
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The invariants from the first table and the second one are related by the equality

TV, o(M*) = (2sil(pr /1) [r) X (M |or, p) + [M*[1 (7, p) + [M’[a(r, p)).
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