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Abstract
The prominence of the Euler allocation rule (EAR) is rooted in the fact that it is the only return on risk-adjusted
capital (RORAC) compatible capital allocation rule. When the total regulatory capital is set using the value-at-
risk (VaR), the EAR becomes – using a statistical term – the quantile-regression (QR) function. Although the
cumulative QR function (i.e., an integral of the QR function) has received considerable attention in the literature,
a fully developed statistical inference theory for the QR function itself has been elusive. In the present paper, we
develop such a theory based on an empirical QR estimator, for which we establish consistency, asymptotic normality,
and standard error estimation. This makes the herein developed results readily applicable in practice, thus facilitating
decision making within the RORAC paradigm, conditional mean risk sharing, and current regulatory frameworks.

1. Introduction
The Euler allocation rule (EAR) plays a unique role in financial and insurance risk management as it is
the only return on risk-adjusted capital (RORAC) compatible capital allocation rule (e.g., Tasche, 2007;
McNeil et al., 2015, and references therein). In the currently adopted regulatory frameworks, such as
Basel II and III, Solvency II, and the Swiss Solvency Test (EIOPA, 2016; IAIS, 2016; BCBS, 2016,
2019), the value-at-risk (VaR) and the expected shortfall (ES) play prominent roles.

The ES-induced EAR is the tail conditional allocation (TCA), whose empirical estimation from
several perspectives and under minimal conditions has recently been developed by Gribkova et al.
(2022a, b), using the therein proposed technique that hinges on compound sums of concomitants. They
assume that data arise from independent and identically distributed (iid) random variables. For a much
wider class of data generating process such as time series, albeit under conditions that are stronger in the
iid case than those imposed in the aforementioned two papers, we refer to Asimit et al. (2019), where
earlier references on the topic can also be found. We shall employ certain elements of the technique
of Gribkova et al. (2022a,b), in the current paper as well, crucially supplementing it with kernel-type
smoothing. Note also that the TCA is a special case of the weighted capital allocation (Furman and Zitikis
2008, 2009) for which an empirical estimation theory has been developed by Gribkova and Zitikis (2017,
2019), where extensive references to the earlier literature can also be found.
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In the present paper, we lay statistical foundations for estimating the VaR-induced EAR, which is
known as the conditional mean risk sharing in peer-to-peer (P2P) insurance, a topic of much recent
interest among insurance practitioners and academics. For a few references on the topic, we refer to
Denuit (2019) and Denuit and Robert (2020), whereas Abdikerimova and Feng (2022) and Denuit
et al. (2022) provide a wealth of information about the P2P insurance. In particular,

• using the notation of concomitants, we define a consistent empirical EAR estimator,
• establish its asymptotic normality under minimal conditions,
• propose a consistent empirical estimator of the standard VaR-induced EAR error.

These contributions make the herein developed theory readily applicable in practice, including con-
structing confidence intervals for, and testing hypotheses about, the VaR-induced EAR. We shall
illustrate numerical performance of these results later in this paper.

In detail, for a given probability level p ∈ (0, 1) and a risk variable Y , whose cumulative distribution
function (cdf) we denote by G, the VaR is given by

VaRp(Y) = inf{y ∈R : G(y) ≥ p}. (1.1)

In the statistical parlance, VaRp(Y) is the pth quantile of Y , usually denoted by G−1(p), and in the
mathematical parlance, it is the left-continuous inverse of G.

Financial and insurance institutions usually have several business lines. When the total capital is
calculated using VaR, the allocated capital to the business line with risk X is, according to the EAR
(e.g., Tasche, 2007; McNeil et al., 2015), given by

EARp(X | Y) =E
(
X | Y = VaRp(Y)

)
.

A clarifying note is now warranted.

Note 1.1. As an offspring of econometric and statistical problems, EARp(X | Y) has appeared in the
statistical literature under the name of quantile regresion function (e.g., Rao and Zhao, 1995; Tse, 2009,
and references therein), which stems from the fact that it is the composition rX|Y ◦ G−1(p) of the least-
squares regression function rX|Y and the quantile function G−1. Note in this regard that EARp(X | Y),
despite being called the quantile regresion function by statisticians, is only superficially connected to
the research area commonly known as Quantile Regression (Koenker 2005).

Naturally, it is desirable to empirically estimate EARp(X | Y). For the empirical EAR estimator that
we shall formally introduce in the next section, we have developed a thorough statistical inference the-
ory under minimal conditions. Namely, in Section 2 we define the estimator and also its asymptotically
equivalent version to facilitate diverse computing preferences. In the same section, we present three the-
orems that are the main results of this paper: consistency of the EAR estimator, its asymptotic normality,
and standard error. These results are illustrated using simulated data in Section 3, and then applied on
real data in Section 4. Section 5 concludes the paper. Proofs and technical lemmas are in the Online
Supplement (see Section S1).

2. Estimators and their large-sample properties
We start with several basic conditions on the distribution of the pair (X, Y ), whose joint cdf we denote
by H. The marginal cdf’s of X and Y are denoted by F and G, respectively. We have already introduced
the left-continuous inverse p �→ VaRp(Y) of the cdf G. The right-continuous inverse p �→ V@Rp(Y) is
defined by

V@Rp(Y) = sup{y ∈R : G(y) ≤ p}.
Next are the first two conditions that we impose throughout the paper.
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Figure 1. The cdf G is continuous in a neighborhood of the interval [VaRp(Y), V@Rp(Y)] and strictly
increasing a bit to the left of VaRp(Y) and a bit to the right of V@Rp(Y).

(C1) There exists ε > 0 such that the cdf G is continuous and strictly increasing on the set
Vε = (

VaRp−ε(Y), VaRp(Y)
] ∪ [

V@Rp(Y), V@Rp+ε(Y)
)
.

(C2) The function τ �→ EARτ (X | Y) = g(VaRτ (Y)) is finite and continuous in a neighborhood of p,
where g is the regression function

g(y) =E
(
X | Y = y

)
.

Figure 1 illustrates condition (C1). Note that the gap
(
VaRp(Y), V@Rp(Y)

)
between the two intervals

in the definition of Vε coincides with the interval where the random variable Y does not (almost surely)
place any values, and thus conditioning on such values does not make sense. Indeed, all conditional
expectations are defined only almost surely.

Note 2.1. The reason we need the continuities specified in conditions (C1) and (C2) is that EARp(X | Y)
is the regression function g(y) evaluated at the single point y = VaRp(Y), and thus to gather sufficient
information (that is, data) about the EAR we need to combine the information from neither too large
nor too small neighborhoods of the point y, the latter being of course unknown. From this perspective,
conditions (C1)–(C2) are natural and basic.

Let (X1, Y1), (X2, Y2), . . . be a sequence of independent copies of the pair (X, Y ), and let Gn denote
the empirical cdf based on Y1, . . . , Yn, that is,

Gn(y) = 1

n

n∑
i=1

1{Yi≤y} = 1

n

n∑
i=1

1{Yi:n≤y},

where 1 is the indicator function, and Y1:n ≤ · · · ≤ Yn:n are the order statistics of Y1, . . . , Yn. (In the case
of possible ties, the order statistics of Y1, . . . , Yn are enumerated arbitrarily.) An empirical estimator for
VaRp(Y) can be constructed by replacing G by Gn in Equation (1.1). In a computationally convenient
form, the obtained estimator can be written as

VaRp,n = Y
np�:n,

where 
·� is the ceiling function.
Since the order statistics that we need for estimating EARp(X | Y) can lie on either side of VaRp,n, we

control their locations using two sequences of non-negative real numbers: �1,n and �2,n for n ≥ 1. They
define neighborhoods of VaRp,n from which we collect the order statistics needed for the construction of
an empirical EAR estimator. The two sequences need to satisfy the following conditions:

(D1) max(�1,n, �2,n) → 0 as n → ∞.
(D2) lim infn→∞

√
n
(
�1,n + �2,n

)
> 0.
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Note 2.2. The appearance of these �’s (a.k.a. band widths) when estimating quantities that involve
conditioning on events of zero probabilities (as is the case with the VaR-induced EAR) is unavoidable,
theoretically speaking. In practice, however, when working with real data sets, which are concrete and
of fixed sizes, the choices of �’s can be data driven, as it would be when using, for example, cross-
validation (e.g., James et al., 2013). We do not follow this path in the current paper, given that we
have developed satisfactory intuitive understanding of what appropriate �’s could be, with details in
Section 3.2 below.

Hence, according to conditions (D1)–(D2), the aforementioned neighborhoods should shrink, but not
too fast. The estimator of EARp(X | Y) that we shall formally define in a moment is based on aver-
aging those X’s whose corresponding Y ’s are near, as determined by the two �’s, the order statistic
Y
np�:n. To formalize the idea, we first recall that the induced by Y1, . . . , Yn order statistics, usually called
concomitants, are the first coordinates X1,n, . . . , Xn,n when, without changing the composition of the
pairs (X1, Y1), . . . , (Xn, Yn), we order them in such a way that the second coordinates become ascending,
thus arriving at the pairs (X1,n, Y1:n), . . . , (Xn,n, Yn:n). The empirical EAR estimator is now given by the
formula

EARp,n = 1

Nn

n∑
i=1

Xi,n1
(

p−�1,n ,p+�2,n

) (
i

n

)
, (2.1)

where the indicator 1(a,b)(t) is equal 1 when t ∈ (a, b) and 0 otherwise, and

Nn =
n∑

i=1

1(
p−�1,n ,p+�2,n

) (
i

n

)
.

A few clarifying notes are in order.

Note 2.3. In the case of possible ties, the order statistics of Y1, . . . , Yn are enumerated arbitrarily. This
arbitrariness does not affect the EAR estimator due to condition (C1). Indeed, EARp,n is based on the Y-
order statistics in shrinking neighborhoods of the point VaRp(Y), around which the cdf G is continuous by
condition (C1), and thus the Y ’s that fall into the neighborhoods are (almost surely) distinct, thus giving
rise to the uniquely defined concomitants that are not nullified by the indicators on the right-hand side
of Equation (2.1).

Note 2.4. It would not be right for us to claim that the estimator EARp,n is new, as in various guises it has
appeared in research by, for example, Gourieroux et al. (2000), Tasche (2007, 2009), Fu et al. (2009),
Hong (2009), Liu and Hong (2009), and Jiang and Fu (2015). What is new in the current formulation
of the estimator is the introduction of the notion of concomitants, which open up the doors into a vast
area of Statistics associated with order statistics, concomitants, ranks, and other related objects whose
properties have been extensively investigated (e.g., David and Nagaraja, 2003). It is this knowledge
coupled with methodological inventions of Borovkov (1988) that has allowed us to establish the results
of the present paper under minimal conditions.

Note 2.5. Deriving statistical inference for the VaR-induced EAR is much more difficult than doing the
same for the ES-induced EAR, which explains why there is always a time lag before we see results for
the VaR-induced EAR in the literature. Very interestingly, we note in this regard that Asimit et al. (2019)
observed that under some conditions and for large values of p (that is, for those close to 1), the VaR-
induced EAR and the ES-induced EAR are close to each other, thus helping to circumvent the challenges
associated with the VaR-induced EAR, given that statistical inference for the ES-induced EAR is easier,
and is often already available in the literature. This trick, however, comes at an expense associated with
a specific choice of p, which depends on the population distribution and thus needs to be estimated. For
details, we refer to Asimit et al. (2019).

We are now ready to formulate our first theorem concerning EARp,n.
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Theorem 2.1. When conditions (C1)–(C2) and (D1)–(D2) are satisfied, the empirical EAR estimator
consistently estimates EARp(X | Y), that is,

EARp,n
P−→ EARp(X | Y) (2.2)

when n → ∞.

Given the definition of EARp(X | Y), the estimator EARp,n is highly intuitive and is therefore used in
all the theorems of this paper, but from the computational point of view, we may find other asymptotically
equivalent versions more convenient. One of them, which we shall also use in our numerical studies as
well as in some proofs, is given by

ÊARp,n = 1

k2,n − k1,n + 1

k2,n∑
i=k1,n

Xi,n, (2.3)

where the integers k1,n and k2,n are defined by

k1,n = [n(p − �1,n)] and k2,n = [n(p + �2,n)] (2.4)

with [ · ] denoting the greatest integer function. Theorem 2.1 as well as the two theorems that we shall
formulate later in this section hold if we replace EARp,n by ÊARp,n.

Note 2.6. We have achieved the minimality of conditions in all our results by crucially exploiting
distributional properties of concomitants. Therefore, the estimator ÊARp,n frequently turns out to be
more convenient than EARp,n. Nevertheless, asymptotically when the sample size n increases, the two
empirical estimators are equivalent. There are, however, lines of research when EARp,n becomes more
convenient. For example, it allows to naturally introduce kernel-type smoothing, which in the technical
language means replacing the indicator on the right-hand side of Equation (2.1) by a kernel function
(e.g., Silverman, 1986). Although this is a very useful and interesting research, we have refrained from
it in the present paper as, inevitably, conditions on the kernel function need to be imposed, and they
will interact with other conditions such as those on the bandwidth and the population distribution, thus
impeding our plan to develop statistical inference for EAR under minimal conditions.

Conditions (C1)–(C2) and (D1)–(D2) imposed for the first-order result (i.e., consistency) also give
clues as to what would be needed for second-order results, such as asymptotic normality and standard
error estimation.

(C3) The function τ �→ EARτ (X | Y) is finite and α-Hölder continuous for some α ∈ (1/2, 1] at the
point p, that is, there exists a neighborhood of the point p and also a constant L ∈ (0, ∞) such
that the bound ∣∣EARτ (X | Y) − EARp(X | Y)

∣∣ ≤ L|τ − p|α
holds for all τ in the aforementioned neighborhood.

(C4) The function τ �→E(X2 | Y = VaRτ (Y)) = g2(VaRτ (Y)) is finite and continuous in a neighbor-
hood of p, where the function g2 is defined by

g2(y) =E
(
X2 | Y = y

)
.

Note 2.7. The verification of condition (C3) is not expected to pose serious obstacles in practice as it is
satisfied when the first derivative of the function τ �→ EARτ (X | Y) is bounded in a neighborhoood of p.
This means that the function should not have a jump at the point p. Naturally, practitioners have good
intuition whether this assumption is plausible, given their subject matter knowledge and, in particular,
their chosen model for (X, Y ).

While conditions (D1)–(D2) require the two �’s to converge to 0 due to EAR being the regression
function evaluated at a single point, the convergence should not be too fast in order to enable the collec-
tion of sufficiently many data points. On the other hand, intuitively, a valid asymptotic normality result
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should require the two �’s to converge to 0 fast enough to avoid creating a bias. This is the reason behind
the following condition:

(D3) n1/(2α+1) max (�1,n, �2,n) → 0 when n → ∞.

Note 2.8. It is condition (D3) that has forced the restriction α > 1/2 in condition (C3). In the special
case α = 1, which corresponds to the case when τ �→ EARτ (X | Y) is a Lipschitz continuous function,
condition (D3) reduces to n1/3 max (�1,n, �2,n) → 0; compare it with condition (D2).

We are now ready to formulate our asymptotic normality result for the empirical EAR estimator, with
V denoting the variance operator.

Theorem 2.2. When conditions (C1)–(C4) and (D1)–(D3) are satisfied, the empirical EAR estimator is
asymptotically normal, that is,√

Nn

(
EARp,n − EARp(X | Y)

) d−→N (
0, σ 2

)
, (2.5)

where σ 2 is the asymptotic variance given by the formula

σ 2 =V
(
X | Y = VaRp(Y)

)
. (2.6)

To give an insight into the normalizing factor
√

Nn, which should not, of course, be confused with√
n, we let

�1,n = �2,n =: �n

and then set

�n = n−η

with various parameter η > 0 values to be discussed next. Conditions (D1)–(D2) are satisfied if and only
if η ∈ (0, 1/2]. In this case, we have Nn ∼ n1−η, with the familiar in density estimation cases Nn ∼ n4/5

and Nn ∼ n2/3 when η = 1/5 and η = 1/3, respectively. It is useful to note the following relationships
between these values of η and the parameter α in condition (D3):

• if η = 1/2, then α > 1/2;
• if η = 1/3, then α > 1, which is not possible due to condition (C3);
• if η = 1/5, then α > 2, which is not possible due to condition (C3).

According to condition (C3), we must have α ∈ (1/2, 1] and thus the admissible range of η values
becomes the interval (

1

1 + 2α
,

1

2

]
⊆

(
1

3
,

1

2

]
which reduces to the maximal interval (1/3, 1/2] when α = 1, that is, when the function τ �→ EARτ (X |
Y) is 1-Hölder (i.e., Lipschitz) continuous. We shall need to keep this in mind when setting parameters
in the following simulation study, and also when studying a real data set later in this paper.

Hence, in view of the above, we conclude that, within the framework of the previous paragraph, the
normalizer

√
Nn in Theorem 2.2 is, asymptotically,√

Nn ∼ nη∗

with the parameter

η∗ := 1 − η

2
∈

[
1

4
,

1

2 + α−1

)
⊆

[
1

4
,

1

3

)
that can get arbitrarily close to 1/3 from below if τ �→ EARτ (X | Y) is 1-Hölder (i.e., Lipschitz) con-
tinuous, and it can be as low as η∗ = 1/4 when η = 1/2. The radius (i.e., a half of the width) of the
neighborhood of p from which the data are collected is then equal to
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�n = n2η∗−1,

and thus the smoother the function τ �→ EARτ (X | Y) is (i.e., smaller α > 0), the narrower the neigh-
borhood can be chosen. Hence, the normalizer

√
Nn in Theorem 2.2 cannot become

√
n, a fact already

noted by Gourieroux et al. (2000), Hong (2009), and Liu and Hong (2009).
For practical purposes, we need an estimator of the variance σ 2. We define it in the following theorem,

where we also show that the estimator is consistent. (We use := when wishing to emphasize that certain
equations hold by definition, rather than by derivation.)

Theorem 2.3. When conditions (C1)–(C4) and (D1)–(D3) are satisfied, we have

σ̂ 2
p,n := 1

Nn

n∑
i=1

X2
i,n1

(
p−�1,n ,p+�2,n

) (
i

n

)
− (

EARp,n

)2 P−→ σ 2. (2.7)

With the help of classical Slutsky’s arguments, Theorems 2.2 and 2.3 immediately imply√
Nn

σ̂ 2
p,n

~
(
EARp,n − EARp(X | Y)

) d−→N (0, 1), (2.8)

which enables to construct confidence intervals for, and test hypotheses about, EARp(X | Y).
We conclude this section by reflecting upon the main results and their possible extensions, or general-

izations. To begin with, recall that we have introduced and used the estimators EARp,n and ÊARp,n, which
rely on the bandwidths �1,n and �2,n. They are the only parameters that require tuning. The simplicity of
the VaR-induced EAR estimators has allowed us to derive their consistency and asymptotic normality
under particularly weak conditions, virtually only under those that are required for the existence of the
quantities involved in the formulations of Theorems 2.1–2.3. Yet, the conditions are plentiful, seven in
total. Nevertheless, we can already start contemplating of extending these results in several directions.

For example, we can replace the indicators in the EAR and σ 2 estimators by some kernel functions,
as it is done in the classical kernel-type density estimation (e.g., Silverman, 1986). This would of course
necessitate the introduction of a set of conditions on the kernel functions, which would naturally be tied
to the choices of �1,n and �2,n.

One may also explore other EAR estimators, such as (recall Note 1.1) the one that arises by replacing
the least-squares regression function rX|Y and the quantile function G−1 by their empirical estimators,
such as the Nadaraya-Watson (or some other) estimator for the regression function y �→ rX|Y(y) and the
empirical (or smoothed) estimator for the quantile function G−1(p). Naturally, we would inevitably be
facing the necessity of a set of assumptions on the kernel functions used in the construction of the
Nadaraya-Watson or other kenel-type estimators. We wish to note at this point, however, that the com-
bined set of conditions arising from such estimators and their asymptotic theories are more stringent than
the conditions of Theorems 2.1–2.3. This is natural because our proofs have been designed to tackle the
empirical EAR-estimators EARp,n and ÊARp,n as the whole and not componentwise.

3. The estimator in simulated scenarios
We shall now illustrate the performance of the empirical EAR estimator with the aid of simulated and
real data. The section consists of two parts. In Section 3.1, we introduce an insurance-inspired model for
simulations and use thus obtained data to evaluate the estimator. In Section 3.2, we work out intuition
on bandwidth selection for practical purposes, which we later employ for analyzing a real data set in
Section 4.

3.1. Simulation setup and the estimator’s performance
To facilitate a comparison between our earlier and current inference results, we adopt the same setup
for simulations as in Gribkova et al. (2022b). Namely, we hypothesize a multiple-peril insurance prod-
uct that contains two coverages with their associated losses L1 and L2 that follow the bivariate Pareto
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Figure 2. The plot of EARτ (X | Y) as a function of τ ∈ (0.975, 0.990) for distribution (3.1) with varying
values of the tail parameter γ .

distribution whose joint survival function is

S(l1, l2) = (
1 + l1/θ1 + l2/θ2

)−γ
, l1 > 0, l2 > 0, (3.1)

where θ1 > 0 and θ2 > 0 are scale parameters, and γ > 0 is a shape parameter. (Note that smaller values
of γ correspond to heavier tails.) Moreover, we assume that the two coverages have deductibles d1 > 0
and d2 > 0, and so the insurance payments are

Wi = (Li − di) × 1{Li>di}.

We are interested in evaluating the risk contribution of the first coverage out of the total loss using
EARp(X | Y) with X = W1 and Y = W1 + W2. For various applications of the distribution, we refer to
Alai et al. (2016), Su and Furman (2016), Sarabia et al. (2018), and references therein.

We set the parameters of the bivariate Pareto distribution (3.1) to θ1 = 100, θ2 = 50, and γ ∈
{2.5, 4, 5}, which are along the lines of the Pareto distribution’s parameter choices when modeling
dependent portfolio risks in Su and Furman (2016). The deductibles are assumed to be d1 = 18 and
d2 = 9, which are near the medians of L1 and L2, respectively, when γ = 4. Using a formula provided
by Gribkova et al. (2022b) for computing EARp(X | Y) in the case of distribution (3.1), we compute
EARp(X | Y) for the parameter choices p = 0.975 and p = 0.990, which are motivated by the confidence
levels considered in the currently adopted regulatory frameworks.

We depict EARτ (X | Y) as a function of τ with varying γ ’s in Figure 2. We see from it that the
derivative of τ �→ EARτ is finite at any point τ ∈ (0.975, 0.990). Thereby, condition (C3) holds at least
when α = 1. For this reason, we set the bandwidths to

�1,n = �2,n = n−1/2, (3.2)

which ensures that all the conditions of our main results are satisfied.
Next, we pretend that the population distribution is unknown, as it would be in practice, and employ

ÊARp,n to estimate EARp(X | Y). To demonstrate the large-sample precision of the estimator, we first
consider a situation in which the user can generate data sets of any size (think, for example, of Economic
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Box plots of the EAR estimates with varying values of the parameter γ and the sample size
n, with the true EARp(X | Y) depicted as the horizontal dashed green line.

Scenario Generators). For fixed sample sizes n = i × 10, 000, i ∈ {1, 3, 10, 30}, the same simulation
exercise is repeated 50,000 times in order to assess the variability of ÊARp,n. The EAR estimates are
summarized using box plots in Figure 3.

Note 3.1. The two vertical lines at the top of panel (b) in Figure 3 are due to extreme-data compres-
sion: “If any data values fall outside the limits specified by ‘DataLim’, then boxplot displays these
values evenly distributed in a region just outside DataLim, retaining the relative order of the points.”
(ExtremeMode, 2023)

We see from Figure 3 that among all the cases, the estimates produced by ÊARp,n converge to the true
value of EARp(X | Y) when the sample size n grows, with the distribution of ÊARp,n becoming narrower.
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Table 1. Coverage percentages of the 90%-level confidence interval (3.3) for EARp(X | Y)
based on 50,000 sets of simulated data for each sample size n.

p = 0.975 p = 0.990

n γ = 2.5 γ = 4 γ = 5 γ = 2.5 γ = 4 γ = 5
1 × 104 68% 72% 73% 1% 2% 3%
3 × 104 76% 79% 79% 41% 52% 55%
1 × 105 82% 84% 84% 69% 75% 75%
3 × 105 85% 86% 86% 79% 82% 83%

When p = 0.975, the intervals of the box plots cover the true value of EAR for all the selected n’s,
although this is not the case when p = 0.990. This indicates that larger p’s diminish the performance
of ÊARp,n, which is natural. On the other hand, the parameter γ , which governs the tail behavior of
distribution (3.1), does not significantly impact the performance of ÊARp,n, although if we compare the
cases γ = 2.5 and γ = 5, the estimator seems to behave slightly better when γ is larger.

In addition to the above discussion based on box plots, we shall now use the same simulation design
to calculate coverage proportions of the parameter EARp(X | Y) by the 100 × (1 − ν)%-level confidence
interval (

ÊARp,n − zν/2 σ̂n,p/
√

Nn, ÊARp,n + zν/2 σ̂n,p/
√

Nn

)
, (3.3)

where zν/2 is the z-value with ν ∈ (0, 1) set to 0.1. Hence, specifically, we count the coverage propor-
tions of the 90%-level confidence intervals based on 50,000 sets of simulated data, repeating the same
procedure for the sample sizes n ∈ {1, 3, 10, 30} × 10, 000. The results are summarized in Table 1. We
see from the table that when n is small, p is large, and the tail of distribution (3.1) is heavy, confidence
interval (3.3) barely captures the true EAR value. We have already encountered this feature in Figure 3,
which reflects the fact that the bias of ÊARp,n can be large under the aforementioned challenging data-
generating scenario. However, as the sample size n increases, the bias diminishes considerably, and so
the coverage proportions tend to 0.9 across the considered scenarios.

The distribution of ÊARp,n or, more precisely, the distribution of its centered counterpart

ÊAR∗
p,n := ÊARp,n − Average

(
ÊARp,n

)
plays an important role when constructing confidence intervals for, and hypothesis tests about,
EARp(X | Y). When we can simulate data sets of arbitrary size, the distribution of ÊAR∗

p,n can be obtained
via Monte Carlo, but in most practical cases, we only have one data set. In such cases, Theorem 2.2 says
that we can approximate the distribution of ÊAR∗

p,n byN (0, σ̂ 2
p,n/Nn), where σ̂ 2

p,n comes from Theorem 2.3.
The plots in Figure 4 compare the cdf of ÊAR∗

p,n obtained via Monte Carlo with the cdf of N (0, σ̂ 2
p,n/Nn),

where σ̂ 2
p,n is computed from a single data set. The similarities between the two calculations are eas-

ily recognizable, thus implying that the asymptotic normality method yields satisfactory proxies of the
distribution of ÊAR∗

p,n.

3.2. Bandwidth selection sensitivity analysis
In the above simulation study, we used bandwidths (3.2). This is certainly not the only choice that
satisfies conditions (D1)–(D3). Hence, we next investigate the impact of different bandwidths on the
performance of ÊARp,n. Specifically, we set

�1,n = �2,n = a n−b/6, (3.4)
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(a) (b)

(c) (d)

(e) (f)

Figure 4. The difference between the cdf of ÊAR∗
p,n and its asymptotic normality proxy based on Theorem

2.2 under various parameter and sample-size choices.

and then vary the parameters a ∈ {0.4, 0.7, 1.0, 1.3, 1.6} and b ∈ {2.1, 2.4, 2.7, 3.0} around the bench-
mark cases a = 1 and b = 3, which give n−1/2. In view of Note 2.8, condition (D3) holds when b/6 ∈
(1/3, 1/2], which justifies the choices of b.

We assess the performance of ÊARp,n based on the bias, standard deviation (SD), and mean abso-
lute error (MAE) when compared with the true value of EARp(X | Y). Tables 2 and 3 summarize
the results of our sensitivity analysis when the sample size n is moderately small (n = 10, 000) and
large (n = 300, 000). We observe from Table 2 that among all the considered scenarios, a smaller
value of a leads to a better performance of ÊARp,n in terms of smaller bias. However, this is at the
expense of increasing uncertainty measured in terms of the SD, except in the cases of the small sample
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Table 2. ÊARp,n performance as measured by the absolute value of bias, SD, and MAE, with varying a
and fixed b = 3 in the assumed form a n−b/6 of the bandwidth.

p = 0.975 p = 0.990

n = 10, 000 n = 300, 000 n = 10, 000 n = 300, 000

Bias SD MAE Bias SD MAE Bias SD MAE Bias SD MAE
γ = 2.5 a = 0.4 0.8 16.0 12.7 0.06 5.6 4.5 8.9 30.1 24.9 0.3 9.2 7.3

a = 0.7 2.9 13.8 11.2 0.1 4.4 3.5 34.2 29.1 37.3 1.0 7.5 6.0
a = 1.0 6.4 12.9 11.5 0.2 3.8 3.1 153.6 56.1 153.6 1.9 6.7 5.5
a = 1.3 11.5 12.5 13.8 0.4 3.5 2.8 113.4 49.4 113.4 3.2 6.2 5.6
a = 1.6 19.0 12.4 19.5 0.5 3.2 2.6 79.9 44.2 80.0 4.9 5.9 6.2

EARp 301.0 481.8

γ = 4 a = 0.4 0.2 6.2 5.0 0.001 2.3 1.8 2.4 10.0 8.1 0.07 3.3 2.6
a = 0.7 0.9 5.2 4.2 0.03 1.8 1.4 9.2 9.1 10.6 0.2 2.6 2.1
a = 1.0 2.0 4.8 4.1 0.06 1.5 1.2 35.1 11.4 35.1 0.5 2.3 1.9
a = 1.3 3.6 4.6 4.7 0.1 1.4 1.1 24.0 10.2 24.0 0.9 2.1 1.8
a = 1.6 5.9 4.5 6.3 0.2 1.3 1.0 14.4 9.3 14.8 1.3 2.0 1.9

EARp 123.7 183.6

γ = 5 a = 0.4 0.1 4.2 3.4 0.009 1.6 1.3 1.4 6.4 5.2 0.05 2.2 1.7
a = 0.7 0.6 3.6 2.9 0.02 1.2 1.0 5.5 5.8 6.6 0.2 1.7 1.4
a = 1.0 1.3 3.3 2.8 0.05 1.1 0.8 20.3 6.8 20.3 0.3 1.5 1.2
a = 1.3 2.3 3.1 3.1 0.08 1.0 0.8 13.4 6.1 13.4 0.5 1.4 1.1
a = 1.6 3.7 3.0 4.0 0.1 0.9 0.7 7.4 5.6 7.8 0.9 1.3 1.2

EARp 83.9 122.9

(n = 10, 000), heavy tailed distribution (γ = 2.5 and 4), and high confidence probability (p = 0.990).
These slightly inconsistent patterns have likely been caused by the simulation noise. The MAE, which
depends on the interplay between the bias and the uncertainty of the estimator, supports smaller (resp.
larger) values of a when the sample size n is relatively small (resp. large).

Table 3 shows that the impact of the power coefficient b on ÊARp,n is more pronounced than that of
the multiplicative coefficient a. As the value of b decreases or, equivalently, as �1,n and �2,n become
larger, the bias of the estimator increases, yet the SD decreases. When both n and p are relatively small
(i.e., n = 10, 000 and p = 0.975), or when both are large (i.e., n = 300, 000 and p = 0.990), the MAE is
in favor of the benchmark choice b = 3.0, thus suggesting bandwidths (3.2). Otherwise, the MAE is in
favor of smaller values of b.

Overall, we have found that the performance of ÊARp,n in response to varying multiplicative coeffi-
cient a is more predictable than changing the power coefficient b. Therefore, we suggest the user of our
method to set b = 3 and tune the multiplicative coefficient a. Further, our sensitivity study has shown
that the bandwidths influence the trade-off between the bias and the uncertainty associated with the
estimator. A smaller value of a should be considered when bias is the major concern and a moderately
large value of a when controlling the estimator’s uncertainty. For balancing the bias and the uncertainty,
bandwidths (3.2) seem to be a good choice. Finally, the impact of bandwidth parameters on the EAR
estimator seems to be rather intricate and nonlinear. It would be interesting and important to develop a
more rigorous way for identifying optimal choices of a and b.
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Table 3. ÊARp,n performance as measured by the absolute value of bias, SD, and MAE, with fixed a = 1
and varying b in the assumed form a n−b/6 of the bandwidth.

p = 0.975 p = 0.990

n = 10, 000 n = 300, 000 n = 10, 000 n = 300, 000

Bias SD MAE Bias SD MAE Bias SD MAE Bias SD MAE
γ = 2.5 b = 2.1 56.5 19.3 56.5 10.0 2.3 10.0 72.9 24.5 73.5 126.1 9.3 126.1

b = 2.4 106.7 24.4 106.7 2.6 2.6 3.0 4.4 33.7 24.3 28.0 5.3 28.0
b = 2.7 18.4 12.4 19.0 0.9 3.1 2.5 81.9 44.5 82.1 6.8 5.7 7.4
b = 3.0 6.4 12.9 11.5 0.2 3.8 3.1 153.6 56.1 153.6 1.9 6.7 5.5

EARp 301.0 481.8

γ = 4 b = 2.1 11.9 4.6 11.9 3.1 0.8 3.1 31.5 5.6 31.5 27.5 1.9 27.5
b = 2.4 28.0 5.6 28.0 0.8 1.0 1.05 7.7 7.4 8.9 7.6 1.7 7.6
b = 2.7 5.7 4.5 6.1 0.2 1.2 0.98 15.0 9.3 15.3 1.9 1.9 2.2
b = 3.0 2.0 4.8 4.1 0.06 1.5 1.2 35.1 11.4 35.1 0.5 2.3 1.9

EARp 123.7 183.6

γ = 5 b = 2.1 6.5 2.9 6.5 2.0 0.6 2.0 21.8 3.5 21.8 15.6 1.2 15.6
b = 2.4 17.0 3.5 17.0 0.5 0.7 0.69 6.5 4.5 6.9 4.6 1.1 4.6
b = 2.7 3.6 3.0 3.9 0.2 0.8 0.67 7.8 5.7 8.2 1.2 1.2 1.4
b = 3.0 1.3 3.3 2.8 0.05 1.1 0.8 20.3 6.8 20.3 0.3 1.5 1.2

EARp 83.9 122.9

4. An analysis of real data
Having thus developed our understanding how the estimator works on (simulated) data, and in particular
how to choose bandwidth parameters, we now study the allocated loss adjustment expenses (ALAE) con-
sidered in Frees and Valdez (1998), which have been widely used in the insurance literature for studying
multivariate risk modeling and measurement. The data contain 1500 records of liability claims provided
by the Insurance Service Office Inc. Each entry of the data contains the indemnity payment, denoted by
L1 in our following consideration, and also the associated ALAE costs that include the adjuster expenses,
legal fees, investigation costs, etc., which we collectively denote by L2. Intuitively, the larger the loss
amount, the higher the ALAE cost, and so there is a positive dependence between L1 and L2. We are
interested in estimating the risk contribution of the ALAE cost to the total claim cost among the tail risk
scenarios via EARp(X | Y) with X = L2 and Y = L1 + L2.

Due to the presence of indemnity limit, some indemnity payments are censored, and hence the distri-
bution of L1 is not continuous everywhere. However, there is no indemnity limit applied on the ALAE
costs, and so the distribution of L2 is continuous. For illustrative purposes, Figure 5 displays the empirical
cdf’s of the logarithmically transformed indemnity-payments and total-cost amounts. The empirical cdf
associated with L1 has uneven jump sizes, whereas we do not see jumps of significantly different sizes in
the empirical cdf of Y . This confirms our statement that the population distribution of Y is continuous,
and thus we safely conclude that condition (C1) should be met. Moreover, the presence of indemnity
limit also makes us to naturally accept the finite moment conditions (C2) and (C4). These conditions
readily ensure the asymptotic precision of EARp,n according to Theorem 2.1. To utilize the asymptotic
normality result established in Theorem 2.2 for constructing confidence intervals for EARp(X | Y), we
find it appropriate to assume a model satisfying condition (C3) with α = 1.
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Figure 5. The empirical cdf associated with log (L1) in the left-hand panel, and that with log (Y) where
Y = L1 + L2 in the right-hand panel.

Of course, our proposed estimator can be used on data of any size and at any confidence level p ∈
(0, 1). Since the ALAE data under investigation have a relatively small sample size, we choose to work
with smaller probability levels p = 0.8 and p = 0.9 so that our derived conclusions would have higher
credibility. In practice, of course, insurance companies possess much larger data, or the EAR is estimated
based on synthetic data (e.g., Gabrielli and Wüthrich, 2018; Millossovich et al., 2021). In the latter case,z
the sample sizes can be arbitrarily large, and thus the application of ÊARp,n would yield EAR estimates
at any probability level and at any desired precision.

Motivated by the sensitivity analysis of Section 3.2, we estimate EARp(X | Y) by applying ÊARp,n

with varying multiplicative coefficients a. Our estimation results are summarized in Figure 6, which
includes EAR estimates, estimation uncertainty as assessed by σ̂p,n of Theorem 2.3, and 90% confidence
intervals for EARp(X | Y). In response to varying choices of a, the EAR estimates fluctuate from around
1.6 × 104 to 1.8 × 104 when p = 0.8, and from around 2.6 × 104 to 2.8 × 104 when p = 0.9. Note that
as a decreases (equivalently, the estimation bandwidth becomes smaller), the standard error of ÊARp,n

increases. Consequently, the confidence intervals for EARp become wider.
The developed EAR estimation can immediately be appreciated by risk analysts. To illustrate, recall

that EARp(X | Y) is the Euler allocation when the aggregate risk is measured by VaRp(Y). Define the
corresponding allocation ratio

rEAP
p (X | Y) = EARp(X | Y)

VaRp(Y)
.

Based on the ALAE data, we find that VaR0.8(Y) = 6.26 × 104 and VaR0.9(Y) = 1.17 × 105. For instance,
if a = 1.0, then ÊARp,n is equal to 1.67 × 104 when p = 0.8, and to 2.61 × 104 when p = 0.9, which
implies that the ALAE cost accounts for

rEAP
0.8 (X | Y) = 26.68%

and

rEAP
0.9 (X | Y) = 22.31%

of the aggregation risk.
The confidence intervals of EARp(X | Y) can be used by risk analysts to understand the uncertainty

associated with the EAR estimates. These intervals can also help to assess the adequacy of risk allocation
that is determined by another method. For example, Chen et al. (in press) applied the mixed gamma
distribution to estimate the TCA of the ALAE cost

TCAp(X | Y) =E(X | Y > VaRp(Y))
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Figure 6. The ALAE data’s EAR estimates (top panels), asymptotic normal standard errors (middle
panels), and the associated 90% EAR confidence intervals with lower and upper bounds depicted as
dotted-red lines (bottom panels).

and the associated TCA-based allocation percentage

rTCA
p (X | Y) = TCAp(X | Y)

E(Y | Y > VaRp(Y))
.

The authors concluded that the risk contribution of the ALAE cost is

rTCA
0.8 (X | Y) = 19.56%
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and

rTCA
0.9 (X | Y) = 17.86%.

We can therefore conclude that the risk contribution portion determined by aforementioned TCA method
is not adequate in the context of EAR allocation because the corresponding risk allocations

VaR0.8(Y) × rTCA
0.8 (X | Y) = 6.26 × 104 × 0.1956 = 1.22 × 104

and

VaR0.9(Y) × rTCA
0.9 (X | Y) = 1.17 × 105 × 0.1786 = 2.09 × 104

are outside of the confidence intervals of EARp(X | Y) when p = 0.8 and p = 0.9, respectively, at least
when a = 1.

5. Conclusion
Using the notation of concomitants, in this paper, we have defined a consistent empirical estimator of
the VaR-induced EAR, established its asymptotic normality, and also proposed a consistent empirical
estimator of the standard deviation. The performance of theoretical results has been illustrated using
simulated and real data sets. These results facilitate statistical inference in a number of finance and
insurance related contexts, such as risk-adjusted capital allocations in financial management and risk
sharing in peer-to-peer insurance.

Naturally, the obtained results have generated a number of thoughts for future research, and we have
already mentioned some of them. Additionally, an interesting research direction would be to develop
statistical inference for the VaR-induced EAR in scenarios under dependent-data generating processes,
such as time series, whose importance is seen from the study of, for example, Asimit et al. (2019). For
this, in addition to classical methods of time series (e.g., Brockwell and Davis, 1991), the techniques
developed by Sun et al. (2022), although in a different context, could facilitate the development of an
appropriate statistical inference theory.

Supplementary material. To view supplementary material for this article, please visit https://doi.org/10.1017/asb.2023.17.
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