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Abstract

For a discrete abelian cancellative semigroup S with a weight function ω and associated multiplier
semigroup Mω(S ) consisting of ω-bounded multipliers, the multiplier algebra of the Beurling algebra
of (S , ω) coincides with the Beurling algebra of Mω(S ) with the induced weight.
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1. Introduction

For an abelian semigroup S , the multiplier semigroup M(S ) consists of all α : S → S
such that

α(st) = sα(t) = α(s)t (s, t ∈ S ).

A weighted semigroup (S , ω) consists of a semigroup S with a weight function
ω : S → (0,∞) satisfying ω(st) ≤ ω(s)ω(t) (s, t ∈ S ). A weight ω on S represents a
frequency function or a norm on S . Taking (S , ω) as an intrinsic object, a study of
multipliers on (S , ω) has been initiated in [2]. The subsemigroup Mω(S ) of M(S )
consists of multipliers α on S which are ω-bounded in the sense that ω(α(s)) ≤
Kω(s) (s ∈ S ) for some K > 0. The map s ∈ S 7→ γs ∈ Mω(S ), γs(t) = st (t ∈ S ), is
onto if and only if S has identity; and is one to one if and only if S is faithful, that is,
if s, t ∈ S and su = tu for all u ∈ S , then s = t. The set {γs : s ∈ S } is a semigroup ideal
in Mω(S ). The weight ω̃ on Mω(S ) induced by ω is

ω̃(α) = sup
{
ω(α(s))
ω(s)

: s ∈ S
}

(α ∈ Mω(S )),

which satisfies ω̃(γs) ≤ ω(s) (s ∈ S ).
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The Beurling algebra `1(S , ω) associated with (S , ω) is the convolution Banach
algebra

`1(S , ω) =

{
f : S → C :

∑
s∈S

| f (s)|ω(s) <∞
}

with the convolution product ( f ? g)(s) =
∑

uv=s f (u)g(v); ( f ? g)(s) = 0 if uv = s has
no solution in S ; and with the norm ‖ f ‖ω =

∑
s∈S | f (s)|ω(s). The algebra `1(S , ω)

has identity if and only if S has a finite set of relative units. The Beurling algebra
`1(Mω(S ), ω̃) is analogously defined. The interrelation between the Banach algebra
structure of `1(S , ω) and the structure of (S , ω) is a fascinating aspect of harmonic
analysis [2, 5].

The multiplier Banach algebra M(A) of a commutative Banach algebra (A, ‖ · ‖) is
the unital Banach algebra consisting of all T : A→A satisfying T (ab) = aTb = (Ta)b
(a, b ∈ A) with the operator norm ‖T‖ = sup{‖Ta‖ : a ∈ A, ‖a‖ ≤ 1} [13]. Multipliers,
either at the level of semigroups or at the level of algebras, constitute a kind of maximal
unitisation. The present paper addresses the question: when does the multiplier algebra
of the Beurling algebra of a weighted semigroup coincide with the Beurling algebra of
the corresponding weighted multiplier semigroup?

A semigroup S is cancellative if, whenever s, t, u ∈ S , su = tu implies s = t.
Cancellative semigroups are precisely the subsemigroups of groups, whereas the
semigroups (R,max), (C, ·) and the power set P(X) of a nonempty set X with the
binary operation union fail to be cancellative. We prove the following theorem.

Theorem 1.1. Let S be cancellative. Then M(`1(S , ω)) is homeomorphically
isomorphic to `1(Mω(S ), ω̃).

The annihilator S ◦ω of S with a zero element 0 (that is, 0 ∈ S such that 0s = s0 = 0
for all s ∈ S [9]) in Mω(S ) is a semigroup ideal of Mω(S ) given by

S ◦ω = {α ∈ Mω(S ) : αγs = 0 for all s ∈ S},

and it contains γ0. Analogously, the annihilator `1(S , ω)◦ of `1(S , ω) in `1(Mω(S ), ω̃)
is a closed algebra ideal of `1(Mω(S ), ω̃) given by

`1(S , ω)◦ = {µ ∈ `1(Mω(S ), ω̃) : µ ? f = 0 ( f ∈ `1(S , ω))}.

When S is a semigroup with zero element 0, Mω(S ) is also a semigroup having zero
element γ0. Also, α(0) = 0 for all α ∈ Mω(S ). When S has a zero element, we define

`1(S , ω) =

{
f : S → C : f (0) = 0,

∑
s∈S

| f (s)|ω(s) <∞
}
.

We recall the Rees quotient of S by a semigroup ideal I. The relation ∼ in S ,
defined by s ∼ t if either s = t or both s and t are in I, is an equivalence relation in S .
The equivalence classes under ∼ are the singleton sets {s} with s ∈ S \ I and the set I.
Since I is an ideal of S , the relation ∼ is a congruence on S . The quotient semigroup
S/I is the Rees factor semigroup of S modulo I [9].
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Let ω be such that ω0 := inf{ω(s) : s ∈ S } > 0. Consider the map ωq : S/I → (0,∞)
defined as ωq([t]) = 1 (t ∈ I) and ωq([t]) = ω(t) (t < I). Then ωq is a weight on S/I.
Indeed, let s ∈ S and t ∈ I. Then ω0 ≤ ω(st) ≤ ω(s)ω(t). It follows that ω(s) ≥ 1 for
all s ∈ S . Let s, t ∈ S . If st ∈ I, then ωq([st]) = 1 ≤ ωq([s])ωq([t]). Let st < I. Then
ωq([st]) = ω(st) ≤ ω(s)ω(t) = ωq([s])ωq([t]). It follows from the above arguments that
ω0 > 0 if and only if ω ≥ 1.

Theorem 1.2. Let S be a semigroup with zero element. Let ω̃ (in particular, ω) be
bounded away from 0. Then `1(S , ω)◦ = `1(S ◦ω, ω̃) and `1(Mω(S ), ω̃)/`1(S ◦ω, ω̃) is
isomorphic to the Beurling algebra `1(Mω(S )/S ◦ω, ω̃q).

A weight ω on S is semisimple if limn→∞ ω(sn)1/n > 0 (s ∈ S ). A semigroup S is
separating if s = t whenever s, t ∈ S and s2 = t2 = st [8]. By [5], the algebra `1(S , ω)
is semisimple if and only if S is separating and ω is semisimple. By [2], `1(S , ω)
is semisimple if and only if `1(Mω(S ), ω̃) is semisimple. For µ ∈ `1(Mω(S ), ω̃), let
Tµ : `1(S , ω)→ `1(S , ω) be

Tµ( f ) = µ ? f ( f ∈ `1(S , ω)).

Then Tµ ∈ M(`1(S , ω)).

Theorem 1.3. Let S be separating and ω be semisimple, and let ω̃ be bounded away
from 0. Then the following hold.

(1) The map f 7→ f + `1(S , ω)◦ from `1(S , ω) into `1(Mω(S ), ω̃)/`1(S , ω)◦ is one to
one and `1(Mω(S ), ω̃)/`1(S , ω)◦ is semisimple.

(2) If `1(S , ω) has a bounded approximate identity, then the map µ + `1(S , ω)◦ 7→ Tµ
is a homeomorphic isomorphism from `1(Mω(S ), ω̃)/`1(S , ω)◦ onto M(`1(S , ω)).

These results are inspired by [11, 12], in which the case of semigroups without
weights is considered. An example in [11] shows that the condition that S is
cancellative cannot be omitted.

The algebra `1(Z, ω) and its connection with complex analysis were noticed by the
forefathers of Banach algebras [7]. Its instructive role in Fourier series was noted
in [6, Example 11.15, page 41]. It provides a natural framework for theorems of
Wiener, Lévy and Żelazko [1, 3]. The role of the group algebra L1(G, ω) in abstract
harmonic analysis and in Banach algebras is amply emphasised in [4, 10, 14]. For the
general discrete case `1(S , ω) (in particular, `1(Q+, ω)), it was proclaimed in 2000 in
[4, page 536] that ‘presumably the golden age for the study of these algebras lies in
the future’. The present paper along with [2] is our response to this (see also [5]). For
S = Z+, this gives Banach algebras of power series for which we refer the reader to [4].

2. Proofs

Lemma 2.1. Let S be an abelian faithful semigroup. Then the natural homomorphism
s 7→ γs of S into Mω(S ) induces a homomorphism of `1(S , ω) into `1(Mω(S ), ω̃) which
is one to one if and only if s 7→ γs is one to one and onto if and only if s 7→ γs is onto.
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Proof. The proof is analogous to the proof of [12, Proposition 4.3]. �

Lemma 2.2. Let ω be a weight on an abelian semigroup S and let µ ∈ `1(Mω(S ), ω̃).
Then the map Tµ : `1(S , ω)→ `1(S , ω) defined by Tµ( f ) = µ ? f is a multiplier of
`1(S , ω). The map µ 7→ Tµ of `1(Mω(S ), ω̃) into M(`1(S , ω)) is a norm-decreasing
homomorphism.

Proof. Since S is abelian, it follows that Tµ( f ) ? g = f ? Tµ(g) for all f , g ∈ `1(S , ω).
Let µ =

∑
α∈Mω(S ) µ(α)δα ∈ `1(Mω(S ), ω̃) and let f =

∑
s∈S f (s)δγs ∈ `

1(S , ω). Then∑
s∈S

∑
α∈Mω(S )

| f (s)||µ(α)|ω(αγs) ≤
∑
s∈S

∑
α∈Mω(S )

| f (s)||µ(α)|ω̃(α)ω(s)

=

( ∑
α∈Mω(S )

|µ(α)|ω̃(α)
)(∑

s∈S

| f (s)|ω(s)
)

= ‖µ‖ω̃‖ f ‖ω.

Hence, ‖Tµ( f )‖ω ≤ ‖µ‖ω̃‖ f ‖ω ( f ∈ `1(S , ω)), that is, ‖Tµ‖ ≤ ‖µ‖ω̃. �

Lemma 2.3. Let S be an abelian semigroup with the property: given α ∈ Mω(S ), there
exists sα ∈ S such that for any β ∈ Mω(S ), α(sα) = β(sα) implies α = β. This holds
in particular when S is cancellative. Then the map µ 7→ Tµ from `1(Mω(S ), ω̃) to
M(`1(S , ω)) is one to one.

Proof. The proof is analogous to the proof of [12, Proposition 4.4 and Corollary
4.4]. �

Let S be a cancellative semigroup. Then S , Mω(S ) and M(S ) can be embedded
in a group Q(S ), called the group of the semigroup S , which has the property that
M(S ) = {α ∈ Q(S ) : αS ⊂ S }. The group Q(S ) is constructed as follows [4, page 15].
Let (s, t), (u, v) ∈ S × S . We say that (s, t) ∼ (u, v) if sv = tu. Then ∼ is an equivalence
relation on S × S . Let [s, t] be the equivalence class containing (s, t), that is,

[s, t] = {(u, v) ∈ S × S : (u, v) ∼ (s, t)}.

Then Q(S ) = (S × S )/∼ is a group with the binary operation

[s, t][u, v] = [su, tv] ([s, t], [u, v] ∈ Q(S )).

The semigroup S is embedded in Q(S ) via the map s 7→ [su, u].
Let ω be a weight on S . Define ωQ : Q(S )→ (0,∞) as

ωQ([s, t]) = sup
{
ω̃(su)
ω̃(tu)

: u ∈ Mω(S )
}
.

Let [s, t], [u, v] ∈ Q(S ). By definition, ωQ([s, t]) > 0. Let x ∈ Mω(S ). Then

ω̃(sux)
ω̃(tvx)

=
ω̃(sux)
ω̃(tux)

ω̃(utx)
ω̃(vtx)

≤ ωQ([s, t])ωQ([u, v]).
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Therefore,
ωQ([s, t][u, v]) = ωQ([su, tv]) ≤ ωQ([s, t])ωQ([u, v]).

Note that ωQ([su, u]) = sup{ω̃(suv)/ω̃(uv) : v ∈ Mω(S )} ≤ ω̃(s) (s ∈ Mω(S )). Since
ω̃(γs) ≤ ω(s), it follows that ωQ([su, u]) ≤ ω(s) (s ∈ S ). Thus, given a weight ω on a
cancellative semigroup S , there exists a natural weight ωQ on Q(S ) whose restriction
on S is dominated by ω.

Lemma 2.4. Let (S , ω) be a cancellative, abelian weighted semigroup and let Q(S ) be
the group of the semigroup S . Then

Mω(S ) = {g ∈ Q(S ) : gS ⊂ S , ω(gs) ≤ Kgω(s) (s ∈ S )}.

Proof. Let g ∈ Q(S ) be such that gS ⊂ S and ω(gs) ≤ Kgω(s) (s ∈ S ). Then clearly
the map s 7→ gs is in Mω(S ). Conversely, if g ∈ Mω(S ), then gS ⊂ S and ω(gs) ≤
Kgω(s) (s ∈ S ). �

Lemma 2.5. Let S be a cancellative, abelian semigroup. Then both `1(S , ω) and
`1(Mω(S ), ω̃) are subalgebras of `1(Q(S ), ωQ).

Proof. Let f =
∑

s∈S f (s)δγs ∈ `
1(S , ω). For any s ∈ S , ωQ([su, u]) ≤ ω(s). Now∑

s∈Q(S )

| f ([su, u])|ωQ([su, u]) =
∑
s∈S

| f (s)|ωQ([su, u]) ≤
∑
s∈S

| f (s)|ω(γs).

A similar proof holds for `1(Mω(S ), ω̃). �

Proof of Theorem 1.1. If µ ∈ `1(Mω(S ), ω̃), then the map Tµ : `1(S , ω)→ `1(S , ω)
defined by Tµ( f ) = µ ? f ( f ∈ `1(S , ω)) is an element of M(`1(S , ω)). By Lemmas 2.2
and 2.3, the map µ 7→ Tµ is an isomorphism of `1(Mω(S ), ω̃) to M(`1(S , ω)). We show
that it is onto.

The algebras `1(S , ω) and `1(Mω(S ), ω̃) are subalgebras of `1(Q(S ), ωQ) whose
elements are supported on S and Mω(S ), respectively. Let T ∈ M(`1(S , ω)). Let
f ∈ `1(S , ω) and s ∈ S . Then T ( f ) ? δs = f ? T (δs). Thus, T ( f ) = f ? T (δs) ? δs−1 ∈

`1(S , ω) for all f ∈ `1(S , ω). We first claim that the support of T (δs) ? δs−1 is contained
in M(S ). Let t ∈ Q(S ), u ∈ S be such that tu < S and T (δs) ? δs−1 (t) , 0. Then
(δu ? T (δs) ? δs−1 )(tu) = (T (δs) ? δs−1 )(t) , 0 and hence δu ? T (δs) ? δs−1 < `1(S , ω).
This contradicts the fact that f ? T (δs) ? δs−1 ∈ `1(S , ω) for all f ∈ `1(S , ω). Hence,
the claim follows. Now we claim that the support of T (δs) ? δs−1 is contained in
Mω(S ). Let µ = T (δs) ? δs−1 =

∑
α∈M(S ) µ(α)δα. Let α0 ∈ M(S )\Mω(S ) be such that

µ(α0) , 0. Then there exists a sequence (sn) in S such that ω(α0(sn)) ≥ nω(sn). Let
f =

∑
n∈N(1/n2ω(sn))δγsn

. Then f ∈ `1(S , ω). Now

‖µ ? f ‖ω =

∥∥∥∥∥( ∑
α∈M(S )

µ(α)δα
)
?

(∑
n∈N

1
n2ω(sn)

δγsn

)∥∥∥∥∥
ω

=

∥∥∥∥∥∑
n∈N

∑
α∈M(S )

µ(α)
1

n2ω(sn)
δαγsn

∥∥∥∥∥
ω
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=
∑
n∈N

∑
α∈M(S )

∣∣∣∣∣µ(α)
1

n2ω(sn)

∣∣∣∣∣ω(αγsn )

≥
∑
n∈N

∣∣∣∣∣µ(α0)
1

n2ω(sn)

∣∣∣∣∣ω(α0γsn )

=
∑
n∈N

∣∣∣∣∣µ(α0)
1

n2ω(sn)

∣∣∣∣∣ω(α0(sn))

≥ |µ(α0)|
∑
n∈N

1
n2ω(sn)

nω(sn)

= |µ(α0)|
∑
n∈N

1
n
.

This is a contradiction and proves our claim.
Since the map T is a continuous bijection between two Banach spaces, it follows

from the open mapping theorem that it is a homeomorphism. �

Proof of Theorem 1.2. Let µ =
∑
α∈S ◦ω µ(α)δα ∈ `1(S ◦ω, ω̃). Since α ∈ S ◦ω, αγs = 0 for

all s. Therefore, µ ? δs =
∑
α∈S ◦ω µ(α)δαγs =

∑
α∈S ◦ω µ(α)δ0 = 0 for all s ∈ S . Hence,

µ ? f = 0 for all f ∈ `1(S , ω), that is, µ ∈ `1(S , ω)◦.
Conversely, let µ =

∑
α∈Mω(S ) µ(α)δα ∈ `1(S , ω)◦. Suppose that α0 < S ◦ω for some α0

in the above expression. Then α0γs , 0 for some s ∈ S . This will give

0 = ‖µ ? δs‖ω ≥ |µ(α0)|ω(α0γs) > 0.

This is a contradiction. Hence, `1(S ◦ω, ω̃) = `1(S , ω)◦.
The set `1(S ◦ω, ω̃) consists of all functions from µ : Mω(S )→ C which are zero

outside S ◦ω and
∑
α∈Mω(S ) |µ(α)|ω̃(α) < ∞. Since S ◦ω is an ideal in Mω(S ), `1(S ◦ω, ω̃)

is a closed ideal in `1(Mω(S ), ω̃). Define ϕ : `1(Mω(S ), ω̃)→ `1(Mω(S )/S ◦ω, ω̃q) as
follows. Let µ =

∑
α∈Mω(S )\S ◦ω µ(α)δα +

∑
α∈S ◦ω µ(α)δα. Then

ϕ(µ) :=
∑

α∈Mω(S )\S ◦ω

µ(α)δα.

Since ω̃q(α) = ω̃(α) for all α ∈ Mω(S )\S ◦ω, ϕ is a continuous homomorphism
with norm at most 1. Clearly, the map ϕ is onto. Let µ ∈ ker ϕ. Then µ =

∑
α∈S ◦ω µ(α)

δα ∈ `
1(S ◦ω, ω̃). If µ ∈ `1(S ◦ω, ω̃), then, by definition of ϕ, ϕ(µ) = 0. Hence, ker ϕ =

`1(S ◦ω, ω̃). �

Proof of Theorem 1.3. (1) Let f ∈ `1(S , ω) and let f + `1(S , ω)◦ = `1(S , ω)◦. Then
f ? g = 0 for all g ∈ `1(S , ω). In particular, f ? δs = 0 for all s ∈ S . Let ϕ ∈ ∆(`1(S , ω)).
Then ϕ(δs) , 0 for some s ∈ S . But then 0 = ϕ( f ? δs) = ϕ( f )ϕ(δs) implies ϕ( f ) = 0.
Since `1(S , ω) is semisimple, f = 0. Hence, the map f 7→ f + `1(S , ω)◦ is one to one.

Let µ ∈ `1(Mω(S ), ω̃) be such that µ + `1(S , ω)◦ , `1(S , ω)◦. Then µ ? f , 0 for
some f ∈ `1(S , ω). Since `1(Mω(S ), ω̃) is semisimple, there exists ϕ ∈ ∆(`1(Mω(S ), ω̃))
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such that ϕ(µ ? f ) , 0. Since µ < `1(S , ω)◦ and ϕ(µ) , 0, the map ϕ̃ : `1(Mω(S ), ω̃)→
C defined by ϕ̃(ν + `1(S , ω)◦) = ϕ(ν) is an element of ∆(`1(Mω(S ), ω̃)/`1(S , ω)◦). Since
ϕ̃(µ + `1(S , ω)◦) = ϕ(µ) , 0, it follows that `1(Mω(S ), ω̃)/`1(S , ω)◦ is semisimple.
(2) Let Tµ = 0. Then µ ? f = 0 for all f ∈ `1(S , ω), that is, µ + `1(S , ω)◦ = `1(S , ω)◦.
Therefore, the map µ + `1(S , ω)◦ 7→ Tµ is one to one. Let µ ∈ `1(Mω(S ), ω̃),
f ∈ `1(S , ω) and µ′ ∈ `1(S , ω)◦. Then

‖Tµ( f )‖ω = ‖µ ? f ‖ω = ‖(µ + µ′) ? f ‖ω ≤ ‖µ + µ′‖ω̃‖ f ‖ω.

Hence, ‖Tµ‖ ≤ ‖µ + `1(S , ω)◦‖.
Now we show that the map µ + `1(S , ω)◦ 7→ Tµ is onto. We have `1(Mω(S ), ω̃) =

(c0(Mω(S ), 1/ω̃))∗. We identify the element µ of `1(Mω(S ), ω̃) with a unique element
Λµ of (c0(Mω(S ), 1/ω̃))∗ given by

Λµ

( ∑
α∈Mω(S )

ν(α)δα
)

=
∑

α∈Mω(S )

µ(α)ν(α).

We may embed `1(S , ω) in `1(Mω(S ), ω̃). Let T ∈ M(`1(S , ω)). Let ( fx) be a
bounded approximate identity of `1(S , ω). Then (ΛT ( fx)) is a bounded net in (c0(Mω(S ),
1/ω̃))∗. Let (ΛT ( fy)) be a subnet of (ΛT ( fx)) converging to Λµ ∈ (c0(Mω(S ), 1/ω̃))∗

in the w∗-topology, where µ ∈ `1(Mω(S ), ω̃). Since c0(Mω(S ), 1/ω̃) is w∗-dense in
(c0(Mω(S ), 1/ω̃))∗∗,

〈Λµ, g〉 = lim
y
〈ΛT ( fy), g〉

for every g ∈ c0(Mω(S ), 1/ω̃)∗∗. Since

∆(`1(Mω(S ), ω̃))⊂ (`1(Mω(S ), ω̃))∗ = (c0(Mω(S ), 1/ω̃))∗∗,

〈Λµ, ϕ〉 = limy〈ΛT ( fy), ϕ〉 for every ϕ ∈ ∆(`1(Mω(S ), ω̃)). Let f ∈ `1(S , ω). Then
〈ΛT ( fy), ϕ〉〈Λ f , ϕ〉→〈Λµ, ϕ〉〈Λ f , ϕ〉= 〈Λµ? f , ϕ〉. But 〈ΛT ( fy), ϕ〉〈Λ f , ϕ〉= 〈Λ fy?T ( f ), ϕ〉 →
〈ΛT ( f ), ϕ〉. Hence, 〈ΛT ( f ), ϕ〉 = 〈Λµ? f , ϕ〉. Therefore, T ( f ) = µ ? f . Since the map
µ + `1(S , ω)◦ 7→ Tµ is a continuous bijection between two Banach spaces, it follows
from the open mapping theorem that it is a homeomorphism. �
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and Lévy on absolutely convergent Fourier series’, Proc. Indian Acad. Sci. Math. Sci. 113 (2003),
179–182.

[4] H. G. Dales, Banach Algebras and Automatic Continuity, London Mathematical Society
Monographs Series, 24 (Clarendon Press, Oxford, 2000).

[5] H. G. Dales and H. V. Dedania, ‘Weighted convolution algebras on subsemigroups of the real line’,
Dissertationes Math. (Rozprawy Mat.) 459 (2009), 1–60.

[6] R. E. Edwards, Fourier Series, Vol. II (Holt, Rinehart and Winston, New York, 1967).
[7] I. M. Gel’fand, D. Raı̌kov and G. E. Šilov, Commutative Normed Rings (Chelsea Publishing

Company, New York, 1964).
[8] E. Hewitt and H. S. Zuckerman, ‘The `1 algebra of a commutative semigroup’, Trans. Amer. Math.

Soc. 83 (1956), 70–97.
[9] J. M. Howie, Fundamentals of Semigroup Theory (Clarendon Press, Oxford, 1995).

[10] E. Kaniuth, A Course in Commutative Banach Algebras (Springer, New York, 2009).
[11] C. D. Lahr, ‘Multipliers for `1-algebras with approximate identities’, Proc. Amer. Math. Soc. 42

(1974), 501–506.
[12] C. D. Lahr, ‘Multipliers of certain convolution measure algebras’, Trans. Amer. Math. Soc. 185

(1976), 165–181.
[13] R. Larsen, An Introduction to the Theory of Multipliers (Springer, Berlin, 1971).
[14] H. Reiter and J. D. Stegeman, Classical Harmonic Analysis and Locally Compact Abelian Groups

(Clarendon Press, Oxford, 2000).

S. J. BHATT, Department of Mathematics, Sardar Patel University,
Vallabh Vidyanagar 388120, Gujarat, India
e-mail: subhashbhaib@gmail.com

P. A. DABHI, Department of Mathematics, Sardar Patel University,
Vallabh Vidyanagar 388120, Gujarat, India
e-mail: lightatinfinite@gmail.com

H. V. DEDANIA, Department of Mathematics, Sardar Patel University,
Vallabh Vidyanagar 388120, Gujarat, India
e-mail: hvdedania@yahoo.com

https://doi.org/10.1017/S0004972714000239 Published online by Cambridge University Press

mailto:subhashbhaib@gmail.com
mailto:lightatinfinite@gmail.com
mailto:hvdedania@yahoo.com
https://doi.org/10.1017/S0004972714000239

	Introduction
	Proofs
	References

