
NONLINEAR ANELASTIC MODAL THEORY FOR SOLAR 

CONVECTION* 

(Invited Review) 

JEAN LATOUR 

Joint Institute for Laboratory Astrophysics**, University of Colorado, and Observatoire de Nice, BP252, 
F06007 Nice CEDEX, France* 

JURI TOOMRE 

Department of Astrophysical, Planetary and Atmospheric Sciences^, and Joint Institute for Laboratory 
Astrophysics**, University of Colorado, Boulder, CO 80309, U.S.A. 

and 

J E A N - P A U L Z A H N 

Observatoire du Pic-du-Midi et de Toulouse, F65200 Bagneres de Bigorre, France 

Abstract. Preliminary solar envelope models have been computed using the single-mode anelastic equations 
as a description of turbulent convection. This approach provides estimates for the variation with depth of 
the largest convective cellular flows, akin to giant cells, with horizontal sizes comparable to the total depth 
of the convection zone. These modal nonlinear treatments are capable of describing compressible motions 
occurring over many density scale heights. Single-mode anelastic solutions have been constructed for a solar 
envelope whose mean stratification is nearly adiabatic over most of its vertical extent because of the enthalpy 
(or convective) flux explicitly carried by the big cell; a sub-grid scale representation of turbulent heat 
transport is incorporated into the treatment near the surface. The single-mode equations admit two solutions 
for the same horizontal wavelength, and these are distinguished by the sense of the vertical velocity at the 
center of the three-dimensional cell. It is striking that the upward directed flows experience large pressure 
effects when they penetrate into regions where the vertical scale height has become small compared to their 
horizontal scale. The fluctuating pressure can modify the density fluctuations so that the sense of the 
buoyancy force is changed, with buoyancy braking actually achieved near the top of the convection zone. 
The pressure and buoyancy work in the shallow but unstable H + and He+ ionization regions can serve 
to decelerate the vertical motions and deflect them laterally, leading to strong horizontal shearing motions. 
It appears that such dynamical processes may explain why the amplitudes of flows related to the largest 
scales of convection are so feeble in the solar atmosphere. 

1. Introduction 

The structure of the solar atmosphere is determined largely by the convection just below 
the surface and the waves that it can generate. The coupling of these turbulent motions 
with magnetic fields must cause most of what is observed on the Sun. However,. 
theoretical understanding of the dynamics of the solar convection zone and associated 
motions in the atmosphere is still very incomplete. For instance, no detailed theoretical 
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explanations are available for the observed discrete scales of motion seen as granulation, 
mesogranulation and supergranulation. Nor are there reliable predictions for differential 
rotation with both latitude and depth, nor for the magnetic dynamo action as evidenced 
by global field reversals. Nor is it clear why giant cells, or convective flows with 
horizontal scales comparable to the total depth of the convection zone, are essentially 
undetectable at the surface of the Sun. What are required are far more explicit dynamical 
theories to try to resolve these issues, though all such analyses of turbulent flows are 
quite formidable tasks. Certainly strides have been made recently through nonlinear 
studies of incompressible convection in rotating spherical shells (e.g. Gilman, 1978, 
1980) and of dynamo action therein (Gilman and Miller, 1981), through linear instability 
and nonlinear modal analysis of compressible fluids in similar configurations (e.g. 
Glatzmaier and Gilman, 1981; Marcus, 1980), and by nonlinear simulations of fully 
compressible convection in planar geometries (Hurlburt etal., 1982). Further, recent 
dynamical models of granulation have included fairly realistic equations of state and 
effects of radiative transfer in the optically thin atmosphere (Nelson and Musman, 1977, 
1978; Dravins etal, 1981; Nordlund, 1980, 1982). Still, although progress has been 
made in describing the dynamics of convection in a more detailed (and thus presumably 
more reliable) manner than that of the mixing-length approach, many of the basic 
consequences of convection in the Sun have yet to be explained. 

We have been developing theoretical descriptions for solar and stellar convection that 
use anelastic modal equations. These result after making two approximations to the full 
dynamical equations. First, an anelastic approximation is used to filter out the high 
frequency acoustic waves that might be present in the compressible motions but which 
would not normally contribute much to the convective transport. Second, we treat the 
convection as if it had only a discrete spectrum of horizontal scales. The horizontal 
structure is expanded in a finite number of horizontal planforms or modes. Such a 
truncation is used to make the problem tractable, choosing to emphasize accurate 
representation of the vertical and temporal structure at the expense of the horizontal. 
This truncated modal approach is motivated by the seemingly cellular character of 
turbulent convection, and similar methods have worked reasonably well in theoretical 
descriptions of laboratory convection (Toomre etal, 1977, 1982). The resulting 
nonlinear anelastic modal equations are capable of describing compressible convection 
over multiple scale heights and with all the complexities arising from realistic equations 
of state in a star. The equations have a spatial differential order, (6« + 3), with respect 
to the vertical coordinate z which depends upon the number of horizontal modes, n, 
retained in the analysis (Latour etal, 1976, hereafter called as Paper I). Although the 
differential order is high and their solution difficult, these equations have the distinct 
advantage that they can be generalized to describe the coupling of convection with 
rotation, magnetic fields and pulsation in the star. 

The anelastic modal procedure has been used to study convection both in A-type stars 
and in the Sun. Although the stellar applications have been carried out so far mainly 
with the single-mode equations, the results obtained for convection in the outer envelope 
of an A star have turned out to be very instructive. The A stars have proved to be a useful 
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framework of developing and refining the modal anelastic procedure, for here, unlike 
in the Sun, the mean structure is not overly sensitive to the details of the convection. 
The nonlinear modal studies have revealed that the two convection zones in A stars are 
dynamically coupled by the convective motions penetrating through the intervening 
stable material (Toomre etal, 1976, Paper II; Toomre, 1980; Zahn, 1980; Nelson, 
1980; Latour etal, 1981, Paper HI). The convection associated with cells of large 
horizontal scale is found to be driven principally by buoyancy forces in the deeper 
He + + unstable zone. It is striking that these motions of supergranular scale are able 
to penetrate upward all the way to the surface of the star, contrary to mixing-length 
predictions. Thus the convection is not simply confined to the unstable regions, and for 
A stars this means that diffusive gravitational separation of elements cannot be 
occurring in what previously was supposed to be a quiescent region between the H + 

and He+ + convection zones. Another noteworthy result concerns the nature of the 
supergranular scale flow in the shallow H + zone. Analysis of the buoyancy and pressure 
work terms reveals that pressure effects dominate in the upper zone. The predominately 
vertical motions in the convection zone deeper down are turned into strong horizontal 
shear flows in the upper zone, largely as a result of the strong braking of vertical 
momentum in this region. This serves to diminish the vertical velocity amplitudes that 
are actually visible in the atmosphere. The convection of small horizontal scales, like 
granulation, can experience buoyancy driving in the H + zone, while supergranular 
scales are strongly braked. In the latter, significant pressure fluctuations can serve to 
change the sense of the density fluctuations, so that a rising fluid element near the top 
of this unstable zone is heavier than its surroundings and experiences buoyancy braking. 
Net work is extracted by both scales of convection from this highly unstable zone, 
though the effects are very different. 

The work with A stars led to the suggestion that supergranulation in the Sun may well 
possess strong horizontal flows in the H + zone just below the surface (e.g. Toomre, 
1980). Thus a shallow but highly unstable region may be able to effectively prevent 
large-scale cellular motions from getting through into the atmosphere with any significant 
portion of their original momentum. The deflection of large-scale flows appears to be 
a consequence of the rapidly decreasing scale height just below the surface of the star; 
similar behavior is also seen in modal analysis of convection in polytropes when the 
effects of stratification are significant (Massaguer and Zahn, 1980; Latour et al, 1982). 
If such predictions continue to be borne out by modal solutions for solar convection, 
then this may explain why the observed vertical velocity amplitudes in supergranular 
flows in the atmosphere are so small. This may also explain why the giant cells of global 
scale, suggested by the magnetic field patterns, are below the present level of detection 
for velocities in the atmosphere. These giant cell flows may well be deflected by the 
shrinking scale height at the depth of the He+ ionization in the Sun. 

The basic problem in dealing with the solar convection zone is that the overall mean 
structure of the outer envelope is very sensitive to the detailed treatment of the 
convective motions just below the surface. Since the convection is responsible for almost 
all the transport, the mean structure is close to adiabatic throughout most of the 
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convection zone. However, which particular adiabat is chosen depends sensitively upon 
the very rapid transition from radiative to adiabatic conditions just below the surface. 
Thus the details of the convection at the very top of the zone strongly influence the choice 
of adiabat, which in turn controls the depth of the convection zone in such envelope 
models. This means that a single-mode anelastic description of the convection must be 
supplemented by some representation of the heat flux being carried by other scales of 
motions. Certainly the longer term goal will be to explicitly include a sufficient number 
of horizontal modes so that the dominant scales of convection are being computed in 
a self-consistent manner. However, that poses a formidable task mathematically, for one 
may expect that at the very least about four modes will be required in the analysis. These 
four horizontal modes probably need to be of disparate scale, much like granulation, 
mesogranulation, supergranulation and giant cells. 

We sought to minimize our computational difficulties at first by simply using a mean 
structure for the Sun constructed from mixing-length models to test the gross behavior 
of the modal convection as the horizontal scale is varied. The use of these highly 
simplified models, where the feedback between the convective flux and the mean 
structure is largely severed, has suggested that convection cells with the large horizontal 
scales of supergranulation are driven mainly by He+ + and display strong horizontal 
shear layers just below the surface. Modes of intermediate scale like that of meso­
granulation primarily feel the effects of H e + , while only cells with the small scale of 
granulation get much buoyancy driving in the H + zone. We have now advanced to 
considerably more realistic descriptions in which the nonlinear feedback of the single 
anelastic mode upon the mean structure is fully implemented. We have accomplished 
this by introducing the effects of unresolved small scales of convection and turbulence 
as a diffusion of mean entropy, while treating the dynamics of the large-scale convection 
cell explicitly by solving the full anelastic equations. Such a procedure has worked out 
quite well in building preliminary models of supergranulation and giant cells: with the 
diffusive scale of such an eddy process restricted to be less than 1 Mm, we find that a 
single large-scale mode can transport nearly the full solar flux over most of the 
convection zone without developing any noticeable pathologies in the mean stratification. 
Further, we note that the cellular motions in our solar model extend over multiple density 
scale heights, much as we anticipated from our work with A stars. 

2. Formulating the Problem 

In this preliminary study of the hydrodynamics of the solar convection zone, we shall 
use the anelastic modal equations in their simplest form by retaining only a single mode. 
The class of solutions investigated has an upwelling flow at the center of the three-
dimensional hexagonal convection cell. The computations are relevant only to the 
largest convective cellular flows in the Sun, with their horizontal scales being comparable 
to the overall depth of the convection zone. Our notation and formulation of the 
equations will be identical to that used in Paper II, though we will introduce additional 
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terms to represent the transport of heat and the diffusion of momentum by turbulent 
motions with scales much smaller than the explicit cellular mode. 

A. SINGLE-MODE ANELASTIC APPROACH 

We shall here briefly recall some of our notation for the single-mode anelastic 
representation of the convection, but for the sake of brevity ask the reader to refer to 
Paper III for a detailed exposition of the equations. Each thermodynamic variable is 
separated into its horizontal mean, which depends only on the vertical coordinate z and 
time /, and its fluctuations relative to that mean value. The coordinate z is taken as the 
depth below the surface of the Sun and thus increases downwards. The fluctuations will 
be factorized so as to separate their amplitude functions from their specified horizontal 
planform function f(x, y). The temperature field will thus be represented as 

T(x, y, 2, t) = T(z, i) [ 1 + f{x, y) @(z, t)], (2.1) 

where Tis the mean temperature and 0the amplitude function of its relative fluctuations. 
The density field is similarly described by its mean value p and the amplitude function A 
of its relative fluctuation, and so too pressure in terms of P and II. Likewise enthalpy, 
entropy and thermal conductivity, with H, S, K being their mean values and H, S, K 
their absolute fluctuation functions. The momentum vector m, = pv, is divergence free 
within the anelastic approximation if we ignore the explicit time dependence of ~p 
associated with possible radial pulsations. Thus the momentum vector can be 
represented as 

m,= \a~2^DW, a~2 — DW, fw\ , (2.2) 
1 dx 3y ) 

assuming that the vertical component of vorticity is negligible and denoting D = d/dz. 
The horizontal planform fluctuations satisfy 

(£ + $) / + ° 2 / = o - (7?=1- (23) 

where the overbar denotes horizontal averaging. The planform functions within a 
single-mode representation are characterized by their horizontal wavenumber a and 
their self-interaction constant C = \{f)3, which is zero for two-dimensional rolls and 
6~1/2 for the three-dimensional cells with a hexagonal planform considered here. 

The use of such mean and fluctuating variables yields a system of nonlinear partial 
differential equations with z and / as independent variables. The single-mode anelastic 
equations are stated as Equations (2.7) to (2.12) in Paper III, and involve a fluctuating 
horizontal vorticity equation and a fluctuating heat equation for the particular mode 
under consideration, plus a mean-momentum equation and a mean-heat equation which 
are coupled by various nonlinear terms to the fluctuations. The single-mode system of 
equations is of 3rd order in time derivatives, and of 9th order in spatial derivatives. The 
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nonlinear differential system will be solved by finite differences, the details of which are 
also provided in Paper III. 

B. MEAN MODEL AND BOUNDARY CONDITIONS 

Our computational domain in the vertical extends over much of the depth of the solar 
convection zone, with the lower boundary placed at a depth of about 256 Mm below 
the solar surface so that the effects of motions in the stable stratification below the 
convection zone can be resolved. The placement of the upper boundary of the 
computational domain presents greater difficulties. It would be most appropriate to 
extend the domain well into the solar chromosphere in order to study the possible 
upward penetration of these largest scales of convection into the stable atmosphere. 
However, severe computational difficulties arise even when dealing with the full 
complexities of the hydrogen ionization zone just below the surface: the pressure scale 
height varies by a factor of about 20 in going from a depth of 7 Mm (where H is fully 
ionized) to the photosphere, and the conductivity K varies by several orders of 
magnitude as a consequence of hydrogen ionization. Indeed, the pressure scale height 
ranges from Hp ~ 0.1 Mm in the photosphere to Hp ~ 50 Mm near the bottom of the 
convection zone (at a depth of about 200 Mm), thereby changing by a factor of 
about 500. The numerical difficulties in describing compressible flows over such a range 
of properties are most formidable, and we preferred in these preliminary calculations 
to avoid some of them by placing our upper boundary at a depth where hydrogen is 
already largely (80%) ionized. Thus our computational domain starts at a depth of 
5.7 Mm and extends downwards a further 250 Mm, with the scale height Hp varying by 
a factor of about 25 between the top and bottom of the domain. 

We have adopted a fairly standard chemical composition of X = 0.73, Y = 0.25, and 
Z = 0.02 for our solar model, used the Cox and Stewart (1965) opacity tables, and have 
imposed the mean temperature and density at our upper boundary at z = 5.7 Mm to 
have the values T0 = 3.774 x 104 K and p0 = 1-880 x 10" 4 gcm" 3 in keeping with 
standard calibrated mixing-length envelope models (cf. Gough and Weiss, 1976). At the 
lower boundary we assert that the energy flux is purely radiative and thus specify the 
mean temperature gradient there. We require the vertical momentum W and the 
temperature fluctuation 6 to vanish at the upper and lower boundaries, which are 
otherwise stress-free. Such an imposition of conditions at the upper artificial boundary 
is certainly arbitrary and we have tried others, but the choice made here has the modest 
advantage of being the simplest. 

C. REPRESENTATION OF SMALL-SCALE TURBULENCE 

The single mode of large horizontal scale is likely to be able to transport a significant 
fraction of the solar flux over only the deeper portions of the convection zone, with 
smaller cellular scales having roles at shallower depths. Further, a cascade process must 
be present that transfers energy from the largest cellular scales being described by the 
modal equations to the smaller scales at which viscous dissipation occurs. We 
introduced in Paper III a representation for the energy cascade to smaller scales by 
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means of a turbulent viscosity ~vT, with the latter a function of the shear being 
experienced by the modal flow. The turbulent viscosity serves to parameterize sub-grid 
shearing instabilities and consequent diffusion of vorticity by a succession of small-scale 
eddies. 

We must here also introduce a representation for the turbulent heat transport 
associated with the much smaller scales of motion. Our imposition of an artificial upper 
boundary means that transport by the large mode becomes ineffective in a narrow region 
below this boundary. If radiation alone were required to carry all the flux there, then 
the temperature gradient that would result would be so steep that the whole structure 
of the convection zone would be drastically changed, making it much shallower than 
acceptable. Such a thermal boundary layer can be avoided by allowing the flux to be 
carried by the much smaller turbulent scales that must be present there, for the mean 
stratification is still highly unstable to convection and the pressure scale height is small. 
We therefore incorporate a turbulent transport term into the mean heat equation that 
serves to diffuse the mean entropy field should its gradient attempt to become very steep. 
Such turbulent heat transport is analogous to what would result from a local mixing-
length approximation, though by limiting the length scale of mixing to be less than about 
1 Mm, we can confine these processes to the vicinity of the upper boundary. 

The turbulent heat transport by small scales can be accommodated by introducing 
the additional term 

-DQJTXTDS) (2.4) 

to the left-hand side of the mean-heat equation (2.12) in Paper III, with this term 
representing the divergence of the turbulent heat flux. Here x r i s a turbulent diffusivity 
uTl, with / the mixing length linked to the local pressure scale height but possessing an 
imposed upper bound. The effective turbulent velocity uTi% estimated, as in the mixing-
length approach, from the kinetic energy acquired by a small adiabatic parcel of fluid 
traveling a distance / under the acceleration of buoyancy, thus obtaining 

1T= I 
ydln~pj 

1/2 

(2.5) 

The modified mean-heat equations (2.12) from Paper III may then be restated in 
conservative form to clearly identify the sources and sinks, with the equation becoming 

pT— + D 
dt 

WH-W^- KDT-pTxTDS 
P 

gWA - WPD \ z ) + 

(V +_ VT) [a-2(<t> + 2a2 Wf + 4(DW)2], (2.6) 

with all the notation the same as that introduced in Paper III. 
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Similarly, we modify the fluctuating heat equation (2.9) in Paper III by introducing 
a term to its right-hand side which represents turbulent diffusion acting on the fluctuating 
entropy, with the expression being 

+ pTXr(D
2-a2)S. (2.7) 

This term is just the fluctuating analog of expression (2.4) to leading order. 
We will find that the turbulent heat transport (2.4) is of importance only near our 

artificially imposed upper boundary and negligible over most of the computational 
domain. By adjusting the value of / in that term we can adjust the depth of the unstable 
zone so that it has a reasonable value as judged by properly evolved full solar models 
(e.g., Gough and Weiss, 1976). Thus the term is of key importance in selecting the 
adiabat for the convection zone, but does not otherwise control the dynamics of the 
large-scale mode which will serve to keep the stratification in the rest of the zone 
adiabatic. 

3. Results and Discussions 

We have obtained steady solutions for a number of single-mode convective flows with 
a hexagonal planform, and in all these there has been a full feedback of the nonlinear 
convection upon the mean stratification. We will concentrate here on discussing the 
properties of one of these solutions of large horizontal scale, for it will serve to show 
what is characteristic of all these anelastic modal solutions for solar convection. The 
steady states are attained by time evolving the solutions from various different initial 
conditions, sometimes from an initial mean structure based on the usual mixing-length 
description and with the modal perturbation fields of very small amplitude, but more 
often from other evolved modal solutions nearby in parameter space. 

A. FLOW MOMENTA AND THERMODYNAMIC FLUCTUATIONS 

Figure la presents the variation of the vertical and horizontal momentum amplitude 
functions, W and U, with depth z over our computational domain, with the solution 
displayed in equal increments of logP so that the structures near the top, where the scale 
height gets small, are readily visible. The actual numerical solutions were constructed 
on a highly stretched grid so adjusted that all boundary-layer features are adequately 
resolved, with typically 300 mesh points being used for each variable in the vertical. The 
horizontal wavenumber of this particular solution is a = 15 when based on the 250 Mm 
depth of our computational domain, thus yielding a horizontal wavelength for this 
hexagonal cell of 140 Mm. The vertical momentum W in this solution peaks at 
z x 60 Mm and decreases sharply as the bottom of the convection zone is reached at 
z x 200 Mm. The vertical momentum also decreases steadily as the upper boundary is 
approached. Although this is partly the result of our boundary condition there, the 
decrease is primarily attributable to buoyancy and pressure forces, triggered by the 
shrinking scale height, that deflect the upward directed momentum at cell center into 
a strong horizontal shearing flow. The plot of horizontal momentum U in Figure la 
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Fig. 1. Variation with depth (or log./3) in the solar envelope of a typical single-mode nonlinear convection 
solution. The horizontal wavenumber for this hexagonal cell of large horizontal scale is a = 14.0, 
corresponding to a size of 140 Mm, and the flow is predominantly upward at cell center. Shown in (a) are 
the amplitude functions of the vertical momentum W and horizontal momentum V in dimensional units 
of (gcm~ 2 s" ' ) , and in (b) the amplitude functions of the relative thermodynamic fluctuations for 

temperature, 0, density, A, and pressure, 77. 

shows that this component is especially prominent from the upper boundary to a depth 
of about 30 Mm, with another shearing flow also present near the bottom of the 
convection zone. Thus this large-scale cellular flow occupies the full extent of the 
unstable domain here, unlike what might have been expected from mixing-length 
predictions; there is little to confine the motions to a mere scale height or so. Certainly 
some of the variations seen in the solution near the top of the computational domain 
will be artifacts arising from the placement of our arbitrary upper boundary, though the 
striking tendency for the cellular convection to extend over many vertical scale heights 
appears to be a robust result. 

The amplitude functions for the relative thermodynamic fluctuations of temperature, 
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density and pressure are shown as 9, A, and 77 in Figure lb. They are of the same order 
throughout the zone and peak near the middle of the He+ ionization region at a depth 
of about 7 Mm (see also Figure 2b). The amplitudes of these relative thermodynamic 
fluctuations are small: about 0.12 for the maximum of 6, but only of order 0.01 or less 
over most of the convection zone. The linearized relation A = all- bO that links the 
relative thermodynamic fluctuations within the anelastic approximation is therefore 
justified. (The positive coefficients a, b depend upon T and p and the equation of state, 
and would just be unity if the gas were perfect.) When the pressure fluctuation 77 is 
negligible, as within the Boussinesq approximation, then the density fluctuation A is just 
the mirror image of the temperature fluctuation 9. However when the stratification 
effects are significant, as in the upper portions of the solar convection zone, 77 may be 
of the same order as 9 and then A responds to both fluctuations. This may lead to a 
rising fluid element actually experiencing buoyancy braking near the top of an unstable 
zone, largely because 77 can even change the sign of A. Although there is a hint of this 
near the upper boundary in Figure la, we do not place much credence in this because 
of our arbitrary boundary conditions there. However, such buoyancy braking arising 
from the effect of 77 on A has a major role in the nonlinear modal solutions for 
convection studied in polytropes by Massaguer and Zahn (1980) and in the A-star 
convective envelopes of Paper III. Thus buoyancy braking caused by effects of 
compressibility where the scale height is small may also turn out to be an important 
process in the Sun, though we would have to extend the computational zone into the 
atmosphere to be sure of this. 

B. WHAT DRIVES THE MOTIONS 

In order to understand the dynamics of such large-scale convection, it is useful to 
examine the rates of working by buoyancy and pressure forces, for these will largely 
control the power integrals for these flows. The expression EB = gWA represents work 
done by the mean pressure, or thus by buoyancy, while that by fluctuating pressure is 
EP = WIIPD(l/~p). In addition, a term Ev would represent the work done by viscous 
forces, but will not be shown explicitly. We should note that EP represents the work done 
to modify the volume of a fluid parcel as it moves vertically, with this term vanishing 
in the abscence of density stratification, either in Boussinesq convection or in the 
comparable assumptions made in mixing-length treatments. The notation for EP and EB 

is such that positive terms increase the local kinetic energy in the flow. The net work 
produced by fluctuating pressure, or thus the integral in the vertical of EP, plus that done 
by buoyancy, is converted into heat by viscous dissipation. These processes are however 
usually not in local balance, and thus flux terms serve to redistribute the energy vertically 
across the layer. 

Figure 2a shows the variation with depth of EB and EP in the representative solution. 
We note that rates of working by buoyancy and pressure possess a relatively narrow 
peak at a depth of about 7 Mm in the middle of the He + ionization region (see 
Figure 2b). The buoyancy term EB is consistently of greater amplitude than that of the 
pressure term EP, and near the upper boundary a small region of buoyancy braking is 
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Fig. 2. Further properties of the nonlinear convection in the large-scale hexagon solution shown in 
Figure 1. (a) Variation with depth (or logP) of the local work done by the buoyancy (EB) and by the 
fluctuating pressure (EP). (b) Ionization fractions for H + , H e + , and He + + with depth in this solar 
envelope, and the variation of the local effective Rayleigh number R. EB and Ep are shown in the same 

arbitrary units. 

evident. Further, the EB profile in Figure 2a displays a plateau with a faint secondary 
maximum in the region where the second helium ionization is more than half completed, 
as seen in the curve of the ionization fraction of He + + in Figure 2b. Such a profile for 
EB suggests that the buoyancy work used to drive the convective motions is largely 
concentrated in the ionization regions, with both the He + and He + + processes having 
a role in such driving. We should emphasize that the rate of working by the pressure 
terms through E^ has a significant effect on the flow, though the overall integral of EB 

dominates. Closer inspection of the individual components that go into EP reveal that 
pressure forces at depths shallower than about 20 Mm serve to decelerate the upward 
directed flow at the center of the cell and drive the consequent strong horizontal 

https://doi.org/10.1017/S0252921100095725 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100095725


398 JEAN LATOUR ET AL. 

motions. The overall contributions by EP in these regions is positive, meaning that net 
work is extracted by pressure terms from the unstable stratification, and so too by the 
buoyancy terms, but the pressure field has the key role in the initial deflection of the flow. 

Figure 2b presents the degree of ionization of H and He with depth, and thus serves 
to quantify the locations of the ionization regions. Shown also is the variation of local 
Rayleigh number, based on the local degree of superadiabaticity, pressure scale height 
and enhanced turbulent viscosity. This Rayleigh number R ranges from about 1016 at 
the top to about 107 near the bottom of the convection zone, indicating that we have 
increased the viscosity typically by a factor of about 1012 over that of the natural 
molecular viscosity of the solar plasma. Such an enhancement of the viscosity, primarily 
by the turbulent viscosity vr, has made the numerical calculations tractable, and we 
have not found the resulting solutions to be overly sensitive to the functional forms 
used for vr. 

C. THE ENERGY TRANSPORTS 

Figure 3 displays how the various fluxes of energy in such modal convection vary with 
depth. Shown are the enthalpy or convective heat flux Fc, the radiative flux FR, the 
viscous shear flux Ev, and the turbulent eddy heat flux FE. These fluxes have been 
defined in Paper III, but forFE, the divergence of which is introduced in Equation (2.4); 
all the fluxes have been normalized by the total flux. The conservation of energy in a 
steady state requires that the sum of these fluxes, together with the kinetic energy flux 
FK not shown here, must be constant throughout the envelope. An interesting result is 
that Fc is dominant over most of the convection zone and is close to unity. Thus the 
large-scale convection mode is very efficient in transporting most of the solar flux. Near 

i 1 1 1 1 — i 1 — | — | i i | | | 1 1 | I 
i i 

5.7 10 20 30 40 60 80 120 200 260 

DEPTH (Mm) 

Fig. 3. Variation with depth (or log/*) in the hexagon solution shown in Figure 1 of the enthalpy or 
convective heat flux Fc, the radiative flux FR, the viscous shear flux Fv, and the small-scale turbulent eddy 

flux FE. All fluxes have been scaled by the upward total flux. 
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the bottom of the zone, Fc is naturally supplanted by the radiative flux FR, and even 
becomes slightly negative in a narrow overshooting region, forcing FR to be larger than 
unity. Near our artificial upper boundary, the heat transport FE by small-scale eddies 
takes over, thereby preventing the formation of a thermal boundary layer there since we 
force Fc to vanish. The viscous shear flux Fv represents a net kinetic energy transport 
by viscous stresses arising from our enhanced turbulent viscosity. This flux is not 
negligible over a significant portion of the zone, with Fc and Fv together accounting for 
most of the total flux over a large depth range. Figure 3 thus serves to emphasize that 
even a single large-scale mode, akin to possibly a giant cell, can make the mean 
stratification nearly adiabatic over most of the vertical extent of the convection zone. 

4. Conclusions 

The single-mode nonlinear solutions that we have studied all appear to suggest that the 
largest scales of convection in the Sun are prevented from getting through into the 
atmosphere with any significant fraction of their primary momentum. The shrinking 
scale height as the surface of the Sun is approached from below can produce major 
compressibility effects in the dynamics of large-scale convection that serve to deflect the 
cellular motions laterally. Thus fairly strong horizontal shearing flows may be present 
below the surface for scales of convection comparable to giant cells, and even some 
signature of them may extend into the atmosphere due to viscous stresses, whereas the 
vertical component of motion getting through into the photosphere is feeble at best. 
Certainly the preliminary anelastic modal solutions that we have considered so far only 
suggest such behavior, for we have imposed an artificial upper boundary in order to 
simplify the computational tasks, thereby ignoring much of what goes on explicitly in 
the hydrogen ionization zone. Also, our results are influenced by the enhanced turbulent 
viscosity that we have introduced to effectively reduce the local Rayleigh number and 
make the computations tractable. In particular, the vertical and horizontal momentum 
amplitude functions shown in Figure la translate into flow fields in which the maximum 
vertical velocity of about 10 m s " 1 is attained at a depth of about 12 Mm and a peak 
horizontal velocity of about 100 m s~l occurs at a depth of 7 Mm. These values can be 
changed by a factor of about 10 by changing the turbulent viscosity vr by a factor of 
105, thereby emphasizing that we are presently uncertain about the flow amplitudes that 
will be attained just below the surface. These modifications in vr however appear to have 
little impact on the overall structure of the convective mode over the bulk of the zone 
where its convective heat transport is sufficient to account for most of the solar flux. 

Future improvements to these preliminary anelastic models of solar convection will 
require a better representation of the small-scale turbulence and the inclusion of 
additional horizontal modes in the analysis. These modes will need to encompass 
horizontal scales of convection comparable to granulation, mesogranulation and super-
granulation, in addition to those of giant cells, and it is not readily apparent just how 
sensitive the results will be to the number and choice of modes in such a representation 
of compressible turbulence. Clearly the analysis of the convective flows must also be 
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extended into the atmosphere and radiative transfer effects there taken into account. We 
recognize that such steps are necessary before we can have any sense of comfort about 
the predictions of anelastic convection theory applied to the Sun, and we are thus 
engaged in implementing such improvements. What these preliminary single-mode 
solutions presently do provide is a sequence of nonlinear numerical experiments to help 
develop our intuition about highly compressible flows. Certainly many of the results are 
at variance with what is assumed in the effectively Boussinesq mixing-length 
approaches, for the convection here readily extends over multiple scale heights and is 
thereby decidedly nonlocal in character. The preliminary results to date suggest that 
prominent horizontal flows may be associated with the largest scales of convection at 
reasonably shallow depths below the surface. These may be capable of being sampled 
by the use of the five-minute oscillations as probes of such convective structures. 
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