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A Generalized Rao Bound for Ordered
Orthogonal Arrays and (t,m, s)-Nets

W. J. Martin and D. R. Stinson

Abstract. In this paper, we provide a generalization of the classical Rao bound for orthogonal arrays, which
can be applied to ordered orthogonal arrays and (t,m, s)-nets. Application of our new bound leads to im-
provements in many parameter situations to the strongest bounds (i.e., necessary conditions) for existence of
these objects.

1 Introduction

In 1987, Niederreiter [9] introduced the idea of a (t,m, s)-net in base b. (In fact, a restricted
class of these objects, having b = 2, were studied by Sobol’ in 1967 [13].) A (t,m, s)-net is
a collection of points, in the s-dimensional unit cube, that satisfies certain desirable unifor-
mity properties which are useful for applications in numerical integration and pseudoran-
dom number generation.

There has been considerable interest in both constructions and bounds for existence of
(t,m, s)-nets. (For a recent survey, see [1].) In this paper, we study bounds (necessary
conditions) for (t,m, s)-nets. Most previous general bounds for (t,m, s)-nets are derived
by using the important fact that the existence of a (t,m, s)-net implies the existence of an
orthogonal array with certain parameters. Hence, it follows that any bound on orthogonal
arrays yields a bound on (t,m, s)-nets. A general bound of this type is due to Lawrence (see,
e.g., [4, Theorem 6.1]); this bound is in fact the strongest general bound for (t,m, s)-nets
and is the source of the bounds in [1].

It has been remarked by several researchers that the orthogonal array obtained from
a (t,m, s)-net is, in general, a much “weaker” structure than the (t,m, s)-net from which
it was derived. Thus, it has been conjectured that the bounds on (t,m, s)-nets that are
derived from orthogonal array bounds are, in general, not the strongest possible bounds.
This conjecture in fact was verified in one interesting parameter situation by Lawrence [5].
In this paper, we prove a generalization of the classical Rao bound for orthogonal arrays,
which can be applied to (t,m, s)-nets. This extends the result of Schmid and Wolf [12,
Proposition 1], who proved an identical bound for the special case of digital (t,m, s)-nets.
Our bound is the first bound for general (t,m, s)-nets that uses the entire “structure” of a
(t,m, s)-net. We find many parameter situations where our new bound improves the best
known previous bound from [1].
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2 Definitions and Basic Theory

We begin with Niederreiter’s definition of a (t,m, s)-net. Let s ≥ 1 and b ≥ 2 be integers.
An elementary interval in base b is an interval of the form

E =
s∏

i=1

[
aib
−di , (ai + 1)b−di

)
,

where ai and di are non-negative integers such that 0 ≤ ai < bdi for 1 ≤ i ≤ s. The volume
of E is

s∏
i=1

b−di = b−
∑s

i=1 di .

For integers 0 ≤ t ≤ m, a (t,m, s)-net in base b is a set N of bm points in [0, 1)s such
that every elementary interval E in base b having volume bt−m contains exactly bt points of
N.

As an example,

N =

{
(0, 0),

(
1

4
,

3

4

)
,

(
1

2
,

1

2

)
,

(
3

4
,

1

4

)}

is a (0, 2, 2)-net in base 2. Each of the following twelve elementary intervals of volume 1/4
contains exactly one point of N:

[0, 1
4 )× [0, 1), [ 1

4 ,
1
2 )× [0, 1), [ 1

2 ,
3
4 )× [0, 1), [ 3

4 , 1)× [0, 1)

[0, 1
2 )× [0, 1

2 ), [ 1
2 , 1)× [0, 1

2 ), [0, 1
2 )× [ 1

2 , 1), [ 1
2 , 1)× [ 1

2 , 1)

[0, 1)× [0, 1
4 ), [0, 1)× [ 1

4 ,
1
2 ), [0, 1)× [ 1

2 ,
3
4 ), [0, 1)× [ 3

4 , 1).

An important result of Schmid [11], [7] showed that (t,m, s)-nets are equivalent to a
combinatorial object called an orthogonal orthogonal array. An equivalent result, shown
independently by Lawrence [3], [4], was stated in terms of generalized orthogonal arrays.
We will present our results in terms of ordered orthogonal arrays.

We use the definition of Edel and Bierbrauer [2], which is equivalent to Schmid’s. Let
A be an N × |C| array of v symbols, whose columns are indexed by a set C . Let D ⊆ C .
We say that A is balanced with respect to D if, within the columns of A indexed by D, every
|D|-tuple of symbols occurs in exactly N/v|D| rows.

For future reference, we record the following lemma, which is simple but useful.

Lemma 2.1 Suppose that A is balanced with respect to a set of columns D, and suppose
D ′ ⊆ D. Then A is balanced with respect to D ′.

We now define ordered orthogonal arrays, using the notation of Edel and Bierbrauer [2].
An OOAλ(k, s, `, v) is a λvk × s` array of v elements, say A, which satisfies the following
properties:
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1. The set of columns, C , is partitioned into s groups of ` columns, denoted C1, . . . ,Cs.
For 1 ≤ i ≤ s, we write Ci = {ci j : 1 ≤ j ≤ `}.

2. Let (a1, . . . , as) be an s-tuple of non-negative integers such that ai ≤ ` for 1 ≤ i ≤ s
and
∑

ai = k. Then A is balanced with respect to

s⋃
i=1

{ci j : 1 ≤ j ≤ ai}.

As an example, we present an OOA1(2, 2, 2, 2):

0 0 0 0
0 1 1 1
1 0 1 0
1 1 0 1

To verify that this is in fact an OOA1(2, 2, 2, 2), it suffices to check that the array is balanced
with respect to the following sets of columns: {c11, c12}, {c21, c22} and {c11, c21}.

Observe that we can assume without loss of generality that ` ≤ k ≤ s` when we study
OOAλ(k, s, `, v). When ` = 1, the definition reduces to that of a “regular” orthogonal array,
i.e., an OOAλ(k, s, 1, v) is equivalent to an OAλ(k, s, v). The case of most interest to us in
this paper is k = `, which corresponds to (t,m, s)-nets, as follows:

Theorem 2.2 ([11], [3]) A (t,m, s)-net in base b is equivalent to an OOAbt (m − t, s,
m− t, b).

Note that the OOA1(2, 2, 2, 2) and the (0, 2, 2)-net in base 2 that we presented above are
equivalent structures, in view of Theorem 2.2.

In this paper, we are interested in necessary conditions for the existence of ordered or-
thogonal arrays and (t,m, s)-nets. In the case of OOAλ(k, s, `, v), we will derive lower
bounds on λ as a function of k, s, ` and v. In the case of (t,m, s)-nets in base b, we will
obtain upper bounds on s as a function of t , m and b. We will prove some Rao-type bounds
for these objects that generalize the classical Rao bound for orthogonal arrays. (A Rao
bound for digital (t,m, s)-nets was previously proved by Schmid and Wolf [12].)

Virtually all previous bounds for general (t,m, s)-nets are based on the observation that
a (t,m, s)-nets in base b, which is equivalent to an OOAbt (m − t, s,m − t, b), implies the
existence of an OOAbt (m − t, s, 1, b), which is in turn equivalent to an OAbt (m − t, s, b).
(In general, the existence of an OOAλ(k, s, `, v) implies the existence of an OOAλ(k, s, ` ′, v)
for all ` ′ such that 1 ≤ ` ′ ≤ `: it suffices to erase all but the first ` ′ columns in each
group.) Hence, any bound on orthogonal arrays gives rise to a bound on (t,m, s)-nets.
This is discussed in more detail in [1], where various bounds on orthogonal arrays are also
reviewed. The drawback of this approach is that an OAbt (m − t, s, b) is a much “weaker”
structure than a (t,m, s)-net in base b: much information has been lost by throwing away
all but one column in each group of the related ordered orthogonal array. The approach
we take is to modify the classical Rao bound to apply to ordered orthogonal arrays, in such
a way that all s` columns contribute to the computation of the bound.

The remainder of the paper is organized as follows. In Section 3, we derive our gen-
eral bound for ordered orthogonal arrays. In Section 4, we discuss the application of this
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bound to orthogonal arrays and (t,m, s)-nets. Our bound, when specialized to orthogo-
nal arrays, reduces to the classical Rao bound. When we consider the application of our
bound to (t,m, s)-nets, we make use of some observations that simplify the computations
required. Finally, in Section 5, we compile some tables of bounds, which provide numerous
improvements to the best previous bounds from [1].

3 A New Bound for Ordered Orthogonal Arrays

Suppose A is an OOAλ(k, s, `, v), where C denotes the set of columns of A. Suppose D is a
function, D : C → Zv. Given D1,D2 : C → Zv, we define the function D1 − D2 in the usual
way, by the rule (D1 − D2)(ci j ) = D1(ci j)− D2(ci j) mod v for all ci j ∈ C .

Define the profile of a function D : C → Zv to be

profile(D) = (d1, . . . , ds),

where

di =

{
0 if D(ci j) = 0 for 1 ≤ j ≤ `

max{ j : D(ci j) 6= 0} otherwise,

for 1 ≤ i ≤ s. Note that 0 ≤ di ≤ ` for 1 ≤ i ≤ s.
Define

height(D) =
s∑

i=1

di,

and define

width(D) = |{i : di 6= 0}|.

Note that width(D) ≤ height(D) for any D ⊆ C .
Finally, define the support of D to be

supp(D) = {ci j : D(ci j) 6= 0}.

Observe that, if A is an OOAλ(k, s, `, v), then it follows from Lemma 2.1 that A is bal-
anced with respect to supp(D) provided that height(D) ≤ k.

We use the following important lemma.

Lemma 3.1 Let λ, k, s, ` and v be positive integers where s ≥ 2 and v ≥ 2, and suppose that
an OOAλ(k, s, `, v) exists. Let D be a set of functions such that height(D1 − D2) ≤ k for all
D1,D2 ∈ D. Then λvk ≥ |D|.

Proof Let 1, ω, . . . , ωv−1 be the complex v-th roots of unity, and suppose that A is an
OOAλ(k, s, `, v), defined on symbol set 1, ω, . . . , ωv−1. Let N = λvk, and think of each
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column c ∈ C as a vector vc ∈ CN . For any function D : C → Zv, take D(c) copies of every
vector vc, c ∈ C , and define vD ∈ CN to be the componentwise product of these vectors.

It is easy to see that 〈vD1 , vD2〉 = 0 provided that D1 6= D2 and A is balanced with respect
to supp(D1−D2), where 〈·, ·〉 denotes the Hermitian product of two vectors. It follows that
the vectors vD, D ∈ D are mutually orthogonal, and hence linearly independent.

We will construct a particular set Dk,s,`,v satisfying the conditions of Lemma 3.1. When
k is even, we define

Dk,s,`,v =

{
D : C → Zv : height(D) ≤

k

2

}
.

Let D1,D2 ∈ Dk,s,`,v. Clearly,

height(D1 − D2) ≤ height(D1) + height(D2) ≤ k.

Therefore Dk,s,`,v satisfies the conditions of Lemma 3.1.
When k is odd, we define Dk,s,`,v slightly differently:

Dk,s,`,v = Dk−1,s,`,v ∪

{
D : C → Zv : height(D) =

k + 1

2
and d1 ≥ 1

}
.

Let D1,D2 ∈ Dk,s,`,v, k odd. By the argument above, height(D1 − D2) ≤ k if
height(D1) ≤ (k − 1)/2 or if height(D2) ≤ (k − 1)/2. The only remaining case is when
height(D1) = height(D2) = (k + 1)/2. But in this case, we obtain

height(D1 − D2) ≤ height(D1) + height(D2)− 1 ≤ k.

We will obtain a bound on OOAλ(k, s, `, v) from Lemma 3.1 if we can compute |Dk,s,`,v|.
Before doing this, we state two useful lemmas.

Lemma 3.2 Suppose that D : C → Zv, height(D) = h and width(D) = w. Then there
exist exactly (v − 1)wvh−w functions D ′ : C → Zv such that profile(D ′) = profile(D).

Let w and h be integers such that 1 ≤ w ≤ h. Let Nh,w,` denote the number of integral
solutions to the equation

w∑
i=1

xi = h

such that 1 ≤ xi ≤ ` for 1 ≤ i ≤ w.

Lemma 3.3 Let w and h be integers such that 1 ≤ w ≤ h. Then

Nh,w,` =

b h−w
` c∑

j=0

(−1) j

(
w

j

)(
h− ` j − 1

w − 1

)
.
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Further,

Nh,w,` =

(
h− 1

w− 1

)

if ` > h− w, and

Nh,w,1 = δhw =

{
1 if h = w

0 otherwise.

Proof The formula for Nh,w,` is a standard exercise in many combinatorics textbooks. If
` > h−w, then the sum contains only one term, as indicated. Finally, the fact that Nh,w,1 =
δhw follows immediately from the definition.

Lemma 3.4 |Dk,s,`,v| = GR(k, s, `, v), where

GR(k, s, `, v) =




1 +

k/2∑
h=1

h∑
w=1

(
s

w

)
Nh,w,`(v − 1)wvh−w if k is even

GR(k− 1, s, `, v) +

(k+1)/2∑
w=1

(
s− 1

w − 1

)
N k+1

2 ,w,`
(v − 1)wv

k+1
2 −w if k is odd.

Proof Suppose k is even. Given integers h and w such that 1 ≤ w ≤ h ≤ k/2, we apply
Lemma 3.3 to show that there are

( s
w

)
Nh,w,` profiles P of height h and width w. Then, from

Lemma 3.2, there are (v − 1)wvh−w functions having any given profile P of height h and
width w.

The proof for k odd is similar.

Summarizing the above results, we have our main bound for ordered orthogonal arrays.

Theorem 3.5 If an OOAλ(k, s, `, v) exists, then λvk ≥ GR(k, s, `, v).

4 Applications

4.1 The Classical Rao Bound

We remarked earlier that an OOAλ(k, s, 1, v) is equivalent to an OAλ(k, s, v). In view of
Lemma 3.3, the formula for GR(k, s, `, v) given in Lemma 3.4 can be simplifed, when ` = 1,
as follows:

GR(k, s, 1, v) =




1 +

k/2∑
h=1

(
s

h

)
(v − 1)h if k is even

GR(k− 1, s, 1, v) +

(
s− 1

k−1
2

)
(v − 1)

k+1
2 if k is odd.

Applying Theorem 3.5, we obtain the classical Rao bound for orthogonal arrays, first proved
in [10].
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4.2 A Bound for (t,m, s)-Nets

As mentioned earlier, (t,m, s)-nets correspond to ordered orthogonal arrays with k = `.
Appealing to Theorem 2.2, we have the following bound for (t,m, s)-nets in base b.

Theorem 4.1 If there exists a (t,m, s)-net in base b, then

bm ≥ GR(m− t, s,m− t, b).

We now make some observations on GR(k, s, `, v) that hold whenever ` ≥ d k
2e. First,

observe that if h ≤ d k
2e, w ≥ 1 and ` ≥ d k

2e, then ` > h − w, so Nh,w,` =
(h−1

w−1

)
from

Lemma 3.3. Therefore the formula in Lemma 3.4 can be simplified as follows.

Lemma 4.2 Suppose that ` ≥ d k
2e. Then

GR(k, s, `, v) =

{
1 +
∑k/2

h=1

∑h
w=1

( s
w

)(h−1
w−1

)
(v − 1)wvh−w if k is even

GR(k− 1, s, `, v) +
∑(k+1)/2

w=1

( s−1
w−1

)( k−1
2

w−1

)
(v − 1)wv

k+1
2 −w if k is odd.

Further simplification can be obtained from the following result which generalizes [3,
Lemma 4.3.2].

Lemma 4.3 Suppose that ` ≥ d k
2e and k is odd. Then GR(k, s, `, v) = v×GR(k−1, s, `, v).

Proof Suppose k is odd. We define a function φ, where

φ :

{
D : C → Zv : height(D) =

k + 1

2
and d1 ≥ 1

}
→ Dk−1,s,`,v,

by the following rule:

φ(D)(ci j ) =

{
0 if i = 1 and j = d1

D(ci j) otherwise.

Since d1 ≥ 1, it follows that height
(
φ(D)

)
≤ height(D) − 1 ≤ (k − 1)/2. Hence, φ(D) ∈

Dk−1,s,`,v.
We will show that φ is a surjective mapping, and for any D ′ ∈ Dk−1,s,`,v, there are exactly

v − 1 functions D such that φ(D) = D ′. This proves the desired result.
Let D ′ ∈ Dk−1,s,`,v have profile (d ′1, . . . , d

′
s ). We will proceed to determine the inverse

images of D ′ under φ. Define

x =
k + 1

2
+ d ′1 − height(D ′).

Since height(D ′) ≤ (k − 1)/2, we have that x ≥ d ′1 + 1. Since d ′1 ≤ height(D ′), we have
that x ≤ (k + 1)/2 ≤ `.
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Now, for 1 ≤ h ≤ v − 1, define the function

Dh(ci j) =

{
h if i = 1 and j = x

D ′(ci j) otherwise.

Then it is easy to see that height(Dh) = (k + 1)/2 and φ(Dh) = D ′ for 1 ≤ h ≤ v − 1. It is
also easy to check that there are no other functions D such that height(D) = (k + 1)/2 and
φ(D) = D ′. This completes the proof.

In the case where m− t is odd, the condition bm ≥ GR(m− t, s,m− t, b) is equivalent
to the condition bm−1 ≥ GR(m − 1 − t, s,m − 1 − t, b), in view of Lemma 4.3. Hence,
if we are making a table of upper bounds on s, given t,m and b, then we can restrict our
attention to the cases where m− t is even.

For future reference, we compute GR(k, s, k, 2) for some small even values of k:

GR(2, s, 2, 2) = 1 + s

GR(4, s, 4, 2) = 1 + 3s +

(
s

2

)

GR(6, s, 6, 2) = 1 + 7s + 5

(
s

2

)
+

(
s

3

)

GR(8, s, 8, 2) = 1 + 15s + 17

(
s

2

)
+ 7

(
s

3

)
+

(
s

4

)

GR(10, s, 10, 2) = 1 + 31s + 49

(
s

2

)
+ 31

(
s

3

)
+ 9

(
s

4

)
+

(
s

5

)
.

If we write

GR(2n, s) =
n∑

i=0

an,i

(
s

i

)
,

then it is not hard to prove that

an,0 = 1

an,n = 1, and

an,i = an−1,i−1 + 2an−1,i.

An interesting test case is that of a (1, 5, 6)-net in base 2, which has been shown not
to exist by Lawrence [5] by an ad hoc argument (non-existence of this object does not
follow from any previously known general bound). If we let t = 1, m = 5 and s = 6 in
Theorem 4.1, we get

32 ≥ GR(4, 6) = 1 + 3× 6 +

(
6

2

)
= 34.
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So Theorem 4.1 is sufficient to rule out the existence of a (1, 5, 6)-net in base 2.
There is one other result that is useful in computing bounds for (t,m, s)-nets. Nieder-

reiter [9] has proven that the existence of a (t,m, s)-net in base b implies the existence of
a (t, n, s)-net in base b for all integers n such that t + 2 ≤ n ≤ m. In fact, we prove the
following slightly more general result.

Theorem 4.4 Suppose there exists an OOAλ(k, s, `, v). Then there exists an
OOAλ(k− 1, s, `− 1, v).

Proof Suppose that A is an OOAλ(k, s, `, v). Let x be any symbol. Delete all rows of A in
which the entry in column c11 is not an x. Then delete column c11, and delete columns ci`

for 2 ≤ i ≤ s. The resulting array can be shown to be an OOAλ(k− 1, s, `− 1, v).

Hence, we have the following strengthening of Theorem 4.1.

Theorem 4.5 If there exists a (t,m, s)-net in base b, then

bn ≥ GR(n− t, s, n− t, b)

for all integers n such that t + 2 ≤ n ≤ m.

5 Numerical Results

Theorem 4.5 allows us to compute an upper bound on s as a function of m and t . Suppose
we define

S∗(t,m, b) = max{s : bn ≥ GR(n− t, s, n− t, b) for t + 2 ≤ n ≤ m}.

Then s ≤ S∗(t,m, b) if a (t,m, s)-net in base b exists. Applying Lemma 4.3, we have the
following more efficient way of computing S∗(t,m, b):

S∗(t,m, b) = max{s : bn ≥ GR(n− t, s, n− t, b) for n− t even, t + 2 ≤ n ≤ m}.

We tabulate S∗(t,m, 2) for 1 ≤ t ≤ 11, t + 2 ≤ m ≤ 15, m − t even, in Table 1,
where we also record the best previously known upper bounds on s from [1] (as given in
the Tables on the web site http://www.emba.uvm.edu/jcd/toappear.html in the version
of September 12, 1997). (As mentioned before, we can restrict our attention to m − t odd
since S∗(t,m, b) = S∗(t,m− 1, b) if m− t is odd.)

For the values of m and t considered in Table 1, our new bound is at least as good as the
bound from [1], except for (t,m) = (2, 6) and (5, 13). There are numerous cases where
our bound improves the bound from [1].

The reader may have noticed that we have omitted the cases m = t and t + 1. This is
because a (t,m, s)-net in base b exists for any s if m = t or m = t + 1 (see [9]).

We should also mention the cases m = t + 2 and m = t + 3, where it was previously
known (see Mullen and Whittle [8]) that

s ≤
bt+2 − 1

b− 1
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t m S∗(t,m, 2) [1] t m S∗(t,m, 2) [1]
1 3 7 7 1 5 5 5
1 7 5 5 1 9 5 5
1 11 5 5 1 13 5 5
1 15 5 5 2 4 15 15
2 6 9 8 2 8 8 8
2 10 7 8 2 12 7 8
2 14 7 8 3 5 31 31
3 7 13 15 3 9 10 11
3 11 10 11 3 13 9 11
3 15 9 11 4 6 63 63
4 8 20 20 4 10 14 15
4 12 12 14 4 14 12 14
5 5 127 127 5 9 29 29
5 11 19 23 5 13 16 15
5 15 14 15 6 8 255 255
6 10 42 42 6 12 25 26
6 14 20 20 7 9 511 511
7 11 61 63 7 13 32 34
7 15 24 25 8 10 1023 1023
8 12 88 89 8 14 42 44
9 11 2047 2047 9 13 125 127
9 15 54 56 10 12 4095 4095

10 14 178 180 11 13 8191 8191
11 15 253 255

Table 1: Upper Bounds on s for Existence of (t,m, s)-Nets in Base 2

if a (t,m, s)-net in base b exists (actually, it is shown in [8] that this bound holds for any
m ≥ t + 2). Our bound is the same as the Mullen-Whittle bound when m = t + 2 or
m = t + 3; it is easily verified that

S∗(t, t + 2, b) = S∗(t, t + 3, b) =
bt+2 − 1

b− 1
.

In these cases, it is also often the case that the bound is tight; see [4] for more details.
In a similar manner, we tabulate S∗(t,m, 3) for 1 ≤ t ≤ 11, t + 2 ≤ m ≤ 15, m− t even,

in Table 2, comparing it to the best previously known bounds upper bounds on s from [1].
As was the case in Table 1, we find a significant number of improvements.

6 Comments

We have derived a generalized Rao bound that can be applied to ordered orthogonal arrays
and (t,m, s)-nets. This raises the question if other bounds for orthogonal arrays could be
generalized in a similar fashion. We have pursued this theme in [6], where we give a version
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t m S∗(t,m, 3) [1] t m S∗(t,m, 3) [1]
1 3 13 13 1 5 9 10
1 7 9 8 1 9 9 8
1 11 9 8 1 13 9 8
1 15 9 8 2 4 40 40
2 6 17 18 2 8 14 16
2 10 14 13 2 12 14 12
2 14 14 12 3 5 121 121
3 7 31 32 3 9 22 24
3 11 19 20 3 13 18 17
3 15 18 16 4 6 364 364
4 8 55 56 4 10 32 34
4 12 26 30 4 14 24 24
5 7 1093 1093 5 9 97 98
5 11 48 50 5 13 35 39
5 15 30 34 6 8 3280 3280
6 10 170 171 6 12 71 73
6 14 48 52 7 9 9841 9841
7 11 296 297 7 13 103 106
7 15 64 68 8 10 29524 29524
8 12 513 515 8 14 150 153
9 11 88573 88573 9 13 891 892
9 15 218 221 10 12 265720 265720

10 14 1544 ≥ 998 11 13 797161 797161
11 15 2677 ≥ 998

Table 2: Upper Bounds on s for Existence of (t,m, s)-Nets in Base 3

of Delsarte’s linear programming bound which applies to ordered orthogonal arrays and
(t,m, s)-nets.
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