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SUMMARY

Newcastle disease (ND) is one of the most important poultry diseases worldwide and can lead
to annual losses of up to 80% of backyard chickens in Africa. All bird species are considered
susceptible to ND virus (NDV) infection but little is known about the role that wild birds play
in the epidemiology of the virus. We present a long-term monitoring of 9000 wild birds in four
African countries. Overall, 3·06% of the birds were PCR-positive for NDV infection, with
prevalence ranging from 0% to 10% depending on the season, the site and the species considered.
Our study shows that ND is circulating continuously and homogeneously in a large range of
wild bird species. Several genotypes of NDV circulate concurrently in different species and are
phylogenetically closely related to strains circulating in local domestic poultry, suggesting that
wild birds may play several roles in the epidemiology of different NDV strains in Africa.
We recommend that any strategic plan aiming at controlling ND in Africa should take into
account the potential role of the local wild bird community in the transmission of the disease.

Key words: APMV-1, ecology, epidemiology, infection, maintenance, Madagascar, Mali
Mauritania, spread, transmission, Zimbabwe.

INTRODUCTION

Newcastle disease is one of the most important
poultry diseases worldwide. It is a particular threat
to food safety in most developing African and Asian

countries where chickens are an important source of
protein and income [1, 2]. This disease is caused by
the avian paramyxovirus type 1 (APMV-1), also
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named Newcastle disease virus (NDV), classified in
two main classes of several genotypes each. Class I
is divided into genotypes 1–9 while class II is divided
into genotypes I–XIV [3, 4]. Strains of NDV are also
characterized according to their pathogenicity for
chickens as either low pathogenic NDV (LPNDV)
or virulent NDV (vNDV) [3]. The virulent form is
listed in the World Organization for Animal Health
(OIE) Terrestrial Animal Health Code and detection
thereof must be notified to the OIE. Outbreaks of
vNDV are associated with high morbidity and mor-
tality rates of up to 100% in gallinaceous poultry spe-
cies and can lead to annual losses of up to 80% of
backyard chickens raised in developing countries
where the disease is endemic [2]. As the clinical and
epidemiological features of vNDV are similar to
highly pathogenic avian influenza (HPAI) viruses,
both diseases are difficult to differentiate without lab-
oratory confirmation.

Panzootics of vNDV have occurred during the
twentieth century after the first in 1926 [2]. Vac-
cinated domestic poultry are considered to be the
main reservoir of vNDV, as the vaccines prevent mor-
tality and production losses but permit subclinical
infections with shedding, thereby maintaining vNDV
in poultry populations [5–8]. Although NDV epidemi-
ology has received some scientific attention recently,
thereby enhancing our understanding of the dynamics
of the viruses in poultry populations, grey areas per-
sist. This lack in knowledge concerns the role of
wild hosts in NDV introduction, maintenance and
spread and specifically the epidemiology of NDV in
rural production systems of developing countries,
particularly in Africa [1].

The role of wild bird species in the epidemiology of
NDV, and in particular of vNDV, is unclear and their
potential to spread or maintain these viruses remains
poorly understood. Different LPNDV strains seem
to commonly circulate in wild bird populations as illu-
strated by the phylogenetic diversity of LPNDV circu-
lating in wild waterfowl and shorebirds in North
America [9]. Regarding vNDV, some experimentally
infected wild birds (e.g. double-crested cormorant,
Phalacrocorax auritus) were shown to shed vNDV in
the absence of mortality or clinical signs [10].
Various wild bird species have been also suspected
to be the source of NDV outbreaks in poultry: double-
crested cormorants in Canada [11], feral pigeons
(Columba livia) in North America and Europe [12]
and the Eurasian collared dove (Streptopelia decaocto)
in the USA [13]. Following the second panzootic that

emerged in the late 1960s, numerous studies were con-
ducted in the 1970s to determine whether wild birds
may act as reservoir of NDV [2]. In an exhaustive re-
view published in 1988, Kaleta & Baldauf reported
that 236 different bird species from 23 orders had
been tested positive for NDV, mostly through natural
infection [14]. They concluded that all bird species can
be considered as susceptible to NDV infection and the
role of certain groups of species in the epidemiology of
NDV was highlighted: species living in close contact
to the sea or fresh water tended to be quite resistant
to vNDV while gregarious species were more likely to
acquire NDV infection [14]. Most LPNDV belong to
class I NDV and to genotypes I and II of class II
NDV, and have mainly been isolated from wild water-
fowl and shorebirds which as a result are considered the
main reservoirs of these strains [3]. Some LPNDV
strains isolated in poultry in live birdmarkets were phy-
logenetically related to LPNDV strains isolated in wild
birds, suggesting that they may occasionally be trans-
mitted between wild and domestic populations [15].
Some of these LPNDV strains have also the potential
to be the precursors of vNDV responsible for outbreaks
after introduction into poultry populations as observed
in Ireland and in Australia [16, 17]. However, the
mechanisms and factors driving the emergence of
vNDV from LPNDV circulating in wild birds, before
or after introduction into poultry populations, are
largely unknown [2].

Over the past decade, the emergence and spread of
HPAI H5N1 has led to the monitoring of large wild
bird populations across the world, albeit focused on
wild waterfowl, the main reservoir of avian influenza
virus (AIV). The biological material collected and
the RNA extraction method are the same for AIV
and for NDV, and several research groups tested
their samples for both NDV and AIV. The extension
of NDV studies to new geographical areas and new
species confirmed the global pattern that had been de-
scribed since the 1970s: a large range of species are
susceptible to NDV infection, with LPNDV mostly
isolated in waterfowl [18–20] and specific genotypes
of vNDV persisting in certain species such as pigeons
[21] and cormorants [22]. These studies also showed a
high variability in the NDV infection rate of wild bird
populations depending on the site, the period, the spe-
cies and the methods used. Virus prevalence varied
between 0·5% in Japan [23], 0·7% in Brazil [20],
3·4% in Australia [24], 5·18% in Turkey [19] and
5·5% in Finland [18]. However, few studies have de-
scribed the seasonal patterns of NDV infection in
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wild birds or have investigated the main ecological
drivers of NDV infection in wild birds.

Here,wepresent a large-scale study comprisingNDV
long-term monitoring of ∼9000 wild birds in four
African countries, Madagascar, Mali, Mauritania and
Zimbabwe. This monitoring programme was designed
to study both AIV and NDV in African wild birds
[25–27]. Thus, the study did not focus on waterfowl
only and studies on NDV epidemiology were concur-
rently implemented in poultry [28–30]. In this paper,
we focused on three questions: (i) what is the host
range of NDV in wild birds in Africa and is there any
variability in virus prevalence between bird species
or phylum in the wild African bird community?, (ii) is
there a year-round circulation of NDV in wild birds in
Africa or is there any seasonal pattern?, and (iii) do
NDV strains detected in domestic and wild birds indi-
cate any exchange of virus at the wildlife/domestic
interface?

METHODS

Study sites

Long-term monitoring of African wild birds was
implemented in Madagascar, Mali, Mauritania and
Zimbabwe through 33 sampling occasions in sevenwet-
lands over 4 years (Fig. 1). InWestAfrica, samples were
collected from large natural areas. The Inner Niger
Delta in Mali is the largest continental wetland in
West Africa supporting several millions of Afro-
tropical and Eurasian migratory waterbirds, and the
Parc National du Banc d’Arguin in Mauritania consti-
tutes one of the largest wintering sites for shorebirds in
the world (∼2·3 million birds). In contrast, samples
were mainly collected from smaller man-made wet-
lands, the adjacent lakes Chivero and Manyame in
Zimbabwe and Lake Alaotra in Madagascar. Except
in Banc d’Arguinwhere few villages and domestic poul-
try are present, human villages are settled in these areas
and most poultry are raised traditionally, free-ranging
around the village. Poultry are therefore likely to
share the same habitats as wild birds in the vicinity
of villages, especially during the dry season when wild
birds use remnant water bodies [31].

Ethical standards

During the study, birds were captured and released into
the wild using conventional techniques (mist nets and
baited walk-in traps) covered by the Ornithological
Council’s ‘Guidelines for the Use of Wild Birds in

Research’. Procedures for capture, handling, and sam-
pling were approved by the Centre de Recherches
par le Baguage des Populations d’Oiseaux (CRBPO,
Natural History Museum Paris –French National
Reference Bird Ringing Centre). Capture permits
were obtained from the relevant government authority
in each country where field studies were conducted.
All sampling activities were conducted in the presence
of a representative from the animal health and veter-
inary national services and a representative from the
environment national services.

Sampling and diagnostic procedures

Cloacal, tracheal, and faecal samples were collected
from live-caught birds captured using mist nets and
walk-in traps, from recently caught birds provided by
traditional hunters or from fresh droppings collected
at roosting sites. All samples collected in Madagascar,
Mali and Mauritania were analysed at CIRAD
Laboratory in Montpellier, France following a com-
mon procedure for collection, storage, shipment and
virological testing. These samples were tested using
a technique targeting class II NDV only in order to
have a better sensitivity for vNDV detection. Viral
RNAwas extracted from samples by a high throughput
automated platform Biomek FXP (Beckman, USA)
using the Nucleospin RNA virus kit (Macherey
Nagel, Germany). NDV was detected by a one-step
real time RT–PCR (rRT–PCR) targeting the F gene
with the forward primer F259 5′- ACATTGACCACT-
TTGCTCA-3′ and the reverse primer F488rev
5′-TGCACAGCCTCATTGGTTGC-3′. The PCR
fragment of 239 bp was sequenced externally (GATC
Biotech, Germany). All samples positive by RT–
qPCR were inoculated into the allantoic cavities of
9- to 11-day-old embryonated fowl eggs from a com-
mercial specific-pathogen-free flock. After 1–3 pas-
sages, allantoic liquid from dead eggs was tested by
NDV RT-qPCR, and NDV-positive samples were
then stored at−80 °C and used as working stock for se-
quence analysis. More details on the methods are pub-
lished in de Almeida et al. [4]. All samples collected in
Zimbabwe were analysed at Onderstepoort Veterinary
Institute (OVI) Laboratory, Onderstepoort, South
Africa following a common procedure for collection,
storage and shipment. RNAwas extracted using either
TriZOL reagent (Invitrogen, USA) or an automated
MagNaPure platform (Roche, USA) and two different
viral RNA procedures were used for virological testing.
Samples collected between May 2007 and March 2009
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were tested by the rRT–PCRmethod described byWise
et al. [32] whereas samples collected betweenNovember
2009 and May 2010 were tested using the method de-
scribed by Fuller et al. [33]. All rRT–PCRs were run
on an Applied Biosystem’s StepOnePlus platform
(Life Technologies, USA).

Data analysis

In order to answer the questions (i) and (ii), results
from the RT–PCR analyses were summarized to esti-
mate infection rates and their 95% confidence inter-
vals for each sampling occasion. In order to have an

estimation of prevalence with ecological and epide-
miological relevance (i.e. with good accuracy and eco-
logical consistency), we merged the results from
different wild birds species. We considered six different
groups: anatids (Anatidae family: ducks and geese),
waders (including Scolopacidae, Charadriidae and
Jacanidae families: plovers, sandpipers, snipes, jaca-
nas), gulls (Laridae family: gulls, terns), rails (Rallidae
family, e.g. Common moorhen –Gallinula chloropus),
Ciconiiformes (including Ardeidae, Pelecanidae and
Phalacrocoracidae families: herons, pelican, cormorant),
and passerines (including Passeridae and Motacillidae
families, e.g. Red-billed quelea –Quelea quelea).

Fig. 1. Map of sample sites showing the seven sites where the 34 sampling occasions of the study took place. It also
shows that the samples were analysed in two different laboratories following three different procedures. * The size of the
circles on the map is proportional to sampling size of the study site. † Samples collected at lakes Chivero and Manyame
were analysed by two different techniques at Onderstepoort Veterinary Institute Laboratory: PCR Simplex for samples
collected from May 2007 to March 2009; PCR Triplex for samples collected from November 2009 to November 2010.
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Studies of AIV infection in wild birds have demon-
strated the complementary nature of cloacal and oro-
pharyngeal samples, since birds are rarely found
concurrently infected in both types of samples [34]. In
our study, all birdswere tested forNDV infection in clo-
acal or faecal sample but not always for tracheal sam-
ples. We first compared the results of NDV detection
from tracheal vs. cloacal samples in all birds for which
both types of samples were available. We then con-
sidered only cloacal and faecal samples to conduct our
comparative analysis of NDV prevalence between spe-
cies, seasons and sites in order to account for variation
in sampling design. In Zimbabwe in 2007–2008, be-
cause of low sample sizes, it was decided to group the
sampling occasions into rainy and dry seasons only,
leading to four sampling occasions between May 2007
andMarch 2009.We ended with 24 sampling occasions
for the eco-epidemiological analyses.

We tested the effect of two variables on NDV
prevalence in a generalized linear mixed model
(GLMM). The first explanatory variable with a fixed
effect was the type of bird group, a qualitative variable
with six modalities (anatids, waders, gulls, rails,
Ciconiiformes, passerines). The second explanatory
variable with a fixed effect was the season, a qualitat-
ive variable with two modalities (dry and rainy). In
order to account for a potential country effect, for po-
tential aggregations of infected birds and for a poten-
tial difference in diagnostic sensitivity of the three
different methods used by the two laboratories of
the study, we respectively included ‘country’ (four
modalities), ‘sampling occasion’ (24 modalities) and
‘LabMethod’ (three modalities) as variables with a
random effect in the model. We also ran four country-
specific models in order to test the effect of the two ex-
planatory variables within each country, with relevant
random effect variables (Supplementary Table 1). All
models were run using the ‘glmer’ function in the
‘lme4’ package of R software [35].

In order to answer question (iii) of our study, we per-
formed phylogenetic reconstruction on short sequences
of the F gene (positions 268–443) based on 67
sequences generated from wild bird samples collected
in this study and 100 additional sequences retrieved
from GenBank. Multiple sequence alignments were
performed using the CLUSTAL W program of the
MEGA5 software suite [36]. A sequence from a
class I NDV isolate was included as an outgroup to
root the tree. The reconstruction was achieved with
the Bayesian inference method with a GTR model
using MrBayes_3·2·2 [37]. To discriminate between

LPNDV and vNDV, we used the criterion provided
by OIE about the sequence of the cleavage site of the
fusion protein, according to OIE guidelines, this cri-
terion is sufficient to report an outbreak of Newcastle
disease [38]. Therefore, sequences from our study for
which multiple basic amino acids have been demon-
strated in the virus at the cleavage site of the fusion
protein were classified as vNDV.

RESULTS

A total of 13827 cloacal, tracheal and faecal samples
collected from 9085 birds were analysed in this study
(Table 1). Overall, 3·06% of the birds were PCR-posi-
tive for NDV infection, with prevalence ranging from
0% to 10% depending on the season, the site and
the species considered (Fig. 2, Supplementary Fig. 1,
Supplementary Tables 2 and 3).

Among the 4641 birds for which both cloacal and
tracheal samples had been tested, most birds (n=174)
were positive for one type of sample only and only a
few birds (n=18) were found positive concurrently
for both types of samples (Fig. 3, Supplementary
Table 4). Furthermore, no significant difference was
observed between the proportions of positive cloacal
and tracheal samples for the 4641 double-tested birds
(Fisher’s test, P=0·27).

Regarding question (i), our results showed that a
wide diversity of African wild birds were susceptible
to NDV infection, with 45 different species testing
positive during our study (Supplementary material).
Furthermore, 28/29 species with a sample size >100
tested positive for NDV infection. The sample size
of 100 would give a 95% probability of detecting a
virus circulating at 3% prevalence (the global NDV in-
fection rate observed in our study) at a given time and
site. Among these 29 species, the only species with no
NDV-positive sample had the lowest sample size with
108 samples tested. Figure 2 shows that in Mali and
Mauritania, where we tested up to six different wild
bird species groups, NDV circulates (for given periods
and sites) at a similar infection rate in the various
groups (Supplementary Fig. 1 shows the same results
for all countries). Results from the GLMM did not
show significant differences between the prevalence
rates measured for the different groups of species con-
sidered in our study (Supplementary Table 1).

Regarding question (ii), NDV was detected year-
round in wild birds at all the study sites investigated,
and we did not detect any NDV-positive sample
in only two periods: September–October 2008 in
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Mali and November 2007–March 2008 in Zimbabwe
(Fig. 4). The lack of NDV positives in the
Zimbabwe 2007/2008 samples may be attributed to
the inability of the Wise et al. assay [32], targetingthe
matrix (M) gene to detect class I NDVs. By contrast,
the Fuller et al. assay [33] targets the polymerase (L)
gene and furthermore applies a dual probe approach
to improve sensitivity and specificity. The Fuller et al.
assay was validated to detect both class I and II
NDVs and was used for the 2008/2009 samples. Our
results showed differences in prevalence rates measured
for different periods (Fig. 4 and Supplementary Tables
2 and 3). InMali, results from the GLMM showed that
prevalence rates were significantly (GLMM, P=0·005)
higher during the dry season than during the rainy sea-
son (Supplementary Table 1). This seasonal pattern in
Mali is illustrated in Figure 2 which shows decreasing
NDV prevalence from dry to rainy season in both
2008 and 2009. In Madagascar and Zimbabwe, there
was no significant difference in NDV infection rates be-
tween the dry and the rainy seasons (Supplementary
Table 1).

Regarding question (iii), from 209 PCR-positive
samples fromMadagascar,Mali andMauritania tested
for virus sequencing and isolation at CIRAD, three
NDV strains were isolated from wild birds while 96
could be partially sequenced for the F gene. However,
only 67 sequences were long enough to be included
into phylogenetic reconstructions. Results from the
phylogenetic analysis of 167 partial sequences of the F
gene (176 bp) show that both LPNDV and vNDV are
circulating in apparently healthy wild birds (Fig. 5).
These strains belong to several genotypes, including
African genotypes XI and XIV recently described [4].
Furthermore, closely related strains are circulating
in different sites and different wild bird species and
are related to LPNDV and vNDV strains circulating
in domestic poultry (Fig. 5). We detected vNDV from
17 different species belonging to our six different wild
bird groups (Supplementary Table 5). Interestingly,
isolates of wild birds are clearly distinct form isolates
of poultry inMadagascar (Fig. 5). However, this differ-
ence was due to a unique synonymous nucleotide
mutation (data not shown).

DISCUSSION

Our study provides new information on the general
eco-epidemiology of Newcastle disease in Africa.
First (i), NDV has a large host range and is circulating
homogeneously in all groups of wild birds speciesT
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tested in our study for a given site and period, with
prevalence ranging from 0% to 10% across sites and
periods of sampling, suggesting potential maintenance
of NDV in wild birds. Second (ii), NDV seems to be
circulating year-round in wild birds but no consistent
seasonal pattern of NDV circulation could be evi-
denced across all sites, although in Mali, the NDV in-
fection rate was significantly higher in the dry season
than in the rainy season during two consecutive

years. Last (iii), the phylogenetic analyses of NDV
strains isolated in apparently healthy wild birds
showed that different genotypes of LPNDV and
vNDV circulate concurrently in different species of
wild birds at different sites and are phylogenetically
related to strains circulating in local domestic poultry.
These results suggest that wild birds may play several
roles in the epidemiology of different NDV strains in
Africa, including vNDV strains potentially respon-
sible for outbreaks in poultry.

Wild birds could participate in the maintenance of
NDV in different African regions, including vNDV
strains potentially triggering outbreaks in poultry.
The large diversity of wild bird species that tested posi-
tive for NDV at relatively high prevalence rates sug-
gests the existence of a large maintenance community
for NDV as was suggested elsewhere for LPNDV and
waterfowl [3]. Our results also suggest a potential
large maintenance community for vNDV as 17 differ-
ent species representing all of our six bird groups tested
positive for vNDV infection. As the PCR technique
used in Mali, Mauritania and Madagascar targeted
class II NDV only, we may have missed class I
NDV-positive species and our NDV prevalences may
underestimate the actual level of NDV circulation in
these countries. In 2009/2010 in Zimbabwe, prevalence
rates measured for anatid species ranged from 1·8%
to 5%. In Mali, Madagascar and during the first

Mali

20%
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Fig. 2. Homogeneous circulation of Newcastle disease virus in wild birds. The figure shows, for a given sampling
occasion, similar prevalence rates with 95% confidence intervals across all groups of wild bird species based on cloacal
and faecal samples in Mali and Mauritania.
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Fig. 3. Comparison between cloacal-faecal and tracheal
PCR-positive rates. Boxplot of the PCR-positive rates of
samples collected per country on birds that were tested for
both cloacal (C) and tracheal (T) samples. A few birds
were positive for both cloacal and tracheal samples (C&T).
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Zimbabwe study (during which samples were analysed
with a different PCR technique) low NDV prevalence
rates were recorded at certain times of the year, but
positive samples were found all year-round in all coun-
tries suggesting persistence of NDV in the wild bird
community. Finally, in Banc D’Arguin, Mauritania,
a coastal national park with no poultry populations
(except in a very few isolated villages) and where high
salinity, wind, solar radiation exposure and tidal wash-
ing may reduce virus persistence in the environment,
prevalence rates measured for all groups of wild bird
species ranged from 1·4% to 6·6% during the study,
suggesting continuous inter-individual transmission
among wild birds [39]. The difference between PCR
techniques used to test the samples prevented us from
running a comparative analysis across all sites.

Although vaccinated poultry are considered the
main reservoir of vNDV [5–8], the low vaccination
rate of backyard poultry in Africa combined with
the high mortality and annual loss due to NDV
observed in certain African countries [2] may prevent
domestic populations from efficiently maintaining the
disease. In addition to local trade and wild bird move-
ments, the maintenance and circulation of NDV could
then be facilitated by a maintenance community com-
posed of poultry and wild bird populations connected
through wild/domestic contacts in the vicinity of
African villages [31]. This scenario does not seem to
be valid for Madagascar since isolates of wild and
domestic birds cluster in distinct branches. However,
this difference is supported by a unique non-
synonymous nucleic acid mutation. Therefore, the
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Madagascar
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Fig. 4. Seasonal circulation of Newcastle disease virus (NDV) in wild birds. The prevalence rates with 95% confidence
intervals are shown for the wild bird community for each sampling occasion per country based on cloacal and faecal samples.
The two periods when no PCR-positive samples were detected are displayed as an open red circle. For Zimbabwe, two
different graphs are displayed to reflect the two different PCR methods that were used to analyse the samples.
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hypothesis of the existence of a parallel evolution of
the same virus between wild and domestic birds,
based on this unique acquired mutation, remains
speculative. Such a scenario should be at least sup-
ported by a higher number of isolates from the two
populations collected over a longer period and ideally
confirmed by other differences on longer sequences.
Furthermore, in the case of frequent transmission of
vNDV between domestic and wild birds, direction of
viral flow would be difficult to determine and the
role of wild birds as a potential reservoir of vNDV
would remain speculative.

Wild birds may also participate in the local and re-
gional spread of NDV, connecting different bird popu-
lations, including allopatric domestic populations.
Closely related strains of vNDV belonging to genotype
XIV were identified in Mali and Mauritania, in dif-
ferent wild bird species and in poultry. Among the
17 species in which we detected vNDV, some are
known to perform long-distance movement regionally
or intercontinentally such as the Hottentot teal (Anas
hottentota), the Dunlin (Calidris alpina), or the
Slender-billed gull (Chroicocephalus genei) [40]. These
results suggest that wild birds may play a role in the
local and regional circulation of vNDV strains in
West Africa, consistently with the potential role played
by Double-crested cormorants in North America [11].
Furthermore, closely related strains of LPNDV
belonging to genotype I were identified in Mali,
Mauritania andMadagascar, supporting the continen-
tal spread of LPNDV by wild birds as suggested pre-
viously based on strains detected in Spur-winged
geese (Plectropterus gambensis) in Nigeria [41].

Although no consistent seasonal pattern was
observed across all sites, the seasonal pattern observed
in Mali is consistent with observed seasonality of
NDV in backyard African poultry, with epidemic
peaks occurring mostly during dry seasons [1]. Both
for wild birds in Mali (the present study) and in
African backyard chicken [1], NDV circulation is sig-
nificantly lower during the rainy season. Other studies

also showed seasonal patterns of NDV in wild birds.
A seasonal peak of NDV was observed in Wood duck
in North Carolina, USA during summer when a high
proportion of juveniles was present in the population
[42]. In North Queensland, Australia, a longitudinal
study showed that younger individuals of one duck
species were being significantly associated with higher
prevalence of NDV, leading to a seasonal peak when
these younger birds were commonly sampled [24].

The seasonal pattern observed in Mali is in agree-
ment with the lower circulation of AIV during the
rainy season observed in wild birds in Mali [25].
This lower circulation of both AIV and NDV in
Mali during the rainy season may be due to strong
ecological constraints associated with seasonality.
For example, the dispersal of Afro-tropical anatid spe-
cies during the rainy season for reproduction will
likely decrease the contact rates between individuals.
On the contrary, during the dry season, the concen-
tration of waterbird species on remnant water bodies,
that are also used by other wild and domestic
birds, may lead to higher contact and transmission
rates [43].

The transmission of NDV is facilitated by the rela-
tive stability of the virus in the environment. The
virus, including vNDV strains, can survive for long
periods in the environment at low temperatures, and
for several months in feathers even at relatively high
temperatures (20–30 °C) that may be observed in
Africa [44]. It is therefore likely that environmental
transmission plays a role in the circulation of the
virus. Such transmission pattern would be consistent
with higher transmission rates between wild and dom-
estic birds when they share remnant water bodies dur-
ing the dry season. The homogenous circulation of
NDV may also be explained by faecal contamination
of water sources that are shared by all bird species, in-
cluding terrestrial species.

Our results demonstrate that collecting and analys-
ing both cloacal and tracheal samples increased the
detection rate of NDV in wild birds. This is consistent

Fig. 5. Phylogenetic analysis on 167 partial sequence of the F gene nucleic acid sequences of NDV (176 bases). Wild bird
sequences from the study are displayed as a black circle and the name of the strain (including the country name) appears
in red, blue and purple for strains detected in Mali, Mauritania and Madagascar, respectively. Domestic poultry sequences
from the study are displayed as a black square. Trees were constructed using Bayesian inference with 40000000 iterations
and 1/1000 trees sampled in the Monte Carlo Markov Chain. A burn-in phase for the first 25% of tree samples was used
to generate the consensus tree. Convergence of the Markov chains was finally checked by an effective sample size (ESS)
for all parameters >6825 and a potential scale reduction factor (PSRF) within 0·99993 and 1·00007. A class I virus
sequence was introduced as an outgroup to root the tree. The final tree was drawn using Figtree 1.4.0 (http://tree.bio.ed.
ac.uk/software/figtree/) and the tree posterior probabilities are reported on the branches.
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with what is observed for AIV in wild birds and may
be explained by the stage of infection or by different
preferential sites of infection for different wild birds
species and strains, such as HPAIV H5N1 apparent
oropharynx affinity [34]. This should be taken into
account when designing surveillance programmes
of NDV in wild and domestic birds to increase the
detection sensitivity.

Conversely to AIV, for which certain wild species
like anatids play a major role in the epidemiology of
the virus and may then be targeted for surveillance,
our study showed that most wild species may play a
role in the spread of NDV and no specific group
should be targeted a priori. Potential maintenance in
the wild bird community is likely vary across regions
because of the unique species assemblage, environ-
mental features and cultural practices of each site.
Local studies are needed to identify potential trans-
mission routes between wild and domestic species
and to implement measures to limit contact and
transmission between the wild and domestic compart-
ments [45].

To our knowledge, this study is the first large-scale
study on NDV in wild birds in Africa. Our results sug-
gest that all groups of wild bird species may partici-
pate in the maintenance of vNDV strains and may
potentially be involved in the spread of these strains
responsible of outbreaks in poultry. We recommend
that any strategic plan aiming at controlling NDV
in Africa should take into account the potential role
of the local wild bird community in the transmission
of the disease.
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