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1. INTRODUCTION 

In radio astronomy it is often necessary to estimate a brightness 
distribution from a limited number of samples of its Fourier transform. 
The manifest requirement that the brightness distribution be everywhere 
positive imposes definite constraints on its Fourier transform which 
yield information about unmeasured Fourier components. Here we discuss 
the question: given the first n+1 values, pg, Pi ... pn, of a uniformly 
sampled Fourier transform of a real positive function, what can we say 
about Fourier terms of higher order? 

We first show that Pn+i must lie within a circle in the complex 
plane, whose radius and centre can be calculated from pg, pj, ... pn. 
For a value of pn+i outside this circle there is no positive function 
whose Fourier transform passes through the values PQ, p^, ... Pn+i-

The known values pg, Pi, ... Pn constrain higher-order terms to 
successively larger, calculable, areas in the complex plane. If these 
areas are small enough, we may decide that Pn+i> ••• Pn+m

 a r e determined 
to sufficient accuracy and it is therefore unnecessary to measure them. 

Now in view of the residual uncertainty in each p n + m (m > 1), how 
do we select a value for each within its "allowable" range? It is shown 
in Section 3 that any choice of pn+j places additional constraints on 
all higher-order terms but if we estimate pn+^ by selecting the centre 
of its "circle of constraint" this imposes the minimal additional con­
straint on p n + m (m > 2). The value of pn+2 then lies within a calculable 
circle, and if we select the centre of this circle as our estimate of 
Pn+2» o n c e again the additional constraints on higher terms are minimized. 
The process can be iterated indefinitely. This prescription provides the 
greatest likelihood that a measurement of p n + m (where m is an arbitrarily 
chosen integer ̂ 2) will fit with the terms of lower order to form an 
acceptable auto-correlation sequence. The procedure is illustrated 
numerically in Section 4. In Section 5 it is shown that choosing the 
centre of the circle of constraint for each successive higher-order term 
leads to the maximum entropy solution. 
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2. THE FOURIER TRANSFORM OF A POSITIVE FUNCTION 

If F(x) is a real positive function we may write 

F(x) = f(x) . f*(x) = |fCx)|2 . 

Then the Fourier transform of F is the auto-correlation of g, the 
Fourier transform of f. If we are interested in F(x) for only those 
values of x within the range -XQ/2 < x < xg/2 the auto-correlation 
function need be specified only at discrete intervals yielding an 
auto-correlation sequence with mth term 

oo 

pm = , £ gk gk-m 

where g£ is the discrete Fourier transform of f (x). This expression 
can be regarded as the scalar product of two complex vectors. Consider 
a set of unit vectors such that the jth vector, VJ, has as its £th 
component gj+£. It can be shown that the mth term of the auto­
correlation sequence may be written as the scalar product of the jth 
and (j-m)'th vectors 

p = V. . V* . (1) 
Km j j-m 

Since the vectors Vj are unit vectors, po = 1. In fact it may be shown 
that the numbers PQ, pj, ... pn are successive members of a normalized 
auto-correlation sequence if and only if a set of n+1 unit vectors 
exists such that (1) is satisfied for all j and m. 

Without loss of generality we may write 

where gn and the % n are constants and the unit vector e0 is such that 

i"Q . V*._v = 0 , 1 < p < n . (3) 

It then follows that 
n _ ? 

V. . V* = I OL, V . . . V * + g 6 . , 0 < p < n . 
3 J-P k=! k»n J-k j-p Mn p,0 F 

In view of equation (1) these may be w r i t t e n 

Pp " X \,n Vk " 3n 6p,0 ' ° < P < n • (4) 

Knowing the values of PQ(=1), pj, p2 ... pn, we may solve the n+1 
equations represented by (4) for the n+1 unknowns 6^ an(j a^ n> 

(1 < k < n), yielding values which are independent of j. Accordingly, 
in place of equations (2) and (3), we may write 

Vl - j \,n V-k = 3n H > ^ 
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(8) 

where 
i"' . V* 1 = 0 , 1 < p < n . (6) 
1 J+l-p > v ) 

The unit vector e' may be written quite generally 

H = Al,l * + Xl,2 h ' W 
where_ the unit̂  vector n is a linear combination of the unit vectors 
V., V. ..... V. , such that 

n" • V* T = 0 , 1 < k < n . j+l-k 

This defines n uniquely with 
_ f_ n _ } 1 
n =<V. - l a * V. , >B . 

1 J-n k ^ ^c,n j-n+kj n 

The unit vector e1 satisfies the relation 

IT, . V* = 0 , 1 < q < n+1 ; 
1 J+l-q 

and the numbers A^ i and Aj 2 satisfy |Aj I| + Uj 21 = 1 • From 
equations (5), (7) and (8) 

V. , • J o . V. . , = A, . <V. - 7 a* V. . > + A, . B F, . j+1 k^1 k,n j+l-k 1,1 1 j-n ^ k,n J-n+kj 1,2 "n 1 

Taking the scalar product of (9) with V* , we obtain 
n 3~2

n 

P 1 - I oil P 1 1 = *i 1 3 • (10) 

n+1 .f;.. k,n Kn+l-k 1,1 n v -" 

An essentially identical argument yields 

pn+2 " J x
 ak,n Pn+2-k " Al,l|pl " J x "k.n

 P k | 

= A 2 ) 1 U-|A M|
2 ) &l , |A2jl| < 1 . (11) 

Equations (10) and (11) define the constraints imposed on pn+i and 
Pn+2 by the known values of p0, p^ ... pn. Any value of Aj 1 (such 
that |Aj jI < 1) substituted into (10) yields an "acceptable" value of 
Pn+1> an^ any combination of A^ 1 and A2 \ such that |Â  ̂| < 1 and 
|A2 i\ ^ 1 yields an "acceptable" value of pn+2 when substituted into (11) 

3. EXTRAPOLATING THE FOURIER TRANSFORM 

The foregoing argument has shown that, given pg, Pi ... pn, and 
hence a^ n and g2 £rom equation (4), we can write 

n 
P ,1 = I a, p , , + A, , B (12) 
'n + l L, V -n 'n + l -k 1 1 n v J k f\ k,n n+l-k 1,1 n 

https://doi.org/10.1017/S0252921100074947 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100074947


244 M. M; KOMESAROFF AND I. LERCHE 

n n 
pn+2

 = I ak,n pn+2-k + A1,1(P1 " J ^ . n Pk+1> 
k=l ' ' k=l ' 

+ X 2,1 C 1 - | X 1.1 | 2 ) B B ' |Xl.l' ^ | A 2 , l l < 1 • 
(13) 

Equation (12) tells us that pn+i lies somewhere within a circle in 
the complex plane, the centre of the circle being at 

n 
R . (= £ a, p . , ,) and its radius being g{r. The value of g„ depends n+A i - Kail ri-rX-K *i " 

k=l ' 
of course on the nature of the power spectrum, and it may be shown that 
3^ either decreases or remains constant as n increases. Clearly the 
smaller f3~ the more accurately we know p n + j. 

In the absence of further information we have no reason to prefer 
any one point within the circle as representing the "true" value of 
Pn+1* However, consider the result of assigning to pn+^ its extreme 
value - i.e. consider the result of setting IAJ II = 1, with the phase 
of \^ ^ fixed. This constrains p n + \ to a particular, but arbitrary, 
value'as can be seen from equation (12). Furthermore, from (13), Pn+T 
is then also determined as are all terms of higher order. If we had 
some independent way of determining the value of Pn+io (say) we have no 
reason to expect agreement with the value obtained by extrapolating 
from n with lA-̂  jl = 1. 

On the other hand, if we set A^ j = 0, pn+2 is no longer completely 
constrained and ranges within values'determined from equation (13). The 
range of values within which Pn+2 can lie is largest when A^ j = 0. 
Similarly it can be shown that if A^ j = 0, and also A2 1 = u, the range 
of values within which pn+3 can lie is greatest. Thus:' sequentially 
setting each term to the middle of its permitted range maximizes the 
possible range of all higher-order terms. If we had some independent 
method of determining pn+io (say) this procedure provides our best chance 
that its value will lie within the range permitted by the lower terms. 

Setting Ai 1 = 0 leads to the iterative algorithm 
n 

p = y a. p . . (14) Kn+m . L
J. k,n Kn+m-k v •* k=l ' 

In Section 4 this procedure is illustrated. 

In general, the constraints on p n + m weaken as m increases. Thus 
it can be shown (Komesaroff and Lerche, 1978) that 

n -
p - J a, p , = 1 6 1 5 , m > 1 , (15a) 
Kn+m , t

1 k ,n Kn+m-k ' n ' n+m ' ' *• ' 
k=l 

where S satisfies n+m _ n S = e* . e + T a* S , , m > 1 , (15b) n+m n m . L- k,n n+m+k ' ' y ' k=l ' 
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where e n is an arbitrary complex unit vector. It can also be shown that 
n 2 

P - J ex* p , = | B I P , m > 1 , (16a) 
n+m ,L . k,n rn+m+k ' n1 n+m ' v J 

k=l 
where P satisfies n+m 

_ _ n 

P = e* . e + T a, P , , m > 1 . (16b) 
n+m n m ,f\ k,n n+m-k v J 

Equations (15) and (16) can be solved (Komesaroff and Lerche, 1978) 
leading to expressions for S n + m and Pn+m in terms of sums of the a^ n 
and products of two e factors. But see Komesaroff and Lerche (1978J 
for the general constraint conditions on pn + m. Here we note that 
equations (15) and (16) can be used as the basis for recursive algorithms 
expressing the uncertainty in p n + m in terms of the pn+m-k (n+m > k > 1). 
This point has already been anticipated by the illustration involving 
Pn+1

 and Pn+2-

4. A NUMERICAL EXAMPLE 

An application of the procedure is illustrated in Figure 1. A 
non-negative function, sampled at 512 points, is illustrated in 
Figure 1(a). The Fourier transform has been calculated for pg ... P32 
by the usual Fourier inversion technique and the values of P33 ... pj^2 
estimated by the extrapolation method just outlined. Transforming the 
result yields Figure 1(b). In the case of Figure 1(c) the usual Fourier 
inversion technique has been used to calculate PQ ... P32 and, in 
addition, p6 4, p % , p 1 2 8 , Pi60> Pl92> P?24> P256-

 The m i s s i n g values 
have been estimated from the extrapolation method. For comparison, the 
effects of merely truncating the transform to the values indicated above 
are shown in Figures 1(d) and 1(e). 

5. RELATION TO MAXIMUM ENTROPY 

I Pm exp(2Trimx/x0) If we knew the pm (all m) exactly then Q(x) 
m=-°° 

is, of course, just proportional to F(x). But if we use relation (14) 
to estimate p m + n (m > 1), the resulting estimate for Q(x) is equivalent 
to the maximum entropy spectral estimate. We show this as follows. 
Equation (14) is equivalent to demanding 

where 

e' . e* = 6 n 3 , (17) 
m 0 m,0 n ' 
_ _ n _ 
e' = V. - I a. V. , . (18) 
m J+m i,_i K,n j+m-k 

Introduce the following change in nomenclature 

\ - 6k,0 " \,n^- 6 k,0^ 0 < k < n • (19) 
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Fig. 1(a) - A 512-point H2O spectrum measured at Parkes. 

(b) - For the data of Figure 1(a) Fourier components p0 ... P32 
were calculated by Fourier inversion, and the missing 
higher-order terms were estimated by the method outlined in 
the text. The result was then retransformed. 

(c) - Fourier components pg ... P32 an<i also P54, pgg, P128' 
Pl60> Pl92» P224> P256 were calculated by Fourier inversion 
and the missing terms were estimated as in Figure 1(b). 

(d) & (e) - Fourier transform truncated as for Figures 1(b) and (c) 
respectively and the missing terms set to zero. 
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Then n _ _ 
I Y, V. , = B e ' , (20) 

i n k j+m-k n m ^ J 

k=0 J 

and thus from (17) and (18) 
+°° n n 2 

m=-» k=0 1=0 
With the replacement M = m-k+Jl we have 

n +°° _ n -2 
I PM exp(2iriMx/x0) = B J yv exp (2Trikx/xn) 

M=-» k=0 K U 
(22) 

which result is formally identical with the maximum entropy algorithm. 

Many authors have written on the subject of maximum entropy. In 
particular Burg (1967) and Van den Bos (1971) have discussed its 
connection with the positivity constraint. The papers of Abies (1974) 
and Newman (1977) are oriented towards its radio astronomy application. 
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