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ABSTRACT

Suppose that F/F* is a CM extension of number fields in which the prime p
splits completely and every other prime is unramified. Fix a place w|p of F.
Suppose that 7 : Gal(F'/F) — GL3(F,) is a continuous irreducible Galois representation
such that HGal(fw Fw) is upper-triangular, maximally non-split, and generic. If 7 is

automorphic, and some suitable technical conditions hold, we show that 7, (Fu/Fu)

can be recovered from the GL3(F),)-action on a space of mod p automorphic forms on a
compact unitary group. On the way we prove results about weights in Serre’s conjecture
for 7, show the existence of an ordinary lifting of 7, and prove the freeness of certain
Taylor-Wiles patched modules in this context. We also show the existence of many

Galois representations 7 to which our main theorem applies.
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1. Introduction

1.1 Motivation and statement of main results
Suppose that p is a prime and that p : Gal(Q,/Q,) — GL,(F,) is a continuous Galois
representation. One would hope that there is a mod p Langlands correspondence that associates
to p in a natural way a smooth representation I1(p) of GL,(Q,) over F, (or maybe a packet
of such representations), and similarly for p-adic representations. Unfortunately, at this point,
this is only known for n < 2 [Bre03], [Col10]. But suppose now that F'/FT is a CM extension
of number fields in which p splits completely, and fix a place w|p. Even in the absence
of a local mod p Langlands correspondence for n > 2, given a global automorphic Galois
representation 7 : Gal(F/F) — GL,(F,) we can define smooth representations Ilgop(7) of
GL,(Qp) over Fp on spaces of mod p automorphic forms on a definite unitary group, that
serve as candidates for II(F|q, 7, / F,)) (in the spirit of Emerton’s local-global compatibility
[Emell]; see also [CEGGPS16] in the p-adic setting). It is not known whether Iy, (7) depends
only on F‘Gal(Fw JFy)" The motivating question of this paper is opposite to this: do the candidate
representations Hglob(F) contain at least as much information as F’Gal(ﬁw / Fw)? We answer this
question in the affirmative in many cases when n = 3.

We fix a finite extension F/Q, with residue field F, and consider absolutely irreducible
Galois representations 7 : Gal(F/F) — GL3(F). We assume moreover that 7| Gal(Fu/Fu) is upper-
triangular, maximally non-split, and generic. This means that

a+1
wTnry, *1 *
= ~ b+1
T’Gal(Fw/Fw) W™ nry, *2 ) (1.1.1)
c+1
w DI‘MO

the extensions *j, %2 are non-split, and a —b > 2, b—c > 2, a — ¢ < p — 3. (Here, w is the
mod p cyclotomic character and nr, denotes the unramified character taking value o € F* on
geometric Frobenius elements.) It is not hard to see that once the diagonal characters are fixed,
the isomorphism class of ?|Ga1@w /F,) is determined by an invariant F L(ﬂ(;al(ﬁu / Fw)) that can
take any value in P!(FF)\{x1}. (We normalize this invariant using Fontaine-Laffaille theory, see
Definition 2.1.10.)

To explain our results, we briefly describe our global setup, referring to §4 for details.
Fix a unitary group G p+ such that G x F = GL3 and G(F,f) = U3(R) for all v[co. Choose
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a model § O pt of G such that § x O P is reductive for all places v’ of F™ that split in F.

v

Let v = w|p+. Choose a compact open subgroup U = U x §(O FJ) < G(A%,) that is sufficiently
small, and unramified at all places dividing p. Let V'’ denote an irreducible smooth representation
of Hv,lpyv,# (0 Ff) over [F determined by a highest weight in the lowest alcove, and let V'’ denote

a Weyl module of [, iz, S(Op+) over O of the same highest weight, so 1% Qo, F =V

(Except for Theorem C below, the reader may assume for simplicity that V/ = F and V' =0 E-
We can then define in the usual way spaces of mod p automorphic forms S(U",V’)

h—r>nUU<G(FJ)S(UUU”’V/) and similarly S(UY,V’) that are smooth representations of G(F;)

GL3(Qp) (where this isomorphism depends on our chosen place w|v).

We fix a cofinite subset P of places w’ { p of F' that split over F'*, such that U is unramified
at w'|p+, and such that 7 is unramified at w’. Then the abstract Hecke algebra T” generated
over Op by Hecke operators at all places in P acts on S(UY,V’) and S(U?, V'), commuting
with the GL3(Qp)-actions. Moreover, 7 determines a maximal ideal m; of T”. We assume
that 7 is automorphic in this setup, which means that S(UY,V’)[mz] # 0 (or equivalently,
S(U?, V' )m, # 0). These GL3(Qp)-representations, S(U”,V')[mz], are the natural candidates
Ig10n(7) that we mentioned above, at least if the level U” is chosen optimally.

It is a consequence of earlier work of the first-named author and Breuil [BH15] that
the GL3(Qp)-representation S(UY, V')[mz| determines the ordered triple of diagonal characters
(wnry,,, w?ar,,, wtnr,)) of 7| Gal(Fu/F)- I fact, the triple (a,b, ¢) can be recovered from
the (ordinary part of the) GL3(Z,)-socle, i.e., the Serre weights of 7, by [GG12] and the p; € F*
are determined by the Hecke action at p on the GL3(Z,)-socle. It therefore remains for us to show
that S(UY, V’)[mz] determines the invariant FL(T|GayF,/F.))- (We note that the representation

~—

11l

T1(7| Gal(F/ Fw))ord of [BH15] does not contain this information.)
Let I denote the Iwahori subgroup of GL3(Z,), which is the preimage of the upper-triangular
matrices B(F,) in GL3(F,). If V' is a representation of GL3(Z,) over O and a; € Z we write

1 (az,a1,a0) def Hom;(05(@% @ 3™ ®@ &%), V),

where the character in the domain denotes the inflation to I of the homomorphism B(F,) — 0%,

(x o 5}) > T2gM @, If V is even a representation of GL3(Q,), then V71:(a2:41.00) affords an

action of Uj,-operators Uy, Us (see (3.1.10)). Define also IT e (p ! 1), which sends V1:(@2:21,00) t¢
VI,(al,ao,ag).

Finally, and crucially, we define explicit group algebra operators S, S’ € F[GL3(F,)], see
(4.5.1). We can now state our first main theorem.

THEOREM A (Theorem 4.5.2). We make the following additional assumptions:

(i) FL(F’Gaqu/Fw)) Z {0,00};
(ii) the Og-dual of S(U", ‘7’){1{576’76’7“) is free over T, where T denotes the Opg-subalgebra of
End (S(U”,V’)]{{E_b’_c’_a)) generated by T, Uy, and Us.

T

Then we have the equality

a— b—c T
SToTl= (-1 T = " FLlgacr,/r) S
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of maps
S(Uv7 V/) [mF]I,(—b,—c,—a) [Ula UZ] N S(Uv, V/) [mF]I,(—c—l,—b,—a—i-l)‘

Moreover, these maps are injective with non-zero domain. In particular, FL(F‘G&I(FH, /Fw)) is
determined by the smooth GL3(Q),)-representation S(U",V')[mz].

The first assumption is related to the surprising fact that the GL3(Zj)-socle of S(U", V') [my]
changes for the exceptional two invariants, see Theorem D below. (Incidentally, this means that
even in the exceptional cases FL(7| Gal(F/ Fw)) is determined by S(U",V’)[mz].)

We show that the second assumption is often a consequence of the first assumption. The
second assumption is an analogue of Mazur’s ‘mod p multiplicity one’ result, and thus our result
may be of independent interest. We have not tried to optimize our hypotheses, the most stringent
of which is that U may be taken to be unramified at all finite places.

THEOREM B (Theorem 5.1.1). Assume hypotheses (i)—(ix) in §5.1. If FL(HGal(Fw/Fw)) # 00,
then assumption (ii) in Theorem A holds.

In fact we show that for any value of FL(7|q, 7, /r,)) either the second assumption or its
dual holds (see Remark 5.3.6).

We also show, using results of [EG14], that for any given local Galois representation as in
(1.1.1) we can construct a globalization to which Theorem B applies.

THEOREM C (Theorem 5.3.7). Suppose that p : Gal(Q,/Q,) — GL3(F) is upper-triangular,
maximally non-split, and generic. Then, after possibly replacing F by a finite extension, there
exist a CM field F, a Galois representation 7 : Gal(F/F) — GL3(F), a place w|p of F, groups
G,p+ and G, , and a compact open subgroup U® (where v = w|p+) satistying all hypotheses
of the setup in §5.1 such that T|q, %, /r,) = P- In particular, if FL(p) ¢ {0,00}, Theorem A
applies to T.

As a by-product of our methods we almost completely determine the set of Serre weights
of 7. Here, the set W,,(7) is defined to be the set of irreducible GL3(Z,)-representations whose
duals occur in the GL3(Zj)-socle of S(UY, V'), (for some U? and P as above). See §4.2 for our

notation for Serre weights.

THEOREM D (Theorem 4.4.1). Keep the assumptions on 7 that precede Theorem A above.
(i) I FL(TlquF, r,)) & {0,00} we have
{Fla—1,b,c+1)} CWy,([F) C{F(a—1,b,c+1),F(c+p—1,b,a—p+1)}.
(ii) If FL(HGal(fw/Fw)) = oo we have

{F(a—1,b,c+1),F(a,c,b—p—|—1)}
CWy() C{F(a—1,b,c+1),F(c+p—1,b,a—p+1),F(a,c,b—p+1)}.

{F(afl,b,c+1),F(b+p—1,a,c)}
CWy() C{F(a—1,b,c+1),F(c+p—1,ba—p+1),F(b+p—1,a,0c)}.
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This is one of the first Serre weight results in dimension 3. It was completed in early 2014,
before the recent progress of [LHLM15] (on Serre weights in dimension 3 in the generic semisimple
case, using different methods). As we said above, the dependence on FL(ﬂGal(Fw / F,)) in this
theorem was unexpected, as there were no explicit Serre weight conjectures in the literature that
apply to non-semisimple ﬂGal(Fw JF)-

As a consequence of this theorem we also show the existence of an automorphic lift » of 7 such
that T‘Gal(Fw F) is upper-triangular. It is in the same spirit as the main results of [BLGG12]
(which concerned two-dimensional representations).

THEOREM E (Corollary 4.4.4). In the setting of Theorem D, T has an automorphic lift r :
Gal(F/F) — GL3(Op) (after possibly enlarging E) such that r|q,F, /p,) is crystalline and
ordinary of Hodge—Tate weights {—a —1,—b—1,—c — 1}.

1.2 Methods used

Theorems A and B generalize earlier work of Breuil and Diamond [BD14] which treated the
case of two-dimensional Galois representations of Gal(F/F), where F is totally real and p is
unramified in F'. We follow the same general strategy: we lift the Hecke eigenvalues of 7 to a
well-chosen type in characteristic zero, use classical local-global compatibility at p, and then
study carefully how both the Galois-side and the GL3-side reduce modulo p. However, it is
significantly more difficult to carry out this strategy in the GL3-setting.

We first prove the upper bound in Theorem D by lifting to various types in characteristic zero
and using integral p-adic Hodge theory to reduce modulo p. This is more involved in dimension 3,
since we are no longer in the potentially Barsotti—Tate setting. We crucially use results of Caruso
to filter our Breuil module (corresponding to F‘Gal(fw / Fw)> according to the socle filtration on
F\Gal(pw/Fw), see Proposition 2.3.5.

The following theorem is our key local result on the Galois-side. Our chosen type is a tame
principal series that contains in its reduction modulo p all elements of W, (7) (unlike in [BD14],
where the intersection always consisted of one element). In contrast to [BD14] we get away with
a rough classification of the strongly divisible module corresponding to p. (We do not need to
determine Frobenius and monodromy operators.) We also note that the relevant information on
the Galois-side is independent of the Hodge filtration, so that we can transfer this information
to the GL3-side using classical local-global compatibility.

THEOREM F (Theorem 2.5.1). Let p : Gal(Q,/Q,) — GL3(Og) be a potentially semistable
p-adic Galois representation of Hodge-Tate weights {—2, —1,0} and inertial type @® ® @’ @
w°. Assume that the residual representation p : Gal(Q,/Qp,) — GL3(F) is upper-triangular,
maximally non-split, and generic as in (1.1.1). Let A\ € O be the Frobenius eigenvalue on

Dgp’z(p)l‘@pzab. Then the Fontaine-Laffaille invariant of p is given by
FL(p) = red(pA~Y),
where red denotes the specialization map P*(Og) — PL(F).

On the GL3-side our main innovation consists of the explicit group algebra operators S, S’.
The analogues of these operators for GLg show up in various contexts (see, for example, [Pas07,
Lemma 4.1], [BP12, Lemma 2.7], [Brell, §4], and [BD14, Proposition 2.6.1]). Our proof is
specific to GL3. It would be interesting to find a more conceptual explanation for them. See
also Question 3.1.3 for a further discussion of such operators.
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PrOPOSITION G (Proposition 3.1.2).

(i) There is a unique non-split extension of irreducible GL3(IF,)-representations
0—> F(—c—1,-b,—a+1) >V - F(-b+p—1,—¢,—a) > 0

and S induces an isomorphism S : VI(=b—e—a) =y L(—e=1=b—atl) of one-dimensional
vector spaces.

(ii) There is a unique non-split extension of irreducible GL3(IF,)-representations

0—> F(—c—1,-b,—a+1) >V - F(—¢,—a,-b—p+1) —> 0

~

and S’ induces an isomorphism S’ : VI(-e—a=b) =, yI(-c=1,=b—at+l) of one-dimensional
vector spaces.

The result concerning reduction modulo p on the GLs-side is comparatively easier, see
Proposition 3.2.2.

By combining the above results we deduce Theorem A. We note that assumption (ii) is
needed for lifting elements of S(UY, V')[mz]!(=0=¢=9)[U;, Uy] to suitable ITwahori eigenvectors
in characteristic zero. The U;-operators allow us to deal with the possible presence of the
shadow weight F'(¢c+p—1,b,a —p+ 1) in Theorem D. (The term ‘shadow weight’ is defined in
[EGH13, §6], and more generally in [GHS16, §§1.5 and 7.2].) Namely, if v € S(UY,V’)
[mz] [ (=b=e=a) [ Uy] is non-zero, we show that it generates the representation of Proposition G (i)
under the GL3(Zp)-action. Similar comments apply to IIv. Proposition G then allows us to
deduce that the maps in Theorem A are well defined and injective. (We refer to Remark 4.5.8
for variations on assumption (ii). The stronger assumptions appearing in Remark 4.5.9 are
analogous to the multiplicity one conditions appearing in [BD14].)

Interestingly, the argument proving Theorem A also lets us deduce the hardest part of
Theorem D, namely the existence of the shadow weights F'(a,c,b — p+ 1), F(b+p — 1,a,c)
in the two exceptional cases. After [EGH13|, this is only the second result in the literature
proving the existence of shadow weights. (Again this precedes [LHLM15].)

Finally, we establish Theorem B. As in [BD14] our method relies on the Taylor—Wiles method.
However, as we do not know whether our local deformation ring at p is formally smooth (which in
any case should be false if our chosen type intersects W,,(7) in more than one element) we cannot
directly apply Diamond’s method [Dia97]. Instead we use the patched modules of [CEGGPS16]
that live over the universal deformation space at p and use ideas of [EGS15] and [Lel5]. See
Theorem 5.2.3 for our freeness result at infinite level from which we deduce Theorem B. Similarly
to above, we add Uj,-operators in order to deal with the possible presence of the shadow weight
Flc+p—1,bja—p+1).

1.3 Notation

Let Q be an algebraic closure of Q. All number fields F/Q will be considered as subfields of

Q and we write Gp e Gal(Q/F) to denote the absolute Galois group of F. For any rational

prime ¢ € Q, we fix algebraic closures Q, of Q; and embeddings Q — @, (hence inclusions
Gg, — Gg). The residue field of Q, which is an algebraic closure of Fy, is denoted by F,. As
above, all algebraic extensions of Qy, F, will be considered as subfields of the fixed algebraic
closures Qy, F,.

def

Let k/F, be a finite extension of degree f > 1, and let Ky = W (k)[1/p] be the unramified
extension of Q, of degree f. Suppose that e > 1 is any divisor of pf — 1. (Starting in § 2.4 we will
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assume e = p/ — 1. However, in the appendix it will be convenient to allow more general e, in

particular e = 1.) We consider the Eisenstein polynomial E(u) def e + p € Qplu] and fix a root
w = +/—pE @p. Let K%

= Ko(w), a tamely totally ramified cyclic extension of Ky of degree e
with uniformizer w.
Let E be a finite extension of Q,. We write Of for its ring of integers, I for its residue field
and wg € O to denote a uniformizer. We always assume that K C F.
The choice of w € K provides us with a homomorphism

We : Gal(K/Qp) — W (k)™

-~

whose reduction modulo p will be denoted by ws. Note that the inclusion £ C F induced by
K C FE provides us with a niveau f fundamental character wy : Gal(K/Ky) — F*, namely
Wf = We|Gal(K/Ko)-

We denote by w : Gg, — F; the mod p cyclotomic character, so w = w;.

Write ¢ for the p-power Frobenius on k. We recall the standard idempotent elements ¢, €
k @, F defined for o € Hom(k, F), which verify (¢ ® 1)(€5) = €50,-1 and (A®@ 1)e; = (1@ 0(A))és.
We write €, € W (k)®z, Op for the standard idempotent elements; they reduce to ¢, modulo wg.

Our convention on Hodge-Tate weights is that the cyclotomic character € : Gg, — Q' has
Hodge—-Tate weight —1.

Given a potentially semistable p-adic representation p : Gg, — GL,(E), we write WD(p)
to denote the associated Weil-Deligne representation as defined in [CDT99, Appendix B.1].
Therefore, p — WD(p) is a covariant functor. We refer to WD(p)|ry, as the inertial type
associated to p.

2. The local Galois side

In this section we analyze the local Galois side. In particular, we establish Theorem F of the
introduction.

2.1 Fontaine—Laffaille invariant

Let p : Gg, — GL3(FF) be a continuous Galois representation. We assume that p is mazimally
non-split meaning that p is uniserial and the graded pieces in its socle filtration are at most one
dimensional over F. (Recall that a finite length module is uniserial if it has a unique composition
series.) In other words,

az+1
w nry, *q *
P~ w oy, %o (2.1.1)
ap+1
w nry,

for some a; € Z, p; € F* and where 1, % are non-split. Here, nr, : Go, —> F* denotes the
unramified character taking the value ;1 on a geometric Frobenius element of Gg,.

2.1.1 Preliminaries on Fontaine—Laffaille theory. We begin by briefly recalling the theory of
Fontaine-Laffaille modules with F-coefficients and its relation with mod p Galois representations.
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A Fontaine-Laffaille module (M, Fil® M, ¢,) over k®p, F is the datum of

(i) a finite free k ®p, F-module M;
(ii) a decreasing filtration {Fil! M};cz on M by k ®r, F-submodules such that Fil M = M and
FilP~! M = 0;
(iii) a p-semilinear isomorphism ¢, : gr* M — M.
Defining the morphisms in the obvious way, we obtain the abelian category F-F£0r—2

of Fontaine-Laffaille modules over k®p,F. Given a Fontaine-Laffaille module M and
o € Hom(k,F), we define the Hodge—Tate weights of M with respect to o:

def | . . e, Fil' M
HT,(M) = ¢ e N:dimp| ———— 0p.
o(M) { F(e(,Fil”lM) 7 }
In the remainder of this paper we focus on Fontaine-Laffaille modules with parallel Hodge-
Tate weights, i.e. we assume that for all i € N, the submodules Fil* M are free over k @, F.

DEFINITION 2.1.2. Let M be a Fontaine—Laffaille module with parallel Hodge-Tate weights. A
k ®r, F-basis e = (eq, ..., en—1) on M is compatible with the Hodge filtration if for all i € N there
exists j; € N such that Fil' M = Y7 (k®g, F) - ¢;.

Note that if the graded pieces of the Hodge filtration have rank at most one, then any two
compatible bases on M are related by a lower triangular matrix in GL,(k ®r, F).

Given a Fontaine—Laffaille module and a compatible basis e, it is convenient to describe the
Frobenius action via a matrix Mat.(¢s) € GL,(k®p, F), defined in the obvious way using
the principal symbols (gr(ep),...,gr(e,—1)) as a basis of gr* M.

THEOREM 2.1.3. There is an exact, fully faithful contravariant functor

T o F-FL0P~2 o Repp(Gi,)

cris

which is moreover compatible with base change: if K|,/ Ky is finite unramified, with residue field
K'/k, then
Zris(M Rk k,) = Téris(M”GK(l) ’

Also, the essential image of T}, is closed under subquotients.

Proof. The statement with F,-coefficients is in [FL82, Théoreme 6.1]; its analogue with F-
coefficient is a formal argument which is left to the reader (cf. also [GL14, Theorem 2.2.1]). O

LEMMA 2.1.4. Let p : Gg, — GL3(F) be as in (2.1.1). If the integers a; verify a1 — ag > 1,
ag—a1 >1and p—2 > as —ag then p®@ w™ is Fontaine—Laffaille, i.e. it is in the essential image
of T .

Proof. This follows, for example, from [GG12, Lemma 3.1.5]. O

In order to obtain the main results on Serre weights (§4.4) and local-global compatibility
(§4.5), we must assume a stronger genericity condition on the integers a;.

DEFINITION 2.1.5. We say that a maximally non-split Galois representation 5 : Gg, — GL3(F)
as in (2.1.1) is generic if the triple (a2, a1, ap) satisfies the condition

ar—ag>2, ax—ay>2, p—3>az—ag. (2.1.6)
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2.1.2 The Fontaine-Laffaille invariant. Let p: Gg, — GL3(F) be as in Definition 2.1.5. By
Lemma 2.1.4 there is a Fontaine-Laffaille module M with Hodge-Tate weights {1,a; — ag + 1,
az — ag + 1} such that T? (M) =2 p®@w™* and which is moreover endowed with a filtration
by Fontaine-Laffaille submodules 0 C My C M; € Ms = M induced via T .. from the cosocle

cris
filtration on p (cf. Theorem 2.1.3).

LEMMA 2.1.7. Let M e F-F£1%P=2 be such that T! (M) = p@w™. There exists a basis
e = (eg,e1,e) of M such that

M; NFil“ M =F ¢
for all i € {0,1,2}.

Proof. This follows by noting that M; N Fil% =%+ Ay = Fil%~%+1 Af; and that M; has Hodge-
Tate weights a; —ag + 1 with 0 < j <. O

Note that a basis e as in Lemma 2.1.7 is compatible with the Hodge filtration. From
Lemma 2.1.7 we deduce a useful observation on the Frobenius action on M.

COROLLARY 2.1.8. Let p, M, e be as in Lemma 2.1.7. Then
Mo Qo1 (o2
Mat,(¢s) = w1 aig | € GL3(F),
K2

where, moreover, agy, 1o € F*.

Proof. This follows from the lemma, by recalling that the Fontaine—Laffaille module associated
to a Gg,-character w'nr, has Hodge-Tate weight 7 and ¢ = p. Note that a1, a12 # 0 as p is
maximally non-split. O

Conversely, we also note that any such matrix defines a Fontaine—Laffaille module whose
associated Galois representation is maximally non-split as in (2.1.1).
The Fontaine-Laffaille invariant FL(p) associated to p is defined in terms of Mat. (¢ ).

LEMMA 2.1.9. Keep the hypotheses of Corollary 2.1.8. The element a2 /api1an2 deduced from
Mat,(¢e) does not depend on the choice of the basis e.

Proof. By Lemma 2.1.7 any other such basis is of the form g;e; for 8; € F*. The lemma follows.
Od

DEFINITION 2.1.10. Let p : Gg, — GL3(F) be maximally non-split and generic as in
Definition 2.1.5. Let M be the Fontaine-Laffaille module associated to p@w™%, e = (e, €1, €2)
a basis of M as in Lemma 2.1.7 and let
Mo Qo1 Qo2
Mat(¢s) = g o2
H2
be the matrix of the Frobenius action on M.
The Fontaine-Laffaille invariant associated to p is defined as

det <C;01 302)
FL(p) & L2 e PYF) = FU {0}
— Q02
By Lemma 2.1.9 it is well defined.
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Remark 2.1.11. Let p be maximally non-split as in (2.1.1). The isomorphism class of p is
determined by the diagonal characters w®*1nr,, and the Fontaine-Laffaille invariant FL(p).
Note that FL(p) can take any value in P!(F) except for p. (Similarly, a maximally non-split
Galois representation p : Gg, — GLy(F) is determined by the diagonal characters and (";1)
invariants.)

Remark 2.1.12. Note that in the situation of Definition 2.1.10, if F'/F is a finite field extension,
then FL(p @ F') = FL(p).

Remark 2.1.13. We leave it to the reader to show that the Fontaine—Laffaille module associated
to p¥ ®w®*? is described by

1 Mate(¢e) "t 1
1 1

As a consequence, FL(p") = FL(p) L.

2.2 p-adic Hodge theory
This section mainly consists of a review of some integral p-adic Hodge theory, although many of
the results are not available in the literature in the form or generality that we need.

In the first subsection (§2.2.1) we define the categories of mod p objects we are going to
work with (Breuil modules with descent data, étale ¢-modules, etc.). Moreover, we obtain a key
result, Corollary 2.2.2, which provides a criterion for deciding when a given Breuil module with
descent data and a Fontaine—Laffaille module have isomorphic Galois representations.

The second subsection (§2.2.2) is of a more technical nature. On the one hand we make
two of the functors from §2.2.1 (relating Breuil, Fontaine-Laffaille and étale ¢-modules) more
explicit. We also provide a useful change-of-basis result for a Breuil module with descent data.

All missing proofs of this section are contained in § A.5. Our rationale is to state in this
section all the results we need to prove our main results on the Galois side, and to relegate
technical details to the appendix.

2.2.1 Breuil modules with tame descent data. Let K' C Ky be a subfield containing Q,.

The residual Breuil ring S o (k®r, F)[u]/(u) is equipped with an action of Gal(K/K') by
k @, F-semilinear automorphisms. Explicitly if g € Gal(K/K') and a € k ®F, F, we have

glau’) = (9@ 1)(a) - (w=(g) @ 1)'u’.
If X : Gal(K/K') — F* is a character, we write Sy to denote the X-isotypical component of S
for the action of Gal(K/K').

We recall that S is equipped with an k ®p, F-linear derivation N o —u(0/0u) and with a
semilinear Frobenius ¢ defined by u + u? (semilinear with respect to the arithmetic Frobenius
¢ ®1 on k®p, F), which moreover commute with the action of Gal(K/K') on S.

Fix r € {0,...,p — 2}. A Brewil module of weight r with descent data from K to K'is a
quintuple (M, Fil" M, ¢, N, {g}), consisting of the following data.

(i) A S-module M that is finite free.
(ii) A S-submodule Fil" M of M, verifying u*" M C Fil” M.
(iii) A morphism ¢, : Fil" M — M which is ¢-semilinear and whose image generates M.
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(iv) An operator N : M — M that is k ®p, F-linear and satisfies certain axioms (see the
beginning of [EGH13, §3.2]).

(v) An action of Gal(K/K’) on M by automorphisms g which are semilinear with respect to
the Galois action on S and which preserve Fil” M and commute with ¢, and N.

A morphism of Breuil modules is an S-linear morphism which is compatible, in the evident sense,
with the additional structures.

We write F- BrMod}jj, to denote the category of Breuil modules of weight r with descent data
from K to K'; the field K’ will always be clear from the context (and will be specified in case
of ambiguities). As we did for the coefficient ring S, given a character X : Gal(K/K') — F* we
write My, (Fil" M)y to denote the -isotypical component of M, Fil” M respectively.

We remark that the category F-BrModj, is additive and admits kernels and cokernels
(cf. [Carll, Théoreme 4.2.4] and the Remarque following it). In particular a complex

0—>M1£1>M2i2>3\/[3—>0

in F- BrMod},, is ezact if the morphisms f; induce exact sequences on the underlying S-modules
M; and Fil"M; (j € {0,1,2}). This endows [F- BrMod{y with the structure of an exact category
(see Proposition 2.3.4 below).

We recall that we have an exact, faithful, contravariant functor

T% : F-BrMod}y — Repp(Gk)

M — T (M) & Hom(M, A),

where A is a certain period ring and homomorphisms respect all structures (cf. § A.3). We have

dimp T% (M) = rankgM (cf. [Carll, Théoreme 4.2.4], and the Remarque following it; see also
[EGH13, Lemma 3.2.2]).
def

We will be mainly concerned with the covariant version T% (M) = (T%(M))Y @ w" of the
functor Tj above. We remark that this is compatible with the notion of duality M — M*
on F-BrMod]; recalled in §A.4, namely Tf (M) = T% (M*), cf. the discussion before [EGH13,
Corollary 3.2.9].

We now move to the categories of étale p-modules. In the remainder of this subsection we
will assume K’ = K, i.e. we will only consider descent data from K to Kj.

We fix the field of norms k((w)) associated to a suitable Kummer extension K, of K (see
§ A.1 for its precise definition). It is endowed with a p-power Frobenius endomorphism and with
an action of Gal(K/Kj).

An étale (¢, k @, F((@)))-module with descent data is the datum of a finite free k ®r, F((=))-
module 91 endowed with a semilinear injective Frobenius endomorphism ¢ : 91 — 991 and a
semilinear action of Gal(K/Kp), commuting with ¢. We write F-900((x)),aq to denote the
category of étale (¢, k ®p, F((=)))-modules with descent data. In the special case when e = 1
this category is denoted by F-900;((,)). (In this case k((p)) is also the field of norms associated
to a suitable Kummer extension (Ko)so/Ko.) We remark that k((w))/k((p)) is a cyclic extension
of degree e with Galois group Gal(K/Kj), and we write k((p))® to denote a choice of separable
closure of k((p)) containing k((z)). For details, see § A.1. -

Finally, recall the category of Fontaine-Laffaille modules F-F£%P~2 over k ®r, I (defined in
§2.1.1) and the category F-BrModj, of Breuil modules of weight r with descent data from K
to Ko (defined in §2.2.1).
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The relations between the categories introduced so far are summarized in the following
proposition. Its proof, as well as the definition of the functors My (5)), &, ... can be found in
Appendix A.

ProOPOSITION 2.2.1. Let 0 < r < p — 2. We have the following commutative diagram:

Mi((z
F- BrMOdgd =) ]F—S)Jtoak((z))’dd
Hom(—k((p))*
T2,
Repp(Gry) ——— Repr(G(xq)..) o | =@ () F((@))
FgLlr : F-90vy,(p))

where the descent data is from K to Kq. Moreover, the functor res o T . is fully faithful.

cris
We record the following immediate, yet crucial, corollary.

COROLLARY 2.2.2. Let 0 < r < p — 2 and let M, M be objects in F-BrMod}; and F-FL [0,p—2]
respectively. Assume that T% (M) is Fontaine-Laffaille. If

Miy((z)) (M) = F(M) @p((p)) k(@)

then one has an isomorphism of Gk, -representations

Th (M) = T (M),

cris

Let us explain the role that Corollary 2.2.2 plays in the proof of our main theorem on the
Galois side (Theorem 2.5.1). Thus suppose that p is potentially semistable of Hodge-Tate weights
{—2,—1,0} with reduction p that is maximally non-split and generic as in Definition 2.1.5.
Associated to p is a strongly divisible module J/\\/[, whose reduction M € F- BrMod]}; has Galois
representation p. Corollary 2.2.2 will allow us to compute the Fontaine-Laffaille module M
associated to p — and hence the invariant FL(p) — in terms of M, so in terms of p. In fact, we
will start with M in the top left corner of the diagram and then go around it in a clockwise
sense: first computing Mj,(()) (M), then descending it to F-9%0dy,(,,)) and finally to F-FL [0.p=2],

To obtain the precise result, Theorem 2.5.1, we will moreover need more information about JT/[,
and this will be obtained in §2.4.

2.2.2 Linear algebra with descent data. We continue to assume that K’ = K. It will be
convenient to introduce bases e (respectively generating sets f) of a Breuil module M with
descent data (respectively of Fil” M) that are compatible with the action of Gal(K/Kj), and to
describe Fil" M (respectively ,) by matrices with respect to e, f. We then use this formalism
to make the functors My, (x)), I appearing in the diagram of Proposition 2.2.1 more explicit, as
well as we obtain a change-of-basis result for a Breuil module with descent data. Proofs can be
found in § A.5.
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DEFINITION 2.2.3. We say that a Breuil module M € F- BrMod, is of type wX @ -+ @ we' ™"
(where a; € Z) if M/uM = @) (Wi @1) as (k ®r, F)[Gal(K/Kp)]-modules. Equivalently, M
has an S-basis (eg, ..., e,_1) such that ge; = (w%(g) ® 1)e; for all i and all g € Gal(K/Kp). We
call such a basis a framed basis of M.

If M is of type w® & --- @ wer ™" we say that (fo,..., fn_1) is a framed system of generators

of Fil' Mif Fil' M = "' 5 - f; and §f; = (W “(g) ®1)f; for all i and all g € Gal(K/Ky).

To justify the claim implicit in this definition, choose an S/u-basis (€1,...,€,_1) of M/uM
such that g-€ = (wZ(g) ® 1)€; for all i and all g € Gal(K/Kjp). Since (k®F, F)[Gal(K/Ko)] is
a semisimple (commutative) ring we can pick a (k®r, F)[Gal(K/Kp)]-linear splitting of M —»
M/uM and hence find e; € M lifting €; such that ge; = (w%(g) ® 1)e;. By Nakayama’s lemma,
the e; form an S-basis of M.

The notion of a framed basis (respectively a framed system of generators) depends on an
ordering of the integers a;. It will always be clear from the context which ordering we use.

LEMMA 2.2.4. If M € F-BrMody, is of type @?:_Olwg}, then Fil" M admits a framed system of
generators.

DEFINITION 2.2.5. Let M € F-BrMod}jy be of type w® & - -- G wg' . Let e, f be a framed basis
and a framed system of generators of M, Fil” M respectively. The matriz of the filtration, with

respect to e, f, is the element Mat, ¢(Fil" M) € M,,(S) verifying
f=e- Matg,i(Fil’" M).

We define the matriz of Frobenius with respect to e, f as the element Mat, r(or) € GL,(S)
characterized by

er(f)=e- Matg,f(‘ﬁ)-

As we require ¢, f to be framed, the coefficients Matgi(Fil’" M);; verify the following
conditions:

3T

Matgf(Fﬂr M)U €S p—la
S Wb

Concretely Mat, ¢(Fil" M);; = u[pflaj_“i]sij, where [z] € {0,...,e—1} is defined by [z] = x mod e
for 2 € Z/eZ and s;5 € S0 = k®r, Flu]/(u?).
On the other hand, Mat, f(¢,) € GLJ(S), where

def

GL;,(S) = {A € GL,(S) : 4 € ?w;rai forall 0 <i,j <n—1}.

LEMMA 2.2.6. Let M be a Breuil module of type w® @ --- @ we' "', and let e be a framed basis
of M and f a framed system of generators of Fil" M, respectively. Let V/ def Mat,, i(Filr M) €
M,,(S) and A o Mat, ¢ (ior) € GL,(S). Then there exists a basis ¢ of My ((g))(M*) with g - ¢; =

(w_p_lai (9)®1)e; for all i and g € Gal(K/Ky), such that Mat.(¢) € My, (k ®F, F[[z]]) is given
by any chosen lift of 'V - *A~1 € M, (S) via the morphism k ®g, F[[w]] - S sending > \i@' to
> Aju' and such that (Mate(¢))i; € (k ®F, F[[w]]) p—la;—a; for all 0 <i4,j <n—1.

w
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LEMMA 2.2.7. Let M € F-F£7=2 be a rank n Fontaine-Laffaille module with parallel Hodge—
Tate weights 0 < mg < - < my—1 < p — 2 (counted with multiplicities).
Let e = (eg,...,en—1) be a k ®p, F-basis of M; that is compatible with the Hodge filtration

Fil*M, and let F' € GL,(k ®p, F) be the associated matrix of the Frobenius ¢ : gr® M = M.
Then there exists a basis ¢ of M < F(M) in F-9Mody, () such that the Frobenius ¢ on M is
described by -
Mat,(¢) = Diag(p™®...p"""1)F.

LEMMA 2.2.8. Let M € F-BrMod}, be a Breuil module of type w® @ --- @ we' ' and let e, f
be a framed basis of M and a framed system of generators of Fil" M respectively.

Write V 4 Mat,, ¢(Fil" M), A &t Mat, f(¢r). Assume that there exist elements V' € M,,(S),
B € GL,(S) such that VZ'] € gwpw—laj,ai, B;j € ?wgl(aj,%) and

AV' = VB mod uU ), (2.2.9)

Then ¢ def e- A is a framed basis of M, f’ ©r e V! is a framed system of generators for Fil" M,

and Matgl’f((pr) = QO(B) B

-

2.3 Breuil submodules and Galois representations

In this subsection we discuss some preliminaries on subobjects and quotients in the category
F- BrMod}j,. Even though these notions are presumably well known to the experts, we did not find
a suitable reference in the literature. The main result, Proposition 2.3.5, is a slight improvement
of a result of Caruso [Carll]. All missing proofs of this subsection are contained in § A.6.

In what follows, we let Sy o klu]/uP.

DEFINITION 2.3.1. Let M be an object in F-BrMod],. An S-submodule N C M is said to be a
Breuil submodule if N fulfills the following conditions:

(i) Nis an Sj-direct summand of M;
(i) N(N) CN and g(N) C N for all g € Gal(K/K");
(ili) ¢ (NN Fil" M) C N.

LEMMA 2.3.2. Let M be an object in F-BrModgy and let N C M be a Breuil submodule. Then
the S-modules N, M /N with their induced structures are objects of F- BrMod]}; and the sequence

0>N—->M-—>M/N—0
is exact in F-BrMod)y. Conversely, given an exact sequence

0— My —f> M—> My —0
in F-BrMod}y, then f(M;) C M is a Breuil submodule.

An immediate consequence of Lemma 2.3.2 is that the notion of Breuil submodule is
transitive.
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LEMMA 2.3.3. Let M be an object in F-BrMod,.

(i) If My €M and My C My are Breuil submodules, then so is Mo C M.

(ii) Let My, My be Breuil submodules of M, and assume that Mo C M;. Then My is a
Breuil submodule of My, and the Breuil module structures on Ms inherited from My and
M coincide. Similarly, My /Mg C M/My is a Breuil submodule, and the Breuil module
structures on My /Ms, as a Breuil submodule of M /My and as a quotient of My, coincide.

PROPOSITION 2.3.4. With the above notion of exact sequence, the category F-BrMody, is an
exact category in the sense of [Kel90] and T} is an exact functor.

We can now state a crucial result relating Breuil submodules of M and subrepresentations
of Tt (M). It improves [Carll, Proposition 2.2.5] (cf. also [EGH13, Corollary 3.2.9]).

PROPOSITION 2.3.5. Let M be an object in F-BrModjy. There is a natural order-preserving
bijection

O : {Breuil submodules in M} —> {G g+-subrepresentations of T%, (M)}

sending N C M to the image of T%, (N) — TL, (M). Moreover, if My C M, are Breuil submodules
of M, then ©(M;)/0(Mz) = T, (My /My).

2.4 On filtrations
Our goal is to give a rough classification of the filtration on certain strongly divisible modules
M of rank three whose associated p-adic Galois representation p has maximally non-split and
generic reduction p. The idea is to start with a simpler analysis in characteristic p (§2.4.1), using
that the mod p reduction M of M (a Breuil module) has associated mod p Galois representation
7. The resulting Corollary 2.4.7 concerning Fil> M helps us in our analysis of Fil? M in §2.4.2.
We obtain our classification in Proposition 2.4.10. This will be a key input into our main local
result on the Galois side, Theorem 2.5.1.

Our conventions regarding strongly divisible modules will be explained at the start of §2.4.2.
For the remainder of § 2 we will assume that e = pf — 1.

2.4.1 Filtration on Breuwil modules. We now obtain the first structure results for Breuil
modules with descent data giving rise to maximally non-split p.

ProOPOSITION 2.4.1. Let Koy = Q, and suppose that M € F- BrModﬁd is of type w® G w G w2,

Assume that p %ef T2 (M) is maximally non-split and generic as in Definition 2.1.5.

There is a framed basis e = (eo, €1, e2) of M and a framed system of generators f = (fo, f1, f2)
for Fil®> M such that the coordinates of the elements in [ with respect to e are described as follows:

u® 0 0
fo= (mtee | = (e,
Vue—(az—ao) )\uef(agfal) ué

®

o
|

)

where A\, i, v € F verify, moreover, \u # 0.

The proof of Proposition 2.4.1 will occupy the remainder of this subsection. We start with
the following lemma. It gives a concrete criterion for the Galois representation associated to a
rank-two Breuil module to split as a direct sum of characters.
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LEMMA 2.4.2. Assume Ko =Q, (soe=p—1) and let
0O->M - M—>My—0

be an extension of rank-one objects in F- BrModﬁd. For each i € {1,2}, assume that M; is of
type w%, with w® 2% w? and suppose Fil®> M; = u%¢M; for 0 < §; < &2 < 2. Finally, assume that

D def T2 (M) is Fontaine-Laffaille (possibly after a twist).

(i) If the extension of S-modules
0 — Fil*>M; — Fil?M — Fil* My — 0 (2.4.3)

splits, then p splits as a direct sum of two characters.
(ii) If 01 = 1,82 = 2 then p splits as a direct sum of two characters.

Proof. By assumption, M is of type w™ @ w®. Let e def (e1,e2) be a framed basis of M such

that M; = S - e;. In what follows, we define [ay — a1] € {1,...,e — 1} by the requirement
[ag — a1] = ag — a1 mod e.

From the exact sequence (2.4.3) we can find a framed system of generators of Fil> M of the
form f; = u‘sleel7 fo= ud2€ey + xu[“r“ﬂel, where x € S_0. Moreover, we have

a2—a
AL Mate (p2) = (a ’Y“[; 1]) € GLy(9)
for some «, 8 € g;jo and v € S,0.

Assume that the sequence (2.4.3) splits. Then we can fix a splitting s : Fil> My — Fil2M
which we can moreover assume to be Gal(K/Ky)-equivariant (by averaging). Let €z € (Ma)ya2
be a generator of My. Then s(ue‘5262) is killed by u€®P=%2) and hence of the form u%2¢e,y for some
eo € M. Without loss of generality, ea € My2. It is now easy to see that (e, e2) is a framed basis
of M and that (fi, f2) = (u%®ey,u’es) is a framed system of generators of Fil> M. In other
words, we can take x = 0 above.

From the obvious matrix equality

A u516 B u516 Qa 7u(52761)e+[a27a1}
uége - uége 6

défB

and Lemma 2.2.8, we deduce that ¢’ def e- A is a basis of M such that My = S - ¢, that

f W (udree), u®2¢e)) is a system of generators for Fil> M and that

= _ (w(a) @(’Y)u[aZ—‘Il]p
Mat, j(p2) = ¢(B) = < ) ) .

As [az — a1] > 0 we can further assume that ¢(y) = 0, up to re-iterating the procedure above.
Therefore My, (()) (M) splits into a direct sum of rank-one (p,F((=)))-modules (as can be
immediately checked by Lemma 2.2.6), hence ﬁ|G(Qp)oo splits as a direct sum of two characters.
As p is Fontaine—Laffaille, we deduce from Proposition 2.2.1 that p splits into a direct sum of
two characters, completing the proof of case (i).

Let us assume that §; = 1, 62 = 2. We then have fo = u*ey + zul®z—ale; and by adding a
multiple of f; we may assume z € F. If z # 0 it follows that Fil2 M = (ult2—01le; y3e—le2—ailgy)
so u%¢ey ¢ Fil>M, which is a contradiction. Therefore = 0 and we are in the situation of
case (i). O
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Remark 2.4.4. The analogous statement of Lemma 2.4.2 holds when Ky # Q,. This will be
described in detail in a particular case in the proof of Proposition 2.6.4, when [K( : Q] = 2 and
developed in further generality in [MP14, Lemma 3.2].

We now make use of our knowledge of rank-one Breuil modules with descent data and their
associated Galois representations to start to understand Fil> M in Proposition 2.4.1.

LEMMA 2.4.5. Assume Ko = Q, and let p : Gg, — GL3(FF) be maximally non-split and generic

as in Definition 2.1.5. Let M € F-BrMod3, be of type w® @ w™ @ w?? and such that T% (M) = p

and write 0 = Mg C My C M; € My def M to denote the Breuil submodule filtration on M

deduced from the socle filtration on p (cf. Proposition 2.3.5).
Then for each i € {0,1,2} the rank-one quotient M;/M; 11 € F-BrMod3, is of type w® and
its filtration is described by

FilQ(Mi/Mi+1) = UE(MZ‘/MZ‘_;,_l).

Proof. By Proposition 2.3.5, there exists a permutation o € S such that for any i € {0, 1,2}
the rank-one module M;/M;;1 is of type w?®. This implies, by means of [EGH13],
Lemma 3.3.2, that there exists §; € {0,1,2} such that Fil*(M;/M;11) = u®®(M;/M;;1) and
Tgt(jv[i/MiH)]IQp SERLIORIS

On the other hand we have Tgt(J\/[i/MHl)\[Qp =~ %+l for all i, by the definition of the
filtration {M;};. As p is generic (cf. Definition 2.1.5) we conclude that o = id and that §; = 1
for all 4. O

Proof of Proposition 2.4.1. Let 0 C Mo C My C My 2F 2\ be the filtration by Breuil submodules
on M, obtained from the socle filtration on p via Proposition 2.3.5. From Lemma 2.4.5 we obtain
a framed basis (e, €1, e2) of M with e; € M; such that

Fil*(M;/Miy1) = (u8;)g (2.4.6)

for i € {0,1,2} (with the obvious notation for the elements ;).
As the descent data acts semisimply on My, from the exact sequence

0 — Fil> My — Fil? M; — Fil?(M;/M3) — 0
we see that
Fil? M, = (u®ez,ue; + sez)g for some s € S, a1—az = uef(“zfal)gwo.

Without loss of generality, we can assume s = Au¢"(2791) for some A € F and, by Lemma 2.4.2
and the non-splitness assumption, we moreover have X\ # 0.
In a completely similar fashion we obtain

Fil’M = (ueq, ueq + /\uef(azfal)eg, ueq + s1e1 + s2€2)g,

where s1 € gwao—al,SQ € ?wao—@. As above, we can assume without loss of generality that
51 = put(91700) and sy = put(9279%) and we furthermore deduce from Lemma 2.4.2 (applied
to M/Msy) that v # 0. O

The following immediate corollary of Proposition 2.4.1 will play an important role in
describing the filtration on certain strongly divisible O g-modules, see §2.4.2.
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COROLLARY 2.4.7. Let M be a Breuil module and \v,u € F as in the statement of
Proposition 2.4.1.
The elementary divisors for M/Fil> M as an F[u]-module are described by one of the following
possibilities:
(1) if v(v — M) # 0, by (ue(a27a0) ye yet(az—ao)y.
(i) if v — A\ = 0, by (u¢~(a2700) yetlaz—ar) yet(a—ao)y,
(ili) if v =0, by (u¢~(a2-0) ye—(@—a0) yetlaz=ao)),

We also have:

(iv) Fil2M C ue (02— ao)j\/[

(v) (Fil> M)yeo & u

(vi) ( FIIQMﬁueM)wao C y2e—(a2—a0) ).
) (Fil> M)yes C uM

(vii

2.4.2 Filtration on strongly divisible modules. In this section we pursue the analysis started
in §2.4.1. The main result of this section is Proposition 2.4.10.

As in §2.2.1, we let K/ C Ky be a subfield containing Qp. The ring Sy (1) (cf. [Bre97,
§4.1]) is defined as the p-adic completion of W (k)[u, u*®/i'];en. The ring Sy is endowed with
a descending filtration {Fil’ Sw (k) yien, a semilinear Frobenius ¢, a W (k)-linear derivation N,
and with a Galois action by W(k:) algebra endomorphisms defined by g(u) = Wg(g)u for any
g € Gal(K/K'). In particular, the action of any g € Gal(K/K’) preserves the filtration and

commutes with the Frobenius and the monodromy on Syy ). By extension of scalars, the ring

g def Swk) ®z, Op is endowed with the additional structures inherited from Sy (). Note in

particular that we have a natural map S — S, defined as the reduction modulo (wg, Fil? S). For
more details, see [EGH13, §3.1].

Fix r € {0,...,p—2}. We refer to [EGH13, §3.1] for the definition of the category Og-Modg,
of strongly divisible O g-modules of weight r and with descent data from K to K ’. The objects
are certain quintuples (M, Fil"M, ¢, N,{g}), where M is a finite free S-module. There is a
contravariant functor T:t’Kl : Op-Modyy — Repg, (Gkr), which by a theorem of Liu ([Liu08,
Theorem 2.3.5], cf. also [EGH13, Proposition 3.1.4]) provides an equivalence of categories of
Op-Mod}y with the category of G'i/-stable Opg-lattices in finite dimensional E-representations
of Gi+ that become semistable over K and have Hodge-Tate weights in [—r,0]. As in the case
of Breuil modules, we consider its covariant version defined by T K T(M) o (T;’K (M))V ®e".

We also recall that if M € O e-Modj, the base change M ®s S is naturally an object of
F-BrMod}, and one has a natural isomorphism T:t’K/(J\A/[) Qo F = T’S"t(J\A/[ ®s S) of F[Gk]-
modules.

We write Mod g™ (¢, N, K/K') for the category of weakly admissible filtered (¢, N, K/K', E)-
modules (see e.g. [EGH13, §3.1]). In particular, the underlying objects are finite free Ko ®q, E-
modules. We recall the contravariant equivalence of categories

" RepE Y (Gr) — Mod§™ (¢, N, K/K'),

where RepK *(Gg) denotes the category of finite dimensional E-representations of G that
become semistable over K. If p € RepK °riS(G'gr) has Hodge Tate weights in [—r,0], we define

K’ def
Dst T( ) _e Dst ( ®€ )
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As in the mod p setting, given an Og[Gal(K/K’)]-module X and a character x :
Gal(K/K') — 0} we let X, denote its x-isotypical component.
We first require two lemmas.

LEMMA 2.4.8. Assume that K' = Q, and that the p-adic Galois representation TS”’T(J\A/[) ®o, E

has inertial type EB;L;OIQ?. Then M ®g S € F- BrMod', is of type @ w®

=0 *w"

Proof. The assumption that K’ = Q, implies that the multi-set {UJ;’ ?:_01 (and hence the

multi-set {w% ?:_01) is stable under the action of the p-power Frobenius. Together with [EGH13,
Proposition 3.3.1], this is all we need to use the argument at the beginning of [EGH13, Proof of
Theorem 3.3.13] to construct the required basis for M ®g S. O

LEMMA 2.4.9. Assume Ko = Q, and let p : Gg, — GL3(E) be a Galois representation, becoming
semistable over K, with Hodge-Tate weights {—2,—1,0}. Let M e OE—Modgd be such that
Tgp?(M) ®o, E = p and define

qer ( Fil> M ) def (Fﬂls : J?[)
x4 (2 Voo B oand v (220 o0 B
(Fﬂ?s-M : Fi?s.- M/ °
Then for any character x : Gal(K/Q,) — E* we have:
(i) dimg X, = 3;
(ii) dimg(XNY), = 2.

Moreover, multiplication by v € S induces an isomorphism X, = X\a-

Proof. Let D f D:t’@p(p). As p|g, is semistable, with Hodge-Tate weights {—2,—1,0}, the
E-linear spaces gr(Fil® D) are at most one dimensional and they are non-zero if and only if
i€{0,1,2}.

Let DY D@y Sp. We then have X = Fil2D/(Fil2 Si - D), Y = (Fil' Sg - D)/(Fil2 S - D)
and by the analogue with E-coefficients of [Bre97, Proposition A.4], we deduce that

Fil' D = (Fil' Sg)fo ® Sefi ® Spfa, Fil2D = (Fi? Sg)fo ® (Fil' Sp)fi ® Sk f,

for some Sg-basis fz of D.
From the E-linear isomorphism

[y

! . .
(W E(u)') B

3

e

S
Fil™ S

12

Il
=)
Il
=)

=0 j

for m < p, we deduce that dimg X = 3e, dimg(X NY’) = 2e. We now note that Gal(K/Q)) acts

semisimply and that multiplication by u defines an E-linear automorphism on Sg/Fil? Sg which
cyclically permutes isotypical components. The result follows. O

We can now state the main result of this section.
PROPOSITION 2.4.10. Assume that Ko = Q, and let p : Gg, — GL3(Og) be a semistable Galois

representation, becoming crystalline over K, with inertial type w® @ w® & w*? and Hodge—Tate

weights {—2,—1,0}. Let M € Op-Mod3y be a strongly divisible O g-module such that Tgp’g(ﬁ) =

p. Assume that p : Gg, — GL3(F) is maximally non-split and generic as in Definition 2.1.5.
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There exist a framed basis e = (ep, €1, €2) ofJ\A{, with respect to w* @ w* w2, and a framed
system of generators f = (fo, f1, f2) for Fil> M/(Fil? S - M), whose coordinates with respect to €
are described by one of the following possibilities.

Case A.
i o i 0 (o4 Bw)ue
fO = 0 ) fl = E(U) 1 ; f2 = 0 )
ue—(az—ao) 0 P’

«

where o € O with 0 < ord,(«) < 2.

Case B.
u41—ao lBu(lg ag
fo= =Ew | -5 |, fo=[E@u>™
—(az—ao) 0 _pB

where o, f € Op with 0 < ord, () < 1 and 0 < ordy(a) < ord,(5) + 1.
Case C.

_ " (o (o B(wuneee

fo= | wemlmma0) | f = —B , fa= 2B ya2—a ;

%uef(agfao) ue—(a2—111) %

where o, f € O with 0 < ord, () < 1 and 0 < ordy(a) < ord,(5) + 1.

Here by a framed basis € of M we mean an S-basis such that g-e = w(g)ale for all
0<i<2,g€ Gal(K /Kp). Similarly, we mean that f consists of elements of Fil> M that generate

Fil? M/(Fllp S- M) as S-module and such that §- f; = w(g )“lfZ forall 0 <i <2, g€ Gal(K/Kj).
Finally, ord, is the valuation of E normalized by ord,(p) = 1.

Proof. Let e &t (€0, e1,e2) be a framed basis of M. We write the elements of M in terms of

coordinates with respect to e. Moreover, we let M = def N ®g S, define D = df N ®0 5 Sg, and set

X = (FiPM/Fil*S - M) ®p,, E as in Lemma 2.4.9. In particular M € F-BrMod3, is of type
w® Hw™ G w* by Lemma 2.4.8. R R
By Lemma 2.4.9 we have a non-zero element fo € (Fil> M/Fil?> S - M)zao of the form

/

Xz Xz
fO — yuef(alfao) + E(u) y/uef(alfao)
Zue—(ag—ao) Z/ue—(az—ao)

where z,v,z,2/,1, 2 € Op. As Fil® JT/(/Fil2 S - M is wp-torsion free, we may assume that one
of x,y,z,2',y,2 is in Of. If 2,y,2 € wpOg for all choices of fy, we get a contradiction from
Corollary 2.4.7(v). On the other hand by Corollary 2.4.7(iv) we necessarily have 2 € wpOpg, and
hence we may assume that y € O, or z € OF.

Case 1: assume z € OF,. Let us define the element ¢ € M by

x/uag ag

= | (w+ v/ Bl
z+ 2 E(u)
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As z € O we deduce by Nakayama’s lemma that ¢’ def (€0, €1,€h) is again a framed basis of

M. By letting « Ly + pz’ we therefore have the following coordinates for fy in the basis ¢’

(0]
fo= 0 ,

ue™ (a2—aop)

where ord,(a) > 0. (Recall that E(u) = u® + p.) From now on we use the basis €’ to write the

coordinates of the elements in M. R R
By Lemma 2.4.9 we easily deduce that (Fil> M/Fil®S - M)gao equals

Q « 15}
(5 Yool 5 V(i)
ue—(ag—ao) ue—(ag—ao) 0

O

where (3, € O are such that either 5 # 0 or v #Z 0 modulo wg. Moreover, by Corollary 2.4.7(vi)
we necessarily have S = 0 so that, without loss of generality, we may assume v = 1. By
Lemma 2.4.9 we obtain

aualfao aual —an Bual—ao
Xgar = 0 , E(u) 0 , E(u) —p
ue—(ag—al) ue—(ag—al) 0

E

and we need to further distinguish two subcases according to the valuation of 5 € Op.
Case 1la: assume B € pOg. Then the element ¢ defined by

_ By a1—ao

0

is in (Fi2 M/Fil2 S - M)za; and the family ¢” e (eo, €}, €}) is again a framed basis of M. Until
the end of Case 1la we use the basis €’ to write the coordinates of the elements in M.

Note that
1 (p + E(u))u2—%
~ut0(p + B(w) fo = 0 € Xgoo.

P

«

By Corollary 2.4.7(vii) we necessarily have (p?/a) € wgpOg and therefore

o 0 (p+ E(u))u"% R R
0 JEw) (1], 0 C Fil> M/Fil® S - M.
ue—(ag—ao) _P2

o

S

By Nakayama’s lemma, noticing that the left-hand side surjects onto Fil? M/u?**M (e.g. by
Corollary 2.4.7) we conclude that the inclusion is indeed an equality. We also see that the
clementary divisors of M/Fil>M are those described by Corollary 2.4.7(i). In fact, we can
repeat the Nakayama argument to deduce that the same three elements generate the S-module
Fil2 M JFil? S J\/[ since their images generate Fil?> M, so they form a framed system of generators
of this module. (Alternatlvely there is a direct argument using Fil> S = (E(u)?,Fil? S).) We
therefore land in Case A.
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Case 1b: assume p € BwpOg. As above we deduce

al—a
ul 0

BEw) [ -5 | e (FI*M/Fil®S - M)ze,
0

and
az—ao

au®2—ao 0 ud2—a0 u
< 0 Ew) |0],E (E(u) [ —Busa >
—p 1 0
)

C (FI2M/Fil? S - M

O

In particular
IBUag—ao
u? M E(u) | € Xgay
_pB
o)

and, by Corollary 2.4.7(vii), we necessarily have 8 € wgOp and pf € awgOg.
We thus obtain

o ual ap Buag ao

0 Ew) | =5 |, w1 E(u) C Fil> M/Fil® S - M.
ue—(az—ao) 0 _pB

« S

It follows, as in Case la, that the inclusion is actually an equality and we land in Case B. We
also see that the elementary divisors of M/Fil> M are those described by Corollary 2.4.7(ii).

Case 2: assume y € OF, and z € wpOp. We note that the image of fy in (Fil2 M) wao is divisible
by u¢(4179) Hhut not by u€. From Proposition 2.4.1 we deduce that the elementary divisors of
M/Fil2 M are those described by Corollary 2.4.7(iii). It is then not hard to see that Case B
of the proposition applies to the dual strongly divisible module M (see [Car05, Chapitre V]) upon
interchanging (ag, a1, as) by (—ag, —a1, —ag). We arrive at Case C by dualizing. Alternatively,
Case 2 can be treated directly with some effort. O

COROLLARY 2.4.11. Let p and M be as in Proposition 2.4.10. Write A; for the Frobenius
eigenvalue on DQP ’ (p)l@p:a’ai. Then
(2 —ordy(a), 1, ordy(c))
(ord, (o), ord, (A1), ordy(A2)) = ¢ (2 — ordy(ar), ordy(5), 1 + ordy(a) — ord,(5))
(14 ordy(B) — ordy(a), 2 — ordy (), ordy(ar))

according to whether we are in Case A, B, or C of Proposition 2.4.10. In particular, ord,(\;) €
(0,2) for all i and 37 gordy(A;) = 3.

Proof. We first note that the elements gog(ﬁ) span M by Nakayama’s lemma, as po(FilP S J\A/[) C
pp*QJ/W\ C mgl/\/f\ and p > 2.

From the proof of [EGH13, Proposition 3.1.4] we have Dgp’Z(p) =~ M[1/p] ®5q, .0 Qp where
s0 : Sq, — Qp is defined by ‘u — 07. We have (,02(]?]‘) = Z?:o Q;j€; where Qjj € S—a;—a;. Hence, as
the elements g@(ﬁ-) span J\A/[, we see that a; € S for all 0 < 7 < 2. On the other hand note that
Szi C ker(sp) for all i Z 0 mod p — 1. Let e;, f; denote the images of €;, fz in Dg”’2(p). In Case A

we now deduce that (o/p?)(fo) = peo where p dof s0(Qoo) € O In other words, ap(eg) = p*uen
so that \g = p?ua~! with ord,(A\og) = 2 — ord,(a). The other cases are deduced similarly. O
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2.5 From strongly divisible modules to Fontaine—Laffaille modules
The aim of this section is to explicitly determine the Fontaine—Laffaille module associated to
the mod p reduction of a potentially semistable lift of a maximally non-split and generic Galois
representation p. Using Proposition 2.4.10 we compute the étale p-modules associated to the mod
p reduction of strongly divisible modules, letting us compare the Frobenius eigenvalues on the
weakly admissible module of certain potentially semistable lifts of p with the Fontaine-Laffaille
invariant FL(p).

Let red : P} (Og) — P!(F) denote the specialization map. The main local result on the Galois
side is the following theorem. It will be an important input for proving our global Theorem 4.5.2.

THEOREM 2.5.1. Let p: G, — GL3(Og) be a potentially semistable p-adic Galois representation
of Hodge—Tate weights {—2,—1,0} and inertial type 0w @& w™ @& w*. Assume that the residual

representation p : Gg, — GL3(FF) is maximally non-split and generic as in Definition 2.1.5. Let

Xi € O be the Frobenius eigenvalue on Dg” ’2(p)IQp:5ai. Then the Fontaine—Laffaille invariant

of p is given by
FL() = red(pA7Y).

We first determine the filtration and the Frobenius action on the Breuil modules obtained
as the base change of strongly divisible O g-modules corresponding to Og-lattices inside p.

PROPOSITION 2.5.2. Let JV[, €, E be as in the statement of Proposition 2.4.10. Define «; € F*
via the condition [902(]?@)] = wjle;] in M/mgM and let M € F- BrMod?, be the base change of
M via S — S. Then M is of type w* @ w @ w? and there exist a framed basis e of M and a
framed system of generators f for Fil> M such that one of the following hold:

(i) Fil? M is as in Case A of Proposition 2.4.10 and

COOUe COlue%»(alfag) ue+(a2fa0)

Mat, ;(Fil? M) = | ¢oue(@1-40) u® ; Mate ¢(¢2)
B uef(agfao) -

= Diag(ap, a1, a2)

for some c;; € IF.
(ii) Fil? M is as in Case B of Proposition 2.4.10 and

Cooul ue+(a1 —agp)

Math(FiPM): cqoue(a1—ao) yet(az—a1) ; Mate ¢(¢2)
- uef(agfao) -

= Diag(a1, a2, o)

for some c;; € F.
(iil) Fil? M is as in Case C of Proposition 2.4.10 and

cooul COlue—i—(al—ao) ue—l—(ag—ao)
Mate, s (Fil> M) = | ue~(a1=0) ; Mate, f(¢2)

ue—(az—al)

= Diag(ag, Q, a1)

for some c;; € .
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Proof. We let a def as — ag, b def a1 — ap and define e, def e®1, io def f® 1. Then M is of
type w Qw Gw?, g is a framed basis of M and f o isa framed system of generators of Fil® M.
We let ot ot
e . e
Vo = Matg, s (Fil2M), Ay = Mate,,r, (p2).

Note in particular that a; = (Ap)i;; mod u for ¢ = 0,1, 2, by construction.

We now treat separately each of the three cases (i), (ii) and (iii).

(i) From Case A of Proposition 2.4.10 we deduce that

Vo = Mat,, ; (Fil> M) = u
o ue™e
We can write VOHLdj = —ufWj for some Wy € M;3(S), which is uniquely defined modulo u¢®~1:
in fact, we can and will take Wy = V{;. We claim that there exist byg, bg1, b1g € F such that

bOOUe b01ue+b ax
Wop - Ag - bloue_b u® = uzeBo (2.5.3)

ue—a

def
=

for some By € GL5(S). Indeed, if (2.5.3) holds, one obtains
VoBy = AgV;i mod u>¢

(as p > 5) and by Lemma 2.2.8 we deduce that V; = Mate, r. (Fil2 M) is a matrix for Fil> M

with respect to the basis e; dof ey - Ap and a system of generators il of Fil2M, and that

A, Ma’tgh‘fl(SOQ) = ¢(By) describes the Frobenius action on M with respect to (ey, f ).

To prove the claim, for 0 < 4,5 < 2 let us write (Ag);; = u[“j_’”}%j with o € Flu®]/u®?. A
computation, using the explicit description of the element Wy € M5 (), gives

a22u26
— —b 2 e
Wo-Ag-Vi = | zu ariu mod u°°,
yuc—? Zue—(a—b) a00u2e

where z,y, z € F[u¢]/u? are defined by

z = (a11b10 + c12)u’ + aroboou®, Yy = (cpoboo + ao1bio + ap2)u’
z = (a00b01 + a01)ue.

As oy € S0 and ay; € 5™ we deduce the existence of unique bgo, b1, bo1 € F such that (2.5.3)
holds and, what is more important,

a2

By = | Biguc™? a1 mod u®

Boou™  Boruc (@b ay

for some f3;; € F. In particular, we obtain
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(65)
def _
A= Maty, s (p2) = Broupe=?) ai

BoguP (=@ By yPle=(a=b)
= Diag(ag, a1, ap) mod u3e

by the genericity assumption (2.1.6).
Writing again VladJ = —u*W; for some Wi € M3(S) (uniquely defined modulo u¢®~1) we

obtain
Cmue-i-a
WA = uay —agbyuct(eb) mod u>
agu®™  —arboru (@7 ag(biobor — boo)u’

and a computation shows that there exist uniquely determined elements cyg, c1g,co1 € F such

that
Cooue 001U6+b uete
Wi-Ap- Clouefb u® = uzeBl, (2.5.4)
u€7CL
defy,
where now

B; = Diag(ag, a1, ) mod u®.

By Lemma 2.2.8 one has V5 = Mat,, s (Fil> M), where e, e e, A1, [, is a system of generators

for Fil> M and the Frobenius action is now given by
def .
Ay = Mat@%iz((pQ) = ¢(B;) = Diag(ag, a1, a3).

(ii) The proof is similar to case (i) and we content ourselves with giving the general argument,
leaving the computational details to the scrupulous reader.
From Proposition 2.4.10 the filtration for Fil®> M now has the form

ue+b
1% d:ef ueJr(afb)
ue—a
Writing Vbadj = u®Wy for some Wy € M3(S) we claim that there exist bgg,big € F and
By € GL3'(S) such that

bOOUe ue+b
Wq - Ag - bloue_b uetla=b) | — UQEB(). (2.5.5)
ue—a
défvl

Indeed, using the same notation as in case (i), an easy computation now gives

a22u2e
Wo-Ag- Vi = | zuc® agoue apru2et @0 1 mod u3e,
yuc—? alou?)e—(a—b) a11u2e
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where z,y € Flu®]/u? are defined by
z = (aoboo + o1b10 + an2)u’, Y = (a11bio + c12)u® + aroboou.

As a;; € S~ we find unique boo, bip € F such that (2.5.5) holds and moreover

(0]
By = | Biou® ap B12u®"? | modu®
Boout™®  Boguc(@b) aj

for some f;; € F. Note that

def

Ay = Mate, ; (v2) = Diag(ag, ag, 1) mod ue

<1

by the genericity assumption.
By means of Lemma 2.2.8 we can iterate the procedure: one finds an explicit element Vo =
Mate, r, (Fil> M) € M3(S), as in the statement of case (ii), which provides the filtration Fil*> M

with respect to the basis e, def e; - A1 and which verifies
Mate,,r, (¢2) = Diag(a1, a2, ao).

(iii) This is analogous to case (ii). More succinctly, it can be obtained from case (ii) by
duality. O

Thanks to Proposition 2.5.2 it is now straightforward to compute the Fontaine—Laffaille
invariant of p.

PROPOSITION 2.5.6. Let JT/[, a; € F* be as in Proposition 2.5.2. Let p def TgP’Z(J\A/[). Then one of
the following possibilities holds:
(i) Fil? M is as in Case A of Proposition 2.4.10 and FL(p) = a7 ’;
(ii) Fil? M is as in Case B of Proposition 2.4.10 and FL(p) = 0;
(iil) Fil? M is as in Case C of Proposition 2.4.10 and FL(p) = 0.

Proof. By twisting p by W™ % we may assume that ag = 0. Let a déiag, b g
(i) Let M € F-BrMod3, be the base change of M via S — S. By Proposition 2.5.2 and

Lemma 2.2.6, the ¢-action on the (¢, F((w)))-module 9t & My, ((z))(M*) is given by

coom® c@m®l aylwt?
Matg(qb) — 010@e+b 051_1@6
—1__e+a
oy @

for a framed basis ¢ (for the dual type w® @ w™ @ w™®) of M and some ¢;; € F (not those of
Lemma 2.2.6). In the basis ¢/ def . Diag(1, @®, @), which is Gal(K/Kj)-invariant, one obtains

Coom® COIEe(bJrl) oy 1@e(a+1)
Matgf(gb) — 010@6 al—lge(bJrl)
aa 1@6
2240
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proving that 9 is the base change to F((=)) of the (¢, F((p)))-module My described by

€00 60_11 a;l . - "
Mat, (¢) = 0101 oy Diag(p,p”", p""")

o

0

défF

for some basis ¢ of M. In the basis ¢ def ¢ - I the matrix of ¢ becomes Diag(p, pttL petHE.
We can now construct a Fontaine Laffaille module M € F-F£07=2 with Hodge—Tate weights
{1,b+1,a+1} endowed with a basis e which is compatible with the Hodge filtration and satisfies
Mat,(¢e) = F'. By Lemma 2.2.7 we deduce that My = F(M).

On the other hand T} ; (M) = T3 (M*) = 5 by Corollary 2.2.2. As p is maximally non-split,
there exists a basis € of M compatible with the Hodge filtration and such that Mate (¢s) is
described as in Corollary 2.1.8. In other words e, €’ are related via a lower triangular unipotent
matrix A € GL3(F) in such a way that

Ho x Z

Mat, (o) = A-F = oy

2

for some x,y, u; € F*, z € F. It follows that

-1

det (/f Z ) det (;011 @2 )

_ 1 1 _
FL(p) = — = 1 = g

(ii) The proof is similar to case (i). One checks that 9t e M, (=) (M*) = Mo®F, () Fp((@)),

where the (¢, F((p)))-module My is described by
coo  Co1 Qg !
al Diag(27£b+l7p

a+1).

We deduce by Lemma 2.2.7 that 9y = F(M) for the rank-three Fontaine-Laffaille module

M e F-F£07=% with Hodge Tate weights {1,b 4 1,a + 1} and Mat.(¢.) = F for some basis e

of M that is compatible with the Hodge filtration. As in case (i) we deduce that FL(p) = 0.
(iii) Follows by a similar argument. O

Proof of Theorem 2.5.1. Let M € Op-Mod3, be such that Tg”’Q(J\Af[) ~ p and let ¢, f be as in
the statement of Proposition 2.4.10. B

In Case A, from the proof of Corollary 2.4.11 we see that A\ = pso(@i1), where a;; € S
are defined by @2(]‘/’;) = Z?:o Qije;, and pA' € OF. Hence red(pA;') = so(an)_l € F*. The
conclusion follows by Proposition 2.5.6, as so(@11) = o in the notation of that proposition. In
Case B the conclusion follows by Proposition 2.5.6, noting that red(pA; ') = 0, as ord,(\;) < 1.
Case C is similar. a
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2.6 Elimination of Galois types

The aim of this section is to perform a type elimination for a maximally non-split and generic

representation p : Gg, — GL3(IF) (cf. Definition 2.1.5), by means of integral p-adic Hodge theory.

In other words we show for most tame inertial types 7 : Iy, — GL3(E) (of niveau 1 or 2) that

p cannot have a potentially crystalline lift with Hodge—Tate weights {—2,—1,0} and type 7.
The main results of this section (Propositions 2.6.1, 2.6.3 and 2.6.4) will be used to prove

results about Serre weights in §4.4.

2.6.1 Niveau 1 types. We first eliminate niveau 1 types. In particular, we have Ko = Q,,
e=p—1,and K = Q,((y). The result is the following.

PROPOSITION 2.6.1. Let p : Gg, — GL3(Og) be a p-adic Galois representation, becoming
semistable over K with Hodge-Tate weights {—2,—1,0}. Assume that p is maximally non-split
and generic as in Definition 2.1.5. Then

WD(p)lry, &' & @,
where either (i, j, k) = (a2, a1,a9) mod p—1 or (i,j,k) = (ag — 1,a1,a0 + 1) mod p — 1.

Here and in the following the notation # =y mod p — 1 for &,y € Z3 is shorthand for z; = y;
mod p — 1 for all i.

Proof. After twisting we may assume ag = 0 and set a def as, b def a1. Let M be a strongly
divisible O g-module such that Tg” 2(3%) = p and let M be the Breuil module obtained by base
change to S. By Proposition 2.3.5 M admits a unique filtration by Breuil submodules, with
graded pieces described by
M : Mao—M;—My
(where the notation means that My is a submodule and My a quotient) and the rank-one Breuil
submodules M; verify Tgt(Mi)h@p >~ %t for i = 0,1,2. It follows from [EGH13, Lemma 3.3.2]
that M; is of type w¥, where kg = a +1 — 69, k1 = b+ 1 — 6y, kg = 1 — &y for some §; € {0, 1,2}
and
Fil? My = u®2M,,  Fil2 My = u®*My,  Fil2 My = u%°M,,.

On the other hand we see that WD(p)|s, = ko @ @ @ &% (by Lemma 2.4.8) and hence
det p = @Fotkitke 3 ag p has Hodge Tate weights {—2, —1,0}. Tt follows that & + 01 + 62 = 3.

We now use Lemma 2.4.2 to conclude the proof. In what follows, we write py; to denote
the unique two-dimensional sub-representation of p, and, similarly, p;; to denote its unique
two-dimensional quotient. If (d2,91) = (1,2) then py; splits, by Lemma 2.4.2(ii). If 6; = 0 then
Fil?(M;—M) splits as an S-module (as Fil> M; is an injective S-module, cf. Lemma A.2.1),
and hence pj, splits by Lemma 2.4.2(i). For the same reason, if d2 = 0 then py; splits.

Therefore (dp, 01,02) = (1,1,1) or (do,d1,02) = (0,1,2), as claimed. |

2.6.2 Niveau 2 types. We now eliminate niveau 2 types. In particular, we have k = F 2,
Ko = Q2 is the degree-two unramified extension of Q, e = p?—1, and K = Qp2(v/—p)-

LEMMA 2.6.2. Let M be a rank-one object in F-BrMod3,, with descent data from K to Q,.
Then there exists a generator m € M such that:

(i) Fil?M = u"®=DM, where 0 < r < 2(p + 1);
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(ii) there exists k € 7 verifying k 4+ pr = 0 mod p + 1 and such that M is of type w® and m is
a framed basis for M;

(iii) N(m)=0.

Moreover, one has

k+pr

Tgt (M) |IQp =Wy

Proof. Let 0 € Gal(K/Q,) be the lift of the arithmetic Frobenius in Gal(k/F)) that fixes w, and
hence o2 = 1. Then ¢ interchanges the two primitive idempotents €y, €1, and one has cog = gPoo
for all g € Gal(K/Kj).

By [EGH13, Lemma 3.3.2] there is a generator m € M such that:

(i) & Fil?M = u"¢e;M for i = 0, 1;
(i) gim) = (w=(9)™ @ eom + (wx(g9)* @ L)erm for all g € Gal(K/Ky),
where the integers r;, k; verify 0 < r; < 2e, k; = p(ki—1 + r;—1) mod e.

As o exchanges the idempotents ¢; € k ®@p, F we deduce that r def rog = r1. Let us consider
M/(u-M). It is a rank-one module over k ®p, F, endowed with a semilinear action of Gal(K/Q)).
In particular o = pm for some u € (k®F, F)* verifying po(u) = 1. We therefore deduce, by
case (ii) above, that for all g € Gal(K/Kj),

G og(m) =5((wk(g9) ® egm + (W (9) ® 1)eym)
= [(W2*(g) ® D)erpm + (w2 (g) ® 1)eoum]
and
gP 0 5(m) = p[(W?*(g) ® 1)eomm + (WP (g) @ 1)eym].

As 0 0g = gP oo we conclude that k def ko = k1 mod e. We finally obtain k£ = p(k +r) mod e, so

that r =0 mod p — 1 and k + pr/(p — 1) = 0 mod p + 1. The last statement on T (M) follows
again from [EGH13, Lemma 3.3.2] and the previous results on k;, ;. O

For the remainder of this section, all Breuil modules M € F- BrModid have descent data
from K to Q,.

PROPOSITION 2.6.3. Let p : Gg, — GL3(Og) be a p-adic Galois representation, becoming
semistable over K with Hodge—Tate weights {—2,—1,0}. Assume that p is maximally non-split
and generic as in Definition 2.1.5 and that the inertial type of p has niveau two, i.e. p does not
become semistable over Qp((p). Then

WD(p)lr, =" & wj & Wy,

where x,y € Z, y #Z 0mod p + 1 and the pair (x,y) € Z* verifies one of the following possibilities:

(i) xr=ap—dmod p—1and y =as+pa; +6 —e(p— 1) mod e;
(ii) x=a;—dmod p—1 and y = as + pag + 6 — e(p — 1) mod e¢;
(iii) x=a2 —dmod p—1 and y = a1 + pag + 6 — e(p — 1) mod e,

where € € {0,1}, § € Z are such that § + ¢ € {0,1}.

Proof. As in the proof of Proposition 2.6.1 we may assume ag = 0 and set a def as, b def ai. Let M
be a strongly divisible O g-module such that Tgp 2(J\/[) = p; let M be the Breuil module obtained
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by base change to S. Then M is of type w;(pﬂ) @ ws @ WY for some x,y € Z, y Z 0 mod p+ 1
(by Lemma 2.4.8). As p has Hodge-Tate weights {—2, —1,0} we moreover have det p = &% Y¢3.
By Proposition 2.3.5, M has a unique filtration by Breuil submodules with graded pieces
described by

M : May—My— Mo,

where T% (M;)] I, = w1l We conclude by Lemma 2.6.2 that one of the following three
possibilities holds (up to interchanging y and py).

(i) The Breuil modules (Mz, My, M) are respectively of type (wi, wh?, w;(pﬂ)), where z = 1-§

modp—1,y=(a+1)(p+1) —rpmod e and py = (p+1)(b+ 1) — sp mod e.
(ii) The Breuil modules (M, My, M) are respectively of type (w%,w™ ™ wk), where z =
b+1—0modp—1,y=(a+1)(p+1)—rpmod e and py=(p+1) — sp mod p — 1.

iii) The Breuil modules (Mo, M1, M) are respectively of type wf;(p +1),w?ﬂ,w§ , where z =
(iii) y of ty

a+l—dmodp—1,y=(b+1)(p+1) —rpmod e and py = (p+ 1) — sp mod e.

In each case, the integers d,r, s verify § € {0,1,2}, 0<r,s <2(p+ 1) and y+pr,y+s=0
modulo p + 1. Moreover, r # 0 mod p + 1, as p does not become semistable over Q,((p).

Assume we are in case (i). We deduce that pr —s = (a —b)(p+ 1) mod e and hence r + s =0
mod p + 1. Provided the restrictions on r, s, we obtain r + s = a(p + 1) for some a € {1,2,3}
and hence r = a + (a — b) modp — 1. Considering the condition det p|z,, = wW*tYw3, we see that
the integers «, § verify moreover the relation § + « = 3 (as p > 3).

As 2 < a—b < p—3, the condition 0 < r,s < 2(p+1) implies that r € {1+ (a—b),2+ (a—b),
p+1+(a—>b),p+2+ (a—b)} and hence

(z,y) € {(=1,a+pb+1),(0,a+pb— (p— 1)), (0,a+ pb), (1,a+ pb—p)}.

This concludes the analysis of case (i).
Cases (ii) and (iii) are strictly analogous. We remark that in cases (ii) and (iii) we obtain the
condition r = a+ o for o € {a,b}; as 2 < 0 < p — 3 this provides us with r € {oc+1+e+(p: ¢,

¢ € {0,1}}. O

PROPOSITION 2.6.4. Let p : Gg, — GL3(Og) be a potentially semistable p-adic Galois
representation with Hodge—Tate weights {—2,—1,0}. Assume that p is maximally non-split and
generic as in Definition 2.1.5.

(i) IfWD(p)|rg, = &% @ &> Y @ @ 14D then FL(p) = oo
(i) If WD(p)lr,, = &% @ &y~ @ g HHP0™D) then FL(p) = 0.

In order to prove Proposition 2.6.4 we follow the procedure used in §2.5: we first diagonalize
the Frobenius action on the Breuil module M and, subsequently, we compute FL(p) by extracting

the Fontaine-Laffaille module from the datum of M (via the results of §2.2).
The proof will occupy the remainder of this section.

Proof. We first note that part (ii) follows from part (i), replacing p by p¥ and (ag,a1,az) by
(—ag2, —ay, —ap) and keeping in mind Remark 2.1.13.

2244

https://doi.org/10.1112/50010437X17007357 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X17007357

ON MOD p LOCAL-GLOBAL COMPATIBILITY FOR GL3

We will now explain the proof of part (i). By twisting we may assume that ag = 0. We set

def def
a= as, b = a1 and define

b et 14pb-1), ko—14pa+1),

rldzefa—b—}—2, rzdépr—(a—b),

so that 7 & WD(p)lr,, = @ @51 ® 07]52. Note in particular that 0 < k1, k2 < e as well as the
following relations, which will be useful for the computations below:

rilp—1)<e, (p—1)(r1+r2) = 2e,
k1+r1(p—1):k2, k‘g—i—?“g(p—l):kl—i-Qe.

Let M € O B-Mod3, be a strongly divisible Og-module such that TS” 2(J\A/[) = p and let
M € F- BrModﬁd be the base change of M via S — S. In particular by Lemma 2.4.8, M is of
type w2 @ wkt @ wk2. The first step of the proof is to describe the filtration and the Frobenius
action on M.

CLAIM 2.6.5. There is a framed basis e of M and a framed system of generators f for Fil> M
such that
u® A
Mate, ¢ (Fil* M) = wt® D ) Mateg(p2)= | op |
o yu2efk2 urg(pfl) - v

where y,z € k®p, F and A\, u,v € (k®p, F)*.

Proof. From Proposition 2.3.5, the proof of Proposition 2.6.3, and genericity, we see that M has
a unique filtration by Breuil submodules

M: Ml—Mg—Mo,

where M; (respectively My, respectively M) is a rank-one Breuil module of type wk!
(respectively w¥?, respectively w? ), and filtration described by Fil2 M; = u"* =DM (respectively
Fil2 My = 2P~ DMy, respectively Fil> My = u¢M).

We therefore deduce the existence of a framed basis g def (ep,€1,€2), and a framed system
of generators f = (fo, f1, f2) of Fil> M such that

€

u
Vo & Mat, s (FIZM) = [@oue™ wn@-D 2 |,
=0 yéue—kz ur? (p—1)
Ao

Ao d:efMat;o,fo(W): agu™ g yeun @ |

Bouc k2 20
/ - —X
where o, yg, 20, @0, B0, Y0 € S.0 and Ao, po, Vo € Sw%.

CLAIM 2.6.6. We have y), = u®yq for some yg € ?w%.
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Proof. Let N : Ma—M, denote the rank-two quotient of M. By the previous analysis of M, we
deduce that there is a basis (€p,e2) of N and a pair (fg, f;) of elements of Fil2 N such that

2N — def u® = def 0
Fil*N <f0 = <y6 e— k2> fl = <ur2(p1)> >5’

(in terms of the basis (€9,@2)). If ¥ # 0 mod wu, then it is easy to see that u*g; ¢ Fil*N,
contradicting the Breuil module axioms. Therefore the claim follows. O

We now complete the procedure to diagonalize the Frobenius action. An elementary
computation shows that there exist y1,21,(1 € S0 such that the following equality holds:

u® )\0

Ap ur(P=1) 21 =V | Qu™™ o mod u*
yru2e—he ur2(P—1) Y0

Indeed, it suffices to take y; = vy (/\oyo — ﬁg) modulo u?¢, z; = ,ugl(yozo — y0u?¢) modulo u3¢
and (1 = —\ozo + (g + y170)u’ modulo u?

We use now Lemma 2.2.8 to deduce that, in the basis e; def ey - Ao, the filtration and the
Frobenius action can respectively be described as

u€ ()0()‘0)
v WD) AL | ()P () :

y1u267’€2 w2 (p—1) go(uo)

where 11,21 € gwo and A; = ¢(By).

We write [, Lt e Vi.Asri(p—1)<e, Be—ka) —r2(p—1) =e—ki >ri(p—1), we can
find a matrix in GLF (S) of the form

1
C df crout k=1 1 oyl
620u3e—kg—r2 (p—1) 1
such that, relative to e; and f’ def f -C, the filtration and the Frobenius action can be described
by
u’ ¢(Xo)
V1/ déf u?"1(p—1) Z:/[ s A/ def alloup(e_kQ) (P(ILLO) aa2up(e_7"1(p_1))
y:’[u28_k2 u”‘?(p_l) aéoup(e_kl) ()O(VO)
where y3, ) € k®p, F and a;; € Swo We can write a}quP¢=F2) = o u¢=F | ahyuP(c=F) = gryche,

auP(eT1 =) = Argymi(p= 1) with of, B,7] € u? Swo by genericity. Writing A} def ©(Xo), 1} d—ef

(o), & ¢(v0), which all lie in k ®p, F, we see that (V], A}) is of the same form as (Vp, Ao),
so we can apply the above diagonalization procedure to obtain (V2, A3) as in the statement of
the claim. O

We now compute the Fontaine-Laffaille invariant of the Galois representation associated
to M.

2246

https://doi.org/10.1112/50010437X17007357 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X17007357

ON MOD p LOCAL-GLOBAL COMPATIBILITY FOR GL3

CLAIM 2.6.7. With the hypotheses and notation of Claim 2.6.5 we have

FL(T2(M)) = oo.

Proof. Consider the (¢,k®f, F((z)))-module 0 & My () (M*). From Claim 2.6.5 and
Lemma 2.2.6 9 is endowed with a framed basis ¢ (for the type w® @ w-* @ w_-*2) such that

)\flwe yy*1w2€*k2
Mat.(¢) = ylgneh gyt ,
,uflgrl (p—1)

where y,z € k®p, F, A\, u,v € (k®p, F)*.

By considering the Gal(K/Kjy)-invariant basis ¢’ def ¢ - Diag(1, @, @) one deduces that
M = Mo @p((p)) F((=)), where the (¢, k @p, F((p)))-module My is described (in some basis ¢y) by

AL oyt

Matgo(gb) = y—1 ZM—I Diag(37£b+17£a+l). (2.6.8)

ut
From (2.6.8), Lemma 2.2.7 (and a change of basis over k£ @, IF as in the proof of Proposition 2.5.6)
we deduce that the Frobenius action on the Fontaine-Laffaille module M}, associated to p|g Ko

is given by
Aoyt
F, % Mat,(de) = ¢ vl zut | € GLy(k @, )
ul

for some basis e of M}, compatible with the Hodge filtration on M} (and ¢ denotes the relative

Frobenius on k®g, F). By Corollary 2.2.2 we have T¢; (My) = plg,, - In particular, we have

My = M ®p, k for some Fontaine-Laffaille module M € F-F£ P=2) such that T*. (M) = p as
Gq,-representations.

Since p > 2, plgy. is still maximally non-split, and hence M}, is endowed with a unique
filtration 0 C My o € My © My o = My, obtained from the cosocle filtration on ﬁ|GK0. By
unicity, we have My; = M; ®p, k for all i = 0,1,2, where 0 C My C My & My = M is the
filtration on M obtained via T}, from the cosocle filtration on p.

As Fil' M N My 0, Fil®*! M N My 1, Fil*t My, N My, o are all free of rank one over k @p, F it
follows that any change of basis of M} preserving both the Hodge and the submodule filtration
needs to be diagonal.

Therefore, by letting F' € GL3(F) denote the matrix of the Frobenius action on M, we deduce

that Fyo = 0 if and only if (F})o2 = 0, which shows that FL(p) = oo, as claimed. O

From the Claims 2.6.5, 2.6.7, the proof of Proposition 2.6.4(i) follows. O

3. The local automorphic side

In this section we analyze the GLs-side. In particular, we establish Proposition G of the

introduction. We have [Jan03] as a main reference for the notation and terminology.

Let G % GLy, /z, and let T' be the maximal split torus consisting of diagonal matrices. We let

® denote the set of roots with respect to 1" and B O T the Borel subgroup of upper-triangular
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matrices. We write A C & for the simple roots associated to the pair (B,T") and (-,-) for the
natural pairing on X*(7T') x X.(T'). The character and cocharacter groups are identified with
Z™ in the usual way. We let < denote the dominance order on X*(7T'). Finally, we let G, B, ...
denote the base change of G, B, ... via Z, — F,,.

The Weyl group Wg of G is canonically isomorphic to the Weyl group of G. We write
wg € Wg for the longest element.

For any dominant character A € X*(T) let

HO(\) ' (Ind& wo))™® wp, F

be the associated dual Weyl module. It is an algebraic representation of G' (or more precisely of
def

G ) and we write F(\) = socg(H®(X)) for its irreducible socle. If the weight X is, moreover, p-
restricted, i.e. if 0 < (A, ") < p—1 for all &« € A, then F()) is irreducible as G(F,)-representation
(see, for example, [Her09, Corollary 3.17]). If Q is an algebraic representation of G and v € X*(T)
we denote by @, the v-weight space for the action of T on @, as usual.

Note that if n =1 and a € Z then F(a) = w®, where w is seen as a character of GL;(FF,) via

the Artin reciprocity map (so w is the inclusion F; — F*).

Let us specialize to the case n = 3. We set a3 def (1,—-1,0), aq def (0,1,—1), so that A =

b ) ) )
{a1, 0}, and we fix the following lifts $1,32 € G(Z,) of the simple reflections si,s0 € Wg
corresponding to aq, ao:

Note that g def 518981 is then a lift of wg € W
Finally, for each a € ® we denote by U, the associated root subgroup and by g : G, —> U,
an isomorphism as in [Jan03], 11.1.2. Explicitly we will take

1 z 1 1 T
Ugy () = 1 , Uy (x) = 1 x|, Uaitay(x)= 1

Let K & G(Zp). (This should not cause any confusion with the field K of §2 and

Appendix A.) We write I for the Iwahori subgroup of K which is the preimage of B(F,) under
the reduction map K — G(F,) and similarly I; < I for the pro-p Iwahori subgroup which is the
preimage of U(F,). If V is a representation of K over O and a; € Z we write

v 1 (az,a1,00) def Hom;(0p(@% ®@ & @ &™), V),

the largest Opg-submodule of V' on which I acts via W% @ w* @ w. In particular, this makes
sense when V is killed by wpg. Also, if V is a representation of G(F,) over F we write
VT(Ep)(a2,01,:00) 16 denote the largest subspace on which T(F,) acts as F(az) ® F(a1) ® F(ap),
and we note that V1,(a2:a1,a0) C VY T(Fp),(az,a1,a0)
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3.1 Group algebra operators
We introduce certain mod p group algebra operators for G(F,) and study their effect on
extensions of G(F,)-representations.

Let (ag,a1,a9) € Z3 be a triple verifying the genericity condition (2.1.6). Note that in this
case the weight (ag,a1,a0) € 73 is in particular p-restricted. We define the following elements of

FIG(Fp)]:
1 =z y
g def Z P~ (az—ao) ,p—(a1—ao) 1 z |,
77€F 1
x,Y,z P (311)
1 = vy
B e R A
m7y7Z€FP 1

In other words, S=3",  cp gP(02700) 5p=(@1=00) ) (), 4 (Y) e, ()00 and similarly for S
The following property of the operators S, S’ will be crucial for us.

PROPOSITION 3.1.2. Let (ag,ay,ag) € Z3 be a triple satisfying (2.1.6). Consider the associated

operators S, S’ € F[G(F,)].
(i) There is a unique non-split extension of irreducible G(F,)-representations
0— F(ag —1,a1,a0+1) >V — F(a; +p—1,a2,a0) > 0

and S induces an isomorphism S : V1(avaza0) = yl(a—Lavaotl) of one-dimensional
vector spaces.

(ii) There is a unique non-split extension of irreducible G(F,)-representations
0— F(ag —1,a1,a0+1) > V — F(ag,a9,a1 —p+1) —> 0

and S' induces an isomorphism S’ : V1(a2.a0.01) =, y/l(a2—Lai,a0+1) of one-dimensional
vector spaces.

More generally, one could ask the following (also for more general groups).

Question 3.1.3. Suppose that V is an é(Fp)—representation that is generated by an I-eigenvector
v € VEb20000)  Given an I-eigenvector v/ € V1(2:1:00)  find an explicit element of F[G/(F,)]
sending v to v'.

By Frobenius reciprocity, V' is a quotient of the principal series

Ind%éi’;;(F(bg) ® F(b1) @ F(by)),

and an interesting special case of the above question is when V has irreducible socle that is
moreover generated by v'. Proposition 3.1.2 answers this in some instances. (See also the proof
of [BD14, Proposition 2.6.1] for GLs.)

The proof of Proposition 3.1.2 requires a certain amount of preliminaries and will occupy
the rest of this section.
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Let P D B denote the standard parabolic associated to the simple root a;. We consider the
equivariant monomorphism

(F(ay +p — 1,a2) ® Flan)) — Indp ") (F(az) @ Flar) © Flao) < o

def 1 G(F,)
T = Indﬁ(FZ )

obtained by parabolically inducing the injection F(a; +p —1,a2) — Indg%g)p)( F(a2)® F(a1))
coming from Frobenius reciprocity (where By C GLg denotes the upper-triangular Borel

subgroup).
As in [EGH13, proof of Lemma 6.1.1] we check that

soc(T) = F(ag+p—1,a1,a0 —p+1), cosoc(T)= F(a; +p—1,a2,ap)
and, again by [EGH13, Lemma 6.1.1], we see that rad(7)/soc(7) has length 4, with constituents

F<a17a07a2_p+1)7 F(ao +p_27a2aa1+1)7
F(a’2_17a17a0+]—)7 F(a1_17a07a2_p+2)'

By [And87, §4] we deduce that rad(7)/soc(7) is semisimple; in particular the extension V' exists
and we have a surjection 7 — V. Also, by [And87, §4], the extension V' is unique, because

ExtL (F(a1+p—1,az2,a9), F(az — 1,a1,a9 + 1))
G(Fp)

> (Bxtdy, ) (Fla1 +p — 1,a5,a0), F(az — 1,a1,a0 + 1))

has dimension at most one.

We also see by [Herll, Lemma 2.3] that V1(e2=havaotl) and y1(e1,02,60) o p1(a1,02,00)
o1+(a1,02,00) are one dimensional.

Let W & HY(\), where A e (ao+p—1,a1,a2 —p+1). We recall that 0 - F(A\) > W —
F(az — 1,a1,a0 + 1) — 0 (see [Her09, Proposition 3.18]) and moreover that this sequence is
non-split even on the level of G(F,)-representations (see [Hum06, Theorem 5.9]). The natural
G(Fp)-linear evaluation map

G(Fp)

B, (Wo) =

f:W = (IndS(w)))"s — Ind

is injective. (To see this, it is enough to check that the restriction of f to socg (W) = F(A) is

injective, and hence enough to check that the composite of f followed by evaluation at wg € é(Fp)
is injective on the highest weight space of socé(Fp)(W). The last statement is true by the proof
of [Jan03, Proposition 11.2.2(a)].) As o is multiplicity free we obtain an injection W < 7.

LEMMA 3.1.4. We have S(71(21:02:00)) C rad(r).

Proof. Tt is equivalent to show that the operator S kills the highest weight space F(v)! (a1,62,00) —

F(v),, where v def (a1 +p—1,a2,a0).
Recall that if @ is an algebraic G-module, v, € Q, and o € ® is a root then (cf. [Jan03,
I1.1.19, (5) and (6)])

Ua(t)vlz = Z tivy+io¢a

1€eN

where v, 4ia € Quiia (and 0° = 1).
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Applying this with @ = F(v) we obtain

Sty = Y (X etk o,

1,5,k=0 “x,y,2z€F),
where v; ;1. € F(V)(a9,a9,a1+p—1)+(i4j,—i+k,—j—k)- We deduce that if the inner sum is non-zero for
a fixed triple (4, j, k) € N3, then we necessarily have i > as —ag—1,j >p—1and k > a; —ag—1.
But then (ag,a2,a1 +p—1)+ (i+j,—i+k,—j—k) £ (a1 +p—1,a2,a0) and the corresponding
weight space in F'(v) is zero. O

Remark 3.1.5. An immediate computation shows that S(TI’(%“Q’“U)) C 7T(Fp),(az—1,a1,a0+1)
LEMMA 3.1.6. We have S(r1(a1:02,00)) C Wy

Proof. By Lemma 3.1.4 and Remark 3.1.5, it is enough to show that the weight spaces of
F(ai,a0,a2 —p + 1), Fag +p — 2,a2,a1 + 1) and F(a1 — 1,a0,a2 — p + 2) do not afford the
T(FF,)-character F'(az — 1) ® F'(a1) ® F(ag + 1).

By using the dominance order < on X*(T') we see that the weights in F(a1,ap,a2 —p+ 1)
are of the form (o, 8,7) with o, 8,7 € {ae —p+1,...,a1 —1,a1}. Hence ap —p < v < ag — 1
and a # ag — 1 mod p — 1. With a similar argument we see that any weight (o, 3,7) appearing
in F(ap+p—2,a2,a1 + 1), F(a1 — 1,a0,a2 — p + 2) satisfies 5 # a; mod p — 1. a

LEMMA 3.1.7. We have S(r1:(e1:02,00)) o£ (),

Proof. Consider 7 < o. Then 77:(41:42:00) consists of functions f € o such that

(i) supp(f) € B(F,)$1B(Fp);

. . et
(ii) f is constant on 31( 1 %)

1
Take any non-zero f € 71:(41:02,:00) and let ¢ def (1 11 —1>. It then follows immediately from the
definitions that

1
Sy = Y arrleelplamepl g

z,y,2€Fp y—z x—1 1

We deduce from part (i) that the term inside the sum is non-zero if and only if z = 1, z = y,

z # 1. Hence,
1
S(f)(g) = Z (z -+ 1)p—(a1—a0)f 5 1
z€F) 1
= (_1)‘12 Z (z + l)p—(al—ao)z—(az—al)f(él)’

zeF?

where the last equality follows from parts (i) and (ii) via the relation

1 —z b1 1 271
z 1 = z $1 1
1 1 1
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Note that the term inside the sum is a linear combination of monomials z* with |i| < p — 1. We
easily deduce

S(f)(g) = (~1) (p (- ‘“”)f(sl) L0, .

as — aq
LEMMA 3.1.8. We have S(V1:(@1,02,00)) C yli(az—Ta1,00+1),

Proof. This is clear from Lemma 3.1.4 and Remark 3.1.5, as (just as in Lemma 3.1.6) we have
soc(V)T(Ep)-(a2=Lar,a0+1) — go¢(1)U(Er), O

Proof of Proposition 3.1.2. We start by proving part (i). Recall that we defined W = © g O(\) with

A (ap+p—1,a1,a0 —p+1). By Lemma 3 1.8 it 1s enough to show that S(V1(en.a2.00)) —£
or, equivalently (cf. Lemma 3.1.6), that S(71(¢1:02:00)) & soc(W).

Let us define X & ZyeF yP2 (1 1 ?) We note that X kills S(77:(41:02:00)) ag the latter is
easily checked to be fixed under (1 1 Ff); hence, to prove part (i), it is enough to show that X
acts injectively on soc(W)T Fp)(a2—Lar.a0+1),

As in Lemma 3.1.6 we see that WZ(Fr),(a2=Lai,a0+1) — W,,, where p def (ag — 1,a1,a0 + 1).
o (1,0,—1) € ®. By [Jan03, I1.1.19, (5) and (6)], for v, € W, we have

Uu— E t azvu

>0

Let

where X, ; € Dist(U,) and Xa,iVy € Wytia (see [Jan03, I1.1.12], for the definition of the operators
Xai). As p+io £ X if ¢ > p we deduce that X = —X, 1 on W,.

To prove the proposition we will show that X, : W, — W, is surjective, with a one-
dimensional kernel not contained in soc(W).

Let M denote the Levi subgroup C * :) C G. Any irreducible constituent of the restriction
W |37 has highest weight (o, 3,v) with «, 8,y € {a2 —p+1,...,a0+p—1}. Asag+p > ag+p—1,
the Linkage Principle [Jan03, I11.6.17] and [Jan03, 11.2.12(1)] yield

W= FEm e W',

where F is the irreducible M-representation with highest weight ;1 and no irreducible constituent
of W' has highest weight pu.

CrAmM. The operator X, 1 induces an isomorphism W/i AN W/l T

Proof of the Claim. By dévissage we may assume that W' is irreducible. Let v € X*(T) be its
highest weight, so in particular v # u. Then W’/ — H&( v), where H](Q( v) denotes the dual Weyl
module for M of highest weight v. As Dist(M) preserves W' — HY_ 37(V) it is enough to show
that Xq 1 : Hoﬁ(u)u — HOM( Yuta and X_n1 0 HY 1 (Wpta = HY ( )u are both injective.

Since M9er 22 STy and (1 t)XlY] XiyJ —l—t]X”lY] Ly we see that X, 1 Hoﬁ(l/)u —
HOM(V)IH_Q is injective provided that 3({v,a") — (u,a")) ;7é 0 mod p. (This is because one

has HOM(V”Mder ~ Sym ") (Std) and 0 # X 1/D(wa)+wa")y 1/2)((ra?)=(nae)) ¢ HOM(V)H')
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Similarly, X 1 : H]?/[(V)Ma — HOM(V)M is injective if $((v, ") + (u+ a,a’)) £ 0 mod p. As

a" is dominant and v < A (both relative to M) we have
(v,a”) <\ a’) =2(p— 1) — (a2 — ag).

Similarly, if HOM(I/)# # 0 or Hoﬂ(y)u+a # 0 then

(v,a") > (u,a") = as — ag — 2
(here we used that v # p). Now we can deduce the above two congruences, proving the claim. O

From the claim we deduce that the morphism X, 1 : W, — W4, is surjective, with kernel
of dimension m. The Kostant multiplicity formula shows that
m = dimg W, — dimp W, o
= (p+1— (a2 —ao)) — (p— (a2 —ag)) = 1.
Moreover, F(11) = cosoc(W) contains the irreducible representation of M of highest weight u.
Hence soc(W) C W’ and X is indeed injective on soc(W),,. This proves part (i) of the proposition.
1 1
For statement (ii) it is now enough to apply the automorphism g — (1 ~1 ) gt (1 ~1 )
to part (i) and relabel (—ag, —ai, —a2) as (a2, a1, ap).

Remark 3.1.9. In a similar fashion, there exists a unique non-split extension of irreducible G(IF,)-
representations

O_>F(a2_17a17a0+1)_>V_)F(a0+p_17a17a2_p+1)_>07

namely V' is the Weyl module of highest weight (ag+p—1, a1,a2 —p+1). The following operator
induces an isomorphism VZ1:(e0.a,a2) =, y1(a2—Lai,a0+1) of one-dimensional vector spaces:

—(az2—ao) 1

(=1)"( p— (a1 —ag) ey )Py it ’ ‘Z "
ji: jgj i+1 <p<—-( ——i>( ) Yy 1 . 0-

as — a
x,y,2€F), =0 2 0)

We skip the somewhat lengthy proof, since we will not need it.

We conclude this section with a simple but important lemma concerning the action of U,-
operators on G(Qy)-representations over F. We define

1
nE N 1 r 1|,
y

TSt oy (3.1.10)

Y

©,Y€Zyp /DLy

so that for any G(Qp)-representation o over Op and any (az,a1,a9) € Z*, both U and U,
preserve ol (az,a1,a0)
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LEMMA 3.1.11. Let (ag2,a1,a0) € 73 be a triple with as —a; >0, a1 —ag > 0 and as —ag < p— 1.
Let 7% Ind¥ (w™ ® W ®w™), and suppose that o is a representation of G(Q,) over F.

Then Homg (7, 0)[U;] = Homg (T/M;,0) for i € {1,2}, where M; (respectively M) is the
minimal subrepresentation of T containing F'(ag,ag,a1 — p + 1) (respectively F(ag +p — 1,a1,
as — p + 1)) as subquotient. Concretely, both M, are indecomposable of length 2 with socle
F(ap+p—1,a2,a1).

Proof. Note that 7/(21:42:00) i5 spanned by a function f with supp(f) = I and f(1) = 1. Consider
the case i = 2, and suppose ¢ € Homg (7, 0). Then Usp = 0 if and only if Uz(¢(f)) = 0. We note

1
that TI2Us = U, where U4 % Zx,yem( i”l’) (1 1 1), sending ph(@1:92:00) to pl(a0:01,02) for any

K-representation p over F. We have that U} f # 0, as (U}f) (1 ! 1) = 1. Hence (K - U} f)r is a

quotient of 7 def Ind¥ (W™ ® w™ ®w®) that injects into 7, so as the cosocle of 7 is F(ag +
p—1l,a1,a2 — p+ 1) and 7 is multiplicity-free, we deduce that (K - Ujf)r = M. By [Lel5,
Proposition 2.2.2], M, is uniserial of shape F(ag +p — 1,a2,a1)—F(ap +p — 1,a1,a2 — p + 1).
We have that

Usp = 0 <= Us(p(f)) =0 <= o(Usf) =0 <= (K - U5 f)r C ker ¢.
The proof for the case i = 1 is analogous. O

COROLLARY 3.1.12. Let (a2, a1, ap) € 73 be a triple with as — a1 > 0, a1 —ag > 0 and as — ag <
p — 1. Suppose o is a representation of G(Qy) over F.

(i) If v € gh(@:92:0)  then Uy = 0 if and only if (Kv)p does not contain F(ag + p — 1, a1,
ag — p + 1) as subquotient.

(i) If v € o!(92:0001) " then Uyv = 0 if and only if (Kv)r does not contain F(ag +p — 1,a1,
as — p + 1) as subquotient.

Proof. (i) In the notation of the proof of Lemma 3.1.11, by Frobenius reciprocity there is a unique
¢ € Homg (7, o) such that v = ¢(f). The claim follows, as (Kv)r = im ¢ (since (K f)r = 7). The
proof of part (ii) is analogous. |

3.2 Jacobi sums and characteristic zero principal series
In this section we consider certain group algebra operators with O g-coefficients and study their
effect on principal series representations.

We fix once and for all a triple (ag,a1,a0) € Z* verifying (2.1.6). We define the following

elements in the group algebra Og[G(F,)], lifting the mod p operators introduced in §3.1:

1 =z y
FU Y ez [ 2y,
myy,ZGFp 1
(3.2.1)
1 =z y
g def Z Fp—(az—a1) zp—(az—ao) 1 z | wo.
.'Z,’,'y,ZEFp 1

The following relation between the actions of S , S’ on certain principal series representations
1
will be crucial later. To lighten notation, we set IT e (p 1) € Ngg,)(I)-
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PROPOSITION 3.2.2. Let (ag,a1,a9) € Z3 be a triple verifying (2.1.6). Let m, %ef Indgggz;

(X1 ® x2 ® Xx0) be a principal series representation, where the smooth characters x; : Q; — E*
verify Xi‘z,f =w* fori € {0,1,2}.

(a1,a2,a0)

. . . . I,
On the one-dimensional isotypical component m, we have

~ ~

S" oIl = px1(p)k S, (3.2.3)

where k € Z, verifies k = (—=1)"7% - (ag — a1)/(a1 — ag) mod p and is independent of the scalars
Xi(p)-

Remark 3.2.4. Note that equation (3.2.3) makes sense, as both S and S act on 7K®) for any
smooth K-representation 7, where K (1) o ker(K — G(F,)).

The proof of Proposition 3.2.2 relies on certain direct manipulations on Jacobi sums and
will occupy the rest of this section. Let us pick a non-zero element v in the one-dimensional

isotypical component TrII,’(al’@’ao). In particular, ¥ is K (1)-fixed. We note that supp(v) = B(Q))[
and v(1) # 0.

LEMMA 3.2.5. We have

by
T-5=xip) >, (v 1| %
A\u€F, \1

Al - ~ ~
Proof. Noting that I1U; = ZMLEFp (;11 1), it suffices to show that Uy -9 = x1(p) 0. As Uy -0

lies in the one-dimensional space W,{’(al’m’ao) and ©(1) # 0, it is enough to observe that

~1
D 1
o= > @ 1 Al =x1(p)™" - 0(D). O
AHELp [PLp 1 u 1

We now compute the action of the operator S’ on the element I13.

LEMMA 3.2.6. We have
5" (II%)
—~— p—(a2—a1) —~—— p—(az—ap)

—(Cyma ) Y At Sy IS
A .y, z€F,

1 =y
1 =z U')()i)\.
1

. . def def . . .
Proof. In order to ease notation, we write a = as — ag, b = a1 — ag. An immediate computation
using Lemma 3.2.5 gives

R l+yrd+zp y =
SIo) =xa(p) Y @ P@E A4p oz 1|7 (3.2.7)
A ,x,y,2€FR, A 1
défA,\W‘
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We now break up the sum (3.2.7) according to the values of A, u € I,,.
Case 1. We have Ay = 0. Suppose first that A = g = 0. Then one has
1 1 y =z
AO,O = 1 =z ._5,’2 1

1 1

and therefore, using that v is I1-fixed, we obtain

1
5wtz (S 1) (X #e)
x,y,2€Fp z€lF, 1 z,y€l,
=0.
In an analogous fashion, if Ay # 0 we have
1 y+ At A1
A)\,O = 1 z $981 -2tz R
1 1
1 p 4z y—z(pt+2) T 1
Aoy = 1 5182 1 ,
1 —pt

so, using that ¥ is an eigenvector for the I-action, we obtain

oY arlehizres, (=0,

x,y,2€F, )\GF;

oY e leteay 5 =0

x,y,2€Fp ,uGF;;

(in the first equation, the sum over x is zero; in the second equation the sum over z is zero,

provided one first replaces y by 3/ def y—z(p~t + ).
Case 2. We have Ay # 0. As before, a direct computation gives

1 pldr y+aopr 4270 A 1
AA,M = 1 z+ ,u)\_l wo —;L)\_l 1
1 —ut
and, recalling that v lies in ﬂ,{’(al’%ao), we obtain
S X metmea
x,y,2€Fp A,uEJF;
N 1 pl4z y+apr b+ 271
_ Z Z (71)a)\—(a—b)ﬁaip—(a—b)’z~p—a 1 2+ ,u>\_1 ’woi}\
Z‘,y,ZG]Fp >\7,LL6]F;< 1

We obtain the desired result by putting the two cases together and using the change of

variables (2, 4/, 2/, X, i) © (2 + p Ly + apA™ + A 2 4 AL At ). O

2256

https://doi.org/10.1112/50010437X17007357 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X17007357

ON MOD p LOCAL-GLOBAL COMPATIBILITY FOR GL3

Proof of Proposition 3.2.2. Note that in the expression of Lemma 3.2.6 we may assume that
x # 0 (respectively z # 0) since otherwise the sum over p (respectively \) vanishes. Using the

change of variables (X, p') = o (Az~% uz~t) we obtain
S'(119) = (—1)"x1(p)r1£25(),
where K1, k2 € Zj are the following Jacobi sums:
—_—— p—(a b p—a
r N @1 p) D DL (P
neF, AeF,

By Stickelberger’s theorem (see e.g. [BD14, Théoreme 2.5.1]) one has ord,(x1) = 0,0rd,(k2) =1
and

(p=1-Dp—(a=b) r_ (@b —a)

(p—a)! p (p—0)!

K1 mod p.

Therefore N R
§'(I0) = (=1)"x1(p)rS(0),

where ord,(k) =1 and k/p = —(p — ( b))!(a —b)!/(p — b) mod p.
As (p— (a —b))!(a —b)! = (=1)P~ (@Y (p — 1)!(a — b) mod p we finally obtain

K a—>b
—1)22 = (=1)°
(1% = (1Pt
and the proof of Proposition 3.2.2 is now complete. O
def +  G(Qp)

LEMMA 3.2.8. Suppose that m, = Ind g B(Q,) (Xl ® X2 ®X0) is a principal series representation,
where the smooth characters x; : Q) — E* verify XZ|Z§ = w® for i € {0,1,2} and where

y . . . . I
ag, a1, ae are distinct modulo p — 1. On the one-dimensional isotypical component ﬂp’(al’@’ao) we

have Uy = x1(p)~! and Uy = x1(p) ' x2(p)~*.

Proof. For U; this was observed in the proof of Lemma 3.2.5. The Us-eigenvalue is computed
similarly. O

4. Local-global compatibility

In this section we establish most of our main results, namely Theorems A, D, and E of the
introduction.

4.1 The space of automorphic forms on certain unitary groups
Let F/Q be a CM field and F'* its maximal totally real subfield. Assume that F'™ # Q, and that
p splits completely in F. We write ¢ for the generator of Gal(F/F™). For w { oo (respectively
v 1 00) a place of F' (respectively F') we denote by k,, (respectively k,) the residue field of F,
(respectively F,).

We let G,p+ be a reductive group, which is an outer form of GL3 which splits over F. We
assume that G(F.") = Us(R) for all v|co. By the argument of [CHTO08, §3.3], G admits a model
G over Op+ such that § x O £ 18 reductive for all places v of F'™ that split in F. For any such

place v of F™ and w|v of F we get an isomorphism ¢, : G(F;") —> GL3(F,) which restricts
moreover to an isomorphism ¢y, : §(Op+) = GL3(Op,).
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Let F; def et ®@qQp and Op+ 4, L0 + @7, Ly If W is an O g-module endowed with an action
of §(Op+,) and U < G(ARY) x §(Op+ ) is a compact open subgroup, the space of algebraic
automorphic forms on G of level U and coefficients in W is defined as the following O g-module:

def 00 — 00
S(UW) = A{f: GEFEINGAR:) — W | flgu) =u, " f(g) Vg € GAF),u € U}
(with the obvious notation u = uPu,, for the elements in U).
We recall that the level U is said to be sufficiently small if for all t € G(A%, ), the finite group
t=YG(F)tNU is of order prime to p. For a finite place v of F™ we say that U is unramified at
v if one has a decomposition U = §(Op+)U" for some compact open subgroup U? < G(ATL).

Let Py denote the set consisting of finite places w of F' such that v def w|p+ is splitin F,v{p
and U is unramified at v. If P C Py is a subset of finite complement that is closed under complex
conjugation, we write T = OE[T&l) cw e P, i€ {0,1,2,3}] for the abstract Hecke algebra on P,
)

where the Hecke operator T, 15} acts on the space S(U, W) as the usual double coset operator

— wwIdl
0! [GL3(OFw) ( Id3_i> GLg(OFw)] ;
where w,, denotes a uniformizer of F,.

4.2 Serre weights
In this section we recall the notion of Serre weights, as well as define the set of Serre weights of
a Galois representation 7 : Gp — GL3(IF).

DEFINITION 4.2.1. A Serre weight for G (or just Serre weight if G is clear from the context) is an
isomorphism class of a smooth, (absolutely) irreducible representation of G(Op+ ,,) over F. If w|p
is a place of F', a Serre weight at w is an isomorphism class of a smooth, (absolutely) irreducible
representation of GL3(Op,) over F, or equivalently an isomorphism class of an (absolutely)
irreducible representation of GL3(k,,) over F.

Let S, (respectively S),) denote the set of places of F'* (respectively F) that divide p.
Suppose that for each w € S, we are given a p-restricted triple a, = (aw2, @w.1,dwo) € Z3
such that a,; + aywe2—; = 0 for all 0 <4 < 2 and all w € 5. Let Fy,, denote the irreducible

representation F'(ay 2,y 1, aw,0) of GL3(ky) over F defined in §3. Then F,, def F,, oty is an
irreducible representation of (O FS’) that is independent of the choice of place w dividing v, and

we define the Serre weight F, e .1, Fa,- By [EGH13, Lemma 7.3.4] any Serre weight is of this

form.

vlp

DEFINITION 4.2.2. Let 7 : Gp — GL3(F) be a continuous, absolutely irreducible Galois
representation and let V' be a Serre weight for §. We say that 7 is automorphic of weight V
or that V' is a Serre weight of T if there exist a compact open subgroup U of G(AF ") x §(Op+ )
which is unramified at all places dividing p and a cofinite subset P of Py such that 7 is unramified
at each place of P and S(U, V). # 0, where mr is the maximal ideal of T with residue field F
defined by the formula

J

3
det(1 — 7 (Froby,)X) = > (1) (N g (w)) (T mod my) X7 vw € P

(and Nz/g(w) denotes the norm from F' to Q of the prime w). We write W (7) for the set of all
Serre weights of 7.
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From now on we fiz a place w € S, and assume that 7T is automorphic of weight I,
where ayy lies in the lowest alcove, i.e. ayr o — ay o < p—2, for all w' € Sp\{w,w}.

Let v 9 w|p+ and V' r def ®U,€SI)+\{U}F%,. Now the construction in [EGH13, § 7.1.4] (replacing
the coefficients Z, by Op) gives a finite free Og-module W, , with a linear action of §(O ) for
any v € S \{v}, and we let pr Qe s\{v} Wa,, - Note that since ayy lies in the lowest alcove

for all w’ we have V' Ro, F=V'.
DEFINITION 4.2.3. We define

Wi (7) e {F,, : ay € Z? is p-restricted and (F,, o t,) @ V' € W(F)}.
Note that by construction we have W,,(7) # ¢.

From now on we suppose that U is a compact open subgroup of G(AZ?) x S(Op+ ) that is
sufficiently small, unramified at all places dividing p, and a subset P C Py as above such that
S(U, (Vo ty) @ V') # 0 for some Serre weight V' at w. (Such a group U exists, since we are
free to shrink U further to ensure it is sufficiently small, cf. [EGH13, Remark 7.3.6].)

Having fixed V”, for any representation V' of GL3(Op, ) = GL3(Z,) over Og, let

S(V)E SU,(V 0 tw) ®o, V').

In particular, W,,(7) D {Serre weights V' at w : S(V)m. # 0} (and equality holds if we shrink U
and P sufficiently).

4.3 Potentially semistable lifts
In this section we discuss the relationship between Serre weights and potentially semistable lifts.
We start by recalling some facts about Deligne-Lusztig representations, referring to [Her09, § 4]
for details.

For any n > 1 let k, , denote the extension of k,, of degree n. We write T for a maximal
torus of GL3 ;. We have an identification

~ X
(kw) = T ko, (4.3.1)
j=1

where 1 < n; < 3 and Y77 n; = 3 (cf. [Her09, Lemma 4.7]), which is well defined up to
[Tj=1 Gal(kw,n, /kuw)-
For any homomorphism 6 : T'(k,) — @; we have a Deligne-Lusztig representation Rf. of

GL3(kw) over Q,. Via the identification (4.3.1) we have 6 = &’_10;j, where 0; : k; = Q
We say that 6 is primitive if for each j the Gal(ky y,/ky)-conjugates are pairwise distinct. By
letting ©(6;) be the cuspidal representation of GL, (k‘w) associated to the primitive character
6; via [Her09, Lemma 4.7], we have

~ r GL3(kw
R = (~1)* Idpn&w)(@@ )

where P, is the standard parabolic subgroup containing the Levi [ | j GLy;.
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Let Fiyn & W (kw,n)[1/p] be the unramified extension of Fy, of degree n. We consider 6; as
a character on Oy by inflation and let Artp, , be the isomorphism F,, —> W2P  of local
w,n; ’ ) w,n

class field theory, normalized so that geometric Frobenius elements correspond to uniformizers.
We define the inertial type rec() : Ip, — @; as follows:

(i) rec(0) def EB?L 9, oArtfi if0; - ky — @; for all j =1,2,3;

(ii) rec() = 010 Arty! & B, cqah, o/kn)o (P20 Arty! ) if 01 k5 — @y and 6 k)5, > Q)

are primitive characters;

(iii) rec(0) e Doccai(hy s k) (010 Art}i ) if 01k 3 — @; is a primitive character.

LEMMA 4.3.2. Let V,, be a Serre weight at w for the Galois representation 7 : Gp — GL3(F) and
assume that V., ®gF,, is a Jordan—Hélder constituent of the mod p reduction of a Deligne— Lusztig
representation RS of GL3(k,), where T is a maximal torus of GLg ke and 0 1 T(ky) — Q

a primitive character. Then T|q, has a potentially semistable lift with Hodge-Tate WGJghts
{—2,—1,0} and inertial type rec(6).

Proof. This is proved in [MP14, Theorem 5.5] (cf. also [EGH13, Propositions 2.4.1 and 7.4.4
in cases (i), (iii)]), except when n; = 1 for all ¢ and some of the characters 6; are equal. The
exceptional case follows in the same way, by using the lemma below, which is an extension of
[EGH13, Proposition 2.4.1(ii)]. (We recall the idea: by the Deligne—Serre lifting lemma we obtain
a global lift r of the dual 7V which is attached to an automorphic representation in trivial weight
and dual type (R%)v. Classical local-global compatibility together with the lemma below shows
that rV|GFw provides the required lift.) O

Suppose n > 1 and let B,, denote the Borel subgroup of GL,, of upper-triangular matrices.
Let recp, denote the local Langlands correspondence for GL,, (F,,) over Q,, as in [EGH13, §1.3].

LEMMA 4.3.3. Suppose that 7 is an irreducible admissible representation of GL,,(F,,) over @p.
Assume that 7|gL,, (0, ) contains a Jordan-Holder factor of the GLy, (O, )-inflation of a principal
series representation of the form

nd "0 © - ©6,) (4.3.4)

for some characters 0; : k;, — @; . Then recg,, ()|, = @;,6; o Art;i.

Proof. We indicate how the proof of [EGH13, Proposition 2.4.1(ii)] needs to be adjusted. Recall

the pair (I, p) described in that proof, which has the property that IndGL"(OF w) p is isomorphic

to the inflation of the representation (4.3.4) to GL,(Of, ). Thus by assumption Homy;y(p, ) # 0.

By [Roc98, Theorem 7.7] we deduce that 7 is a subquotient of Indnglgfz)”)

0=0,® - ®0, with 6; |o>< = 6, for all i. Now from [Hen02, §1.9] it follows that if 7’ is
another irreducible admissible representation of GL,,(F),), then 7, 7’ have the same supercuspidal

support if and only if recp,, (7)|wy, = recr, (7')|wy, - The claim then follows from [HTO01, § VIL.2
(pp. 251f)]. O

0 for some character
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4.4 Serre weights of 7 in the maximally non-split case

We keep the notation and assumptions of §4.2. In particular, p splits completely in F, there is
a distinguished place w € S}, and 7 : Gp — GL3(F) is an automorphic, absolutely irreducible
Galois representation. The aim of this section is to almost completely determine the Serre weights
of 7 at w when 7|g,, is maximally non-split and generic. The techniques of this section follow
the strategy of [EGH13, § 5], and have been further pursued in [MP14] to cover other cases when
7 is ordinary at w.

THEOREM 4.4.1. Assume that T|g,,  is maximally non-split and generic, of the form

a+1
w*inry,, . 1* *
= +

Tlap, ~ w’inr,, *

weHlnr,,
(i) IfFL(F|gy, ) & {0,00}, we have
{F(a—1,b,c+ 1)} CWy(F) C{F(a—1,b,c+1), Flc+p—1,b,a—p+1)}.
(ii) IfFL(7|gp,) = oo, we have

{F(a—1,b,c+1),F(a,c,b—p+1)}
CWyu() C{Fla—1,b,c+1), Flc+p—1,bba—p+1),F(a,c,b—p+1)}.

(iii) If FL(7|Gy, ) = 0, we have

{Fla—1,b,c+1),F(b+p—1,a,c)}
CWyu() C{F(a—1,b,c+1), Flc+p—1,bba—p+1),F(b+p—1,a,c)}.

Remark 4.4.2. In fact, the proof shows that the containments in parts (i)—(iii) hold if we replace
Wi (F) by {Serre weights V at w : S(V)m. # 0} (for any group U and subset P C Py considered
in §4.2).

In the remainder of this section we will prove this theorem, except for showing the existence
of the shadow weights F'(a,c,b—p+1), F(b+p—1,a,c) in parts (ii) and (iii). We will complete
the proof in Proposition 4.5.10. We start with the following preliminary lemma.

LEMMA 4.4.3. Let V € W,,(T) be a Serre weight of ¥ at w. Then V is isomorphic to one of the
weights in the following list:

Fb+p—1,a—1,c+1), Fla—1l,c+1,b—p+1), F(c+p,ba—p),
F(b—l—p—l,a,c), F(avc,b—p-i—l),
Flc+p—1,bja—p+1), F(a—1,b,c+1).

Proof. Let us write V = F(x,y,z) for a p-restricted weight (z,y, z). By Frobenius reciprocity

G(kw)( x z
E(kw)(w ®wY @ w?). Hence, by

Lemma 4.3.2, 7|, admits a potentially semistable lift of Hodge-Tate weights {—2, —1,0} and

the weight F'(z,y,z) is a constituent of the principal series Ind

inertial type 6 of ooy @ . Proposition 2.6.1 implies {z,y,2} = {a,b,c} or {z,y,z} =
{a —1,b,c+ 1} as subsets of Z/(p — 1)Z.
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If x — 2z > p — 2, we conclude by genericity that V belongs to the following list:

F(b+p—1,a—1,c+1), F(a_lac+1ab_p+1)7 F(C+p,b,a—p),
F(b+p_1,aac)7 F(G,C,b—p+1), F(C+p_1’baa_p+1)

If x — 2z < p — 2, then noting that z + 1, y, z — 1 are distinct modulo p — 1 by above,
the proof of [EGH13, Lemma 6.1.1], shows that V is also a constituent of the principal series

Indggzw;(wz_l RwY @w® 1) and hence {x + 1,9,z — 1} = {a,b,c} or {x + 1,y,2 — 1} = {a — 1,
b,c+ 1} as subsets of Z/(p — 1)Z. We deduce by genericity that V = F(a — 1,b,c+ 1). O

Proof of Theorem 4.4.1 (Modulo the existence of shadows). We first establish the upper bound
on W, (7) (this is sometimes called ‘weight elimination’). Let V' € W, (7). Then V is one of
the weights appearing in the list of Lemma 4.4.3. We now prove that the weights F'(a — 1,
c+1,b—p+1), Flc+p,b,a—p) and F(b+p—1,a — 1,¢+ 1) cannot be Serre weights of
7 at w. Indeed, by the proof of [Her09, Proposition 7.4], it is easily checked that F'(b+ p — 1,
a—1,c+1)®F F, is an element of JH(EGT), where the maximal torus T verifies T'(k,) =
Ky o % ke and 6 = QS_Hpb@@CH. If Fb+p—1,a—1,c+ 1) is a Serre weight of 7 then by
Lemma 4.3.2, 7|g,, has a potentially semistable lift of Hodge-Tate weights {—2,—1,0} and

inertial type @ngpb D &SH’(WU @® @1, which is not possible by Proposition 2.6.3.

In a similar fashion, the weights F(a—1,c+1,b—p+1)®pF,, F(c+p,b,a—p) ®pF, appear
in JH (E?p), where now 6 = &gﬂ) (ct1) ®@ @ !, providing a contradiction with Proposition 2.6.3.
Assume now that FL(7|q,, ) # 00; we claim that the weight F'(a,c,b—p+1) cannot be a Serre

weight of 7 at w. Again, using [Her09, proof of Proposition 7.4] we see that F(a, ¢,b—p+1)®5pF, is

~a+1+4p(
2

an element of JH (E?% where now 6 = @ b-1) ®w°. By Lemma 4.3.2, ?|GFw has a potentially

semistable lift of Hodge—Tate weights {—2, —1,0} and inertial type (Tjg“ﬂ)(b*l)EBoNJg*Hp(aH)EBE)C,
which implies FL(7|q,, ) = oo by Proposition 2.6.4. By duality, F(b + p — 1,a,c) cannot be a
Serre weight of 7 at w if FL(7|q,, ) # 0.

By weight cycling we will now deduce that F(a — 1,b,¢ + 1) € W, (7). (We refer to
the introduction of [EGH13] for the term ‘weight cycling’ as well as its history.) Recall the
(commuting) Hecke operators T, T at w defined in [EGH13, §4.2]. They act on the finite-
dimensional F-vector space S(V) for any Serre weight V at w. If T; has a non-zero eigenvalue
on S(F(c+p—1,b,a —p+ 1))m. for some i, we deduce exactly as in the proof of [EGH13,
Corollary 4.5.4] that 7|, has a crystalline lift p over E, where p admits a subrepresentation of
Hodge-Tate weight —(c¢+ p+ 1) or a quotient of Hodge-Tate weight —(a — p + 1). This implies
that 7|7, ~admits w2 as subrepresentation or w® as quotient, contradicting our assumptions
on 7|g,, - Hence T; act nilpotently on S(V )y for V.= F(c+p—1,b,a — p+ 1). By a similar
argument the same holds when V = F(b+p—1,a,¢) or F(a,c,b —p+1).

Suppose that F(a — 1,b,c+ 1) ¢ Wy, (7). If V def Flc+p—1,b,a—p+1) € Wy(F), then
S(V)m # 0 (for suitable U, P). By the previous paragraph we may apply weight cycling [EGH13,
Proposition 6.1.3(ii)] to the smooth GL3(F,,)-representation m -y S(UY, V' ). (defined just after
(4.5.1)) and our weight V. Using the nilpotency of T'; (respectively T5) we see that S(V")n. # 0,
hence V" € Wy, (7), for at least one weight V" listed there. However, the genericity of 7|q,,
together with our upper bound for W, (7) lets us rule out four out of five weights in each case and
deduce that F'(a,c,b—p+1) € W, (T) (respectively F'(b+p—1,a,c) € Wy, (7)). But this contradicts
the upper bound on W,,(7) we obtained above. Similarly, if F'(b+p—1, a, c) € Wy, (7), then weight
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cycling with Ts and genericity imply that W, (7) contains F(a,c,b — p + 1), contradicting our
upper bound. We get a similar contradiction if F(a,c,b —p + 1) € Wy, (7). We conclude that
F(a—1,b,c+ 1) € W, (7).

This ends the proof of Theorem 4.4.1 modulo the existence of shadow weights. O

COROLLARY 4.4.4. In the setting of Theorem 4.4.1, 7 has an automorphic lift r : Gp — GL3(OFg)

(after possibly enlarging E) such that T’GFU, is crystalline and ordinary of Hodge—Tate weights
{-a—1,-b—1,—c—1}.

Proof. Keeping our notation of the proof of Theorem 4.4.1, consider the Hecke operators T,
Ts acting on S(F(a — 1,b,¢ + 1))m,., which is non-zero by the proof above. If T fails to be
invertible on this vector space, then one of the weights F(c+p,a—1,b), F(a—1,c+1,b—p+1)
is contained in W,,(7) by [EGH13, Proposition 6.1.3(i)]. This contradicts the upper bound of
Theorem 4.4.1 by genericity, hence T is invertible on S(F(a — 1,b, ¢ + 1))m.. The same is true
for T. Enlarging F if necessary we can pick simultaneous eigenvalues a; € F* of T; (i = 1,2)

on this space. Consider the double coset operators Tlg,i) (i = 1,2) defined as in §4.1 but for

our fixed place w|p and let ﬁsjl) def p_c_qusjl), ZINQ(UQ) def p_b_c_ng). Let T % T?[ﬁl),ﬁ?)] and
consider the homomorphism 6 : T — F whose kernel contains m7 and which sends T, S’ to oy
(1 = 1,2). Redefining a,, = (a — 1,b,¢ + 1), the construction in [EGH13, §4.1.1] (replacing the
coefficients Z, by Of) gives a finite free O g-module W,,, with a linear action of GL3(Op, ). As
ay lies in the lowest alcove we have S(W,,) ®9, F = S(F(a — 1,b,¢ + 1)). The commutative

Op-algebra T acts naturally on both sides, with ﬁE}) acting as T; on the right-hand side (see
[EGH13, §4.4]). Using the Deligne—Serre lifting lemma and enlarging F if necessary we can lift
the Hecke eigenvalues 6 to S(W,,) and obtain an automorphic lift r : Gp — GL3(Og) of 7
such that T|GFw is crystalline of Hodge-Tate weights {—a — 1, —b — 1, —c — 1}. It is, moreover,
ordinary, i.e. its Hodge and Newton polygons coincide, using that «; # 0 for ¢ = 1,2 (cf. the
proof of [EGH13, Corollary 4.5.4]). O

4.5 Local-global compatibility
We keep the notation and assumptions of §4.2. Suppose that 7 is as in Theorem 4.4.1. We recall
the operators S, S’ € F[GL3(FF,)] obtained from (3.1.1) by setting (a2, a1, ap) = (—¢, —b, —a):

1 =z vy
SE Y v [ Ly,
x,y,zEFp 1
(4.5.1)
1 = vy
gt def Z 2P~ (b=c) ,p—(a—0) 1 z | wo.
x,y,2€F, 1

Since the compact open subgroup U we fixed is unramified at v, we can write U = G(O F;F)U v

for some compact open subgroup UY < G (A;Of). If W is an Og-module endowed with an action
of Hv,es;r\{v} 9<OF;7) we define S(U", W) & li_r)nUUS(U” - Uy, W), where the limit runs over all
compact open subgroups U, < §(Op+). Then S(UY,W) has a smooth action of G(F,}) and
hence via ¢, of GL3(Fy) = GL3(Qp). We also define S(UY, W) e l(iLnsS(U”,W/w‘?E), which
has a linear action of GL3(Q)). Note that S(U?, W) is isomorphic to the p-adic completion of
S(UY, W), provided W is finitely generated.
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We recall that in §3 we defined an Iwahori subgroup I of K = GL3(Z,) and the notation
V1i(a2,a1,00) for any representation V of K over O and any triple (az,a1,a0) € Z3. We note
that from the definitions it follows that S(UY, V/)1:(-b=e—a) > g(yv y/)I.(=b—c.=a) 4 finite free

O g-module. Recall furthermore that II = (p ! 1).

THEOREM 4.5.2. We make the following assumptions.

(i) The representation ¥|q,, is maximally non-split and generic, of the form

w™nr, * *
= b+1
T]GFw ~ w’nr, *
wnr,,

(ii) The invariant FL(7|q,, ) ¢ {0,00}.
(iii) The Og-dual of S(U", ?’),ﬁ;ﬁ*b’*c’*” is free over T, where T denotes the Opg-subalgebra of

End (S(U", ?/)i{é_b’_c’_a)) generated by T”, Uy, and Us.
Then we have the equality
b—c

a—>

S oIl = (—1)a_b .

-FL(Flgy, ) - S (4.5.3)
of maps

S(Uv, V! )[ r]I J(=b,—c,—a) [U17 UQ] N S(Uv V/)[ ] (fcfl,fb,faJrl)'
Moreover, these maps are injective with non-zero domain. In particular, FL(7|q,, ) is determined

by the smooth GL3(Q,)-representation S(U",V')[mz].

Remark 4.5.4. The proof shows that for any non-zero v € S(UY, V')[mz](=0=¢=9) U, Uy], the
K-subrepresentation generated by v and Ilv is of the form

F(—c—-1,-b,—a+1)—(F(-b+p—1,-c,—a) ® F(—c,—a,—b—p+1))
with socle F/(—c¢—1,—b,—a+ 1). Together with Proposition 3.1.2 this explains why there exists
a constant z € F* such that S’ oIl = 25 on S(U?, V') [mz]/(=b—c=a) (U7, Uy)].
Proof. Let n: I — O% denote the character @’ ® w° ® @ and set

ME S VT 2 sU Ly V),
We remark that M # 0, as S(F(a —1,b,c+1))m. # 0 and F(a — 1,b,c+ 1) is a Jordan-Holder
factor of Indl 7, and also that M is a finite free Op-module. For any Opg-algebra A we let
Mp % Mo, Aand To % Twe, A.

Picking a Qp-linear embedding E — @p, as well as an isomorphism 2 : @p =5 C, we see that

My = @m —6m0) g (rv)V (4.5.5)
where the sum runs over irreducible representations m = 7o ® m, @ TV of G(Ap+) such that
7 ®, C is a cuspidal automorphic representation of multiplicity m(m) € Zsg with 7o ®, C

determined by the algebraic representation (\7’ )V and with Galois representation 7, lifting 7"
(cf. [EGH13, Lemma 7.1.6]). For any 7 contributing to (4.5.5) we have the following.
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(a) There is an isomorphism 7, = IndgE%Z ; (Y| - > @te| - | @ 1q) for some smooth characters
Vi Q) — @; (depending on 7) with 7/’1"2; =w "t fori € {a,b,c}.

(b) The Galois representation 7|, ~is potentially crystalline with Hodge-Tate weights {—2,
—1,0}; moreover one has WD(r) |, )~ = vileyteyrt

Here, part (a) follows from [EGH13, Propositions 2.4.1 and 7.4.4] and part (b) follows from

classical local-global compatibility. In particular, from part (b) we deduce that p?y,(p)~t € @p

is the ¢-eigenvalue on Dgp 2 (r |G, )T Fw =5" and so from Theorem 2.5.1 and assumptions (i), (ii)

it follows that
ord,(y(p)) =1 and FL(7lg,, ) = [d}b;p)]'

We also deduce from Corollary 2.4.11 that ord,(p*y;(p)~!) € (0,2) for i € {a,b,c}, with sum
equal to 3. In particular, the eigenvalue of U; (respectively Us) on mf’("”‘c"“), which equals
p?y(p) ! (respectively p3vp(p)~11be(p)~!) by Lemma 3.2.8, has positive valuation. (Note for

later reference that this is true even if FL(7|g,, ) € {0,00}.)

(4.5.6)

Note that the image T, of T¥ in End(M) is local with maximal ideal the image of m. As
T, C T is a finite ring extension, mz C rad(T). Since all eigenvalues of U; on M@ have positive
P

valuation, we deduce that U; € rad(T) (i = 1, 2). It then follows that T is local with maximal
ideal m generated by mz, Uy, and Us. As T@p acts faithfully and semisimply on M@p (by (4.5.5)),
we see that T@p is semisimple, hence reduced. In particular, T is reduced.

As U is sufficiently small, our assumptions as well as the statement we want to prove is
insensitive to a finite base change E — E’. Hence, by passing to a finite extension of F, we may
assume that Ty = E” for some r > 0.

We have Mg = @pM plpE|, where the sum runs over the minimal primes of T and pg def pTE.
Note that, by the above, Tg/pgp = F for any such p. Then Mglpg|®pg @p is a direct summand of
(4.5.5), where 7 runs over a subset of the automorphic representations in (4.5.5), and we claim
that each 7, occurring in this direct summand is the same. To see this, note that r; is determined
by p, by using Cebotarev density and classical local-global compatibility at the places in P. (Note
that classical local-global compatibility, which is known only up to Frobenius-semisimplification,
determines tr(rr|q, ,) for w' € P and that tr(r;) determines 7r.) Then we deduce the claim
from classical local—global compatibility at w.

By Proposition 3.2.2 we have

Fom= W, g (4.5.7)

p
on Mg[pg], where k € Z,; is such that k = (=1)*b . (b—¢)/(a — b) mod p and where S, 5’ €
Og[GL3(F,)] are obtained from (3.2.1) by setting (az, a1, ap) = (—¢, —b, —a).

Let M4 % Homg, (M, Og), which is finite free over T by assumption (iii). Fix any minimal
prime p of T. As T /pg = E we have T/p = Op, so in particular M9 /p is a finite free O g-module.
The identity (4.5.7) holds also on M$ /pp = Hompg(Mg[pg], E) and on its submodule M9 /p. By
(4.5.7) and (4.5.6), and since p + wpT = m, we deduce the identity (4.5.3) on (M4/p) ®p, F =
M4 /m, hence also on Mg[m] = Homp(M¢/m,F). Now observe that My = S(U", V’)I{é—b’_c’_a)
and hence My[m] = S(U?, V') [mz] (=00 (U7, Uy).

(—c,—a,—b)

We claim that U;II(Mp[m]) = 0 for i = 1, 2. Let N dof S(U”,‘N/’){n’, and let TV C

T

End(N) be the Og-subalgebra generated by T%, Uy, and Us. By above, II(M([p]) € N[p'] for the
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minimal prime p’ of T’ lying over the same prime of T¥ as p such that, moreover, the image
of U; in T'/p’ = Op equals the eigenvalue of U; on pi(meah), (In fact, II(M|[p]) = N[p'], by
reversing the argument.) From the above, the natural injection M[p] ®¢, F — Mp[m] is an
isomorphism, so II(Mp[m]) is killed by the unique maximal ideal m’ of T', which contains U;, Us
by the same argument as for T. This proves the claim. (In fact, if Homg (N, Og) is, moreover,
free as T’-module, which is true under the hypotheses of Theorem 5.1.1, then we even get that
IT induces an isomorphism Mg[m] —> Np[m’].)

Now by Theorem 4.4.1(i) and [EGH13, Lemma 7.4.3] any irreducible K-subrepresentation
of S(U", V'), is isomorphic to F(—c — 1,—-b,—a + 1) or F(—a +p — 1,-b,—c — p + 1).
Thus by Corollary 3.1.12(i), if v € Mp[m] is non-zero, then (Kv)r is the unique quotient of
Indf® (W ®w ¢®w?) with socle F(—c — 1,—b, —a + 1). By [Lel5, Proposition 2.2.2] we see
that (Kv)p is the uniserial length 2 representation of shape F(—c—1,—b, —a+1)—F(=b+p—1,
—c,—a). A similar argument shows that (KTlv)p is the uniserial length 2 representation of shape
F(—c—1,-b,—a+1)—F(—c¢,—a,—b—p+ 1). In particular, Sv # 0 by Proposition 3.1.2. O

Remark 4.5.8. Theorem 4.5.2 holds equally well if we replace T in the statement and proof by
the subalgebra Ty C T generated by T” and Us. Assumption (iii) will be verified in § 5 both for
T and for T, under suitable hypotheses. The same comments apply for the subalgebra T, C T,
provided Wy, (7) = {F(a —1,b,c+ 1)} (see Remark 5.3.5).

Remark 4.5.9. Theorem 4.5.2 holds if we replace assumption (iii) by either of the following two
statements:

dimp S(UY, V') [mz] (0= [0y, Uy] = 1; (iii’)
dimp S(UY, V') [mz](-0—ea) = 1, (iii”)

It suffices to note that (iii”) = (iii’) = (iii). The first implication is obvious. For the second, we
have dimp M9 /m = dimp Mp[m] = 1, in the notation of the proof. As in the proof, we may assume
that T/m = F. By Nakayama’s lemma, we have a surjective T-linear map T — M9, which has
to be an isomorphism, as M is a faithful T-module. (Note that assumption (iii”) even implies
that T, = T.)

We now establish the existence of shadow weights in Theorem 4.4.1, thereby completing the
proof of that theorem.

PROPOSITION 4.5.10. Suppose T satisfies assumption (i) of Theorem 4.5.2.

(i) IfFL(7|gy, ) = oo, then F(a,c,b—p+1) € Wy (7).
(ii) IfFL(7|gp,) =0, then F(b+p —1,a,c) € Wy(T).

Remark 4.5.11. Suppose that 7 is as in Proposition 4.5.10(i). Then the proof below shows that

for some non-zero v € S(UY, V') [mz]1(=b:=¢=9)[7} Uy, the K-subrepresentation generated by v
and ITv is of the form

F(-b+p—-1,—¢,—a)® (F(—c—1,-b,—a+1)—F(—¢,—a,—b—p+1)).

In particular, Sv = 0, S'TTv # 0. Similar remarks apply in case FL(7|g,, ) = 0.
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Proof. (i) We follow the proof of Theorem 4.5.2, noting that with our current assumption only
three things change: (a) we get ord,(¢p(p)) < 1 instead of (4.5.6), (b) the natural injection
Mp]®o,F — Mp[m] need not be an isomorphism, and (c) we only know that (Kv)r (for non-zero
v € My[m]) is a quotient of the uniserial representation of shape F/(—c—1,—b, —a+1)—F(—b+
p—1,—c,—a). From (a) we deduce that S = (p/¥y(p))x~1 5" oIl on Mg[pg], so Sv = 0 for
some non-zero v € Mp[m] (but maybe not all, see (b)). Then (c) together with Proposition 3.1.2
implies that (Kv)p =& F(—b+p — 1, —¢, —a) for such v. In particular, F(a,c,b—p+1) € Wy (7).
Part (ii) is analogous. O

5. Freeness over the Hecke algebra

In this section, we prove Theorem 5.1.1, which states that the dual

Home, (S(UY, V)57 0p)

T

of the space of automorphic forms is free over a Hecke algebra under certain conditions on U"
and 7 (and V' and mz are as defined in §4.2).

5.1 The setup
As before, let F'/Q be a CM field in which p splits completely, and let F'* be its maximal totally
real subfield. Assume moreover the following.

(i) The extension F'/F* is unramified at all finite places.

Fix a place w|p of F, and let v df w|p+. Let T : Gp — GL3(F) be a Galois representation with
7|Gy, maximally non-split and generic as in Theorem 4.5.2(i), satisfying the following additional
properties:

(ii) 7 is unramified at all finite places not dividing p;

(iii) 7 is Fontaine-Laffaille and regular at all places dividing p;

)
(iv) 7 has image containing GL3(k) for some k C F with #k > 9;
(v) F"7 does not contain F((p)-

Note that condition (iv), which is stronger than the usual condition of adequacy (see [Thol2,
Definition 2.3]), allows us to choose a finite place v; of F* which is prime to p satisfying the
following properties (see [CEGGPS16, §2.3]):

e vj splits in F' as v = wiw§;
e v; does not split completely in F((p);
e 7(Frob,, ) has distinct F-rational eigenvalues, no two of which have ratio (Nv;)

We choose a unitary group G,p+ and a model 9/0F+ as in §4.1. We note that G is
automatically quasi-split, hence unramified by (i), at all finite places, as we are in odd rank.
(See the proof of [BC09, Lemma 6.2.4].) Let U” = [[,4, Uy < G(AZ]") be a compact open
subgroup satisfying the following properties:

+1

(vi) Uy = §(O FJC) for all places v" which split in F' other than v; and those dividing p;

(vii) Uy, is the preimage of the upper-triangular matrices under the map

§(0 ) — Slku,) —> GLy(l,):

(viii) U, is a hyperspecial maximal compact open subgroup of G(F, U+, ) if v is inert in F.
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The choice of U,, implies that U"U,, is sufficiently small in the sense of §4.1 for any compact
open subgroup U, of G(F,").

As in §4.2 suppose that for each w’ € S,\{w,w} we are given a p-restricted triple a,, =
(G 25 Ay 15 Ay 0) € Z? such that Ay i + ayreo—; =0 for all 0 <4 < 2 and all w’ € Sp\{w, w}.
Suppose moreover that a,s 2 —a, o < p—3, for all w’ € Sp\{w, w}, a slightly stronger condition
than before. Recall that we defined V' = ®v'esp+\{v}F%/ and V' = ®v,€S;r\{v}W%,.

Let P denote the set of finite places w’ of F that split over F* and do not divide p or v1, and
define the maximal ideal my of T” as in §4.2. We make the additional automorphy assumption:
(ix) S(UY, V'), is non-zero.

By Theorem 4.4.1 this implies S(U"S(0p+),V'® F(a — 1,b,¢ + 1))m. # 0 and hence
also assumptions (ii)—(iii) above. As in the proof of Theorem 4.5.2 this also implies that
S, V')i{é_b’_c’_a) is non-zero.

Let T, (respectively T) denote the Opg-subalgebra of
End(S(U”’ f//){réfb,fc,fa)) ) End((S(U”, V/)iéfb,fc,—a))d)

generated by T? (respectively T%, Uy, and Us). Here the subscript ‘a’ stands for the ‘anemic’
Hecke algebra, and the superscript ‘d’ denotes the Schikhof dual (see [CEGGPS16, §1.8]). Note
that T, and T are local Og-algebras (see the proof of Theorem 4.5.2).

THEOREM 5.1.1. Let 7 be as in Theorem 4.5.2(i) with FL(7|g, ) # oo. Assume (i)-(ix) in the
setup above. Then

(S(U?, V)R hmem)d

T

is free over T.

Because of the following lemma, we may assume in the proof of Theorem 5.1.1 that F is as
large as we like. (In fact, for the remainder of this section it will suffice to assume that FE is large
enough such that T,[1/p] = E" for some r and that T/mp = F.)

LEMMA 5.1.2. Suppose that M is a finite free Og-module and that A is a local Og-algebra
acting faithfully on M with A/my =TF. If E'/E is a finite extension and M Qo Op Is free over
A®o, Op, then M is free over A.

Proof. As A/my = F we deduce that A®o,Op is local with residue field Op/mpg:. Pick any
surjection f : A% - M with d minimal. It is easy to see that f ®g »Op is an isomorphism, hence
sois f. O

5.2 The Taylor—Wiles method
Let S be the set of places S, U{v;}. For each place v" in S, fix a place v’ of F' lying over v’ and

let S be the set of these places v'. We will assume that ¥ = w. For places w’ in F, let RS, be
the universal Op-lifting ring of F%wa' For w' € S,\{w,w} let ¥, = ays € Z3 and let RS;#JW
be the framed crystalline deformation ring for F\E/;F of Hodge—Tate weights ¢, + (2,1,0). Let

dp/p+ denote the quadratic character of F/F *. Consider the deformation problem

S & (F/F*,8,8,05, 7,6 26pp+, (RS} ULRSY }orppurs U {RF})
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in the terminology of [CHTO8, §2.3]. There is a universal deformation ring R{™" and a universal
S-framed deformation ring RSDS in the sense of [CHTO08, §2.2]. (We work with deformations of
7V to be consistent with [CEGGPS16]. Note that 7V (Frob,,) is used in our definition of mz in
§4.2.)

Let

~

def Osr = ~
R © & s Ry ® RIE RY

v1?

where all completed tensor products are taken over Op. Choose an integer ¢ > 3[FT : Q] as in
[CEGGPSI16, §2.6]. We introduce the local ring

def
Roo :e RIOC[[Jil, ey xq73[F+:Q]]]7
over which [CEGGPS16] constructs a patched module of automorphic forms. Let 7 o
df (@ Peo o) ®z, Op be the natural Og-lattice in a principal series type over E. In
the following we will identify G(F,") with GL3(Q,) and 5(0p+) with K = GL3(Zy) via 1. We
collect some results from [CEGGPS16].

THEOREM 5.2.1. There exist a map

def
Soo é OEH217~~7Z9#S,?/17- ")yq“ — ROO

and an Ro[[K]]-module My, together with a compatible GL3(Q,)-action, satisfying the following
properties. For a finitely generated O p-module W with continuous K-action, let M,(W') denote
Hom$2" (W, M)V, where -V denotes the Pontryagin dual.

(i) We have that My, is a finitely generated projective So[[K]]-module. In particular, if W is

p-torsion free, then My, (W) is a finite free Soo-module.

(ii) Suppose that W[1/p| is a locally algebraic type (as defined in [CEGGPS16, §4]). Assume
that M (W) is non-zero and let Spec Ro, (W) be its support in Spec Ro,. Then Mo (W) is a
maximal Cohen—Macaulay Roo(W)-module and My, (W)[1/p] is a projective Roo(W)[1/p]-
module.

(iii) Let a def (21, ., 2045, Y1,---,Yq) be the augmentation ideal of Ss. There is a natural
GL3(Qp)-equivariant identification

(Moo /a)* = S(U*, Vg,
which induces a GL3(Q))-equivariant identification
(Moo (7)/a)d 22 S(U?, V')l 707,

Furthermore, there is a surjection R., — T, so that the latter identification iS Reo-
equivariant.

(iv) Let g, denote the prime ideal of R, corresponding to an O g-point of Spec T,, and by abuse,
the corresponding prime ideal of T*. By abuse, let ms also denote the maximal ideal of Re.
Then

(Moo (7) /) 2 S(UY, V') [P0

and
(Moo (7)/mz)¥ 22 S(U, V") [mz](~bmema),
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Note that if W is p-torsion free, we have My (W) = Hom$" (W, ML)4 by [CEGGPS16,
Remark 4.15].

Proof. The construction of My is in [CEGGPS16, §2.8], except that we allow the Hodge-
Tate weights 15 to depend on v/, and we do not include Hecke operators at v; in our Hecke
algebras. Without these Hecke operators, the rank of M., (W)[1/p] as a projective Roo(W)[1/p]-
module in part (ii) is greater than one. Otherwise, the necessary modifications are minor and
straightforward. The map

Soo — OE[[Zly'"729#Say1;"'ayq” - ROO

and the module My are defined in [CEGGPS16, §2.8]. Part (i) follows from [CEGGPSI16,
Proposition 2.10 and the proof of Lemma 4.18(1)]. Part (ii) follows from [CEGGPS16, Lemma
4.18(1)].

The first identification in part (iii) follows from [CEGGPS16, Corollary 2.11]. For the second
identification, we have

(Moo (r)/a)" 2 Hom™ (v, M2 [a] & Hom2™ (r. (Mo /a)")
= (Moo /a0 7070,

where the first isomorphism follows from [CEGGPS16, Remark 4.15] and the final isomorphism
follows from Frobenius reciprocity.

We now define the map R, — T,. The surjection R, — T, comes from the construction in
[CEGGPS16, §2.8], as we now explain. We will freely use the notation of [CEGGPS16, § 2.8] with
the caveat that we exclude the Hecke operators at v; from our Hecke algebras (which allows us
to deduce that the maps from R, to our Hecke algebras are surjections). The patching argument
produces compatible tuples (¢, M, 1, a) of all levels N > 1. Since the intersection () d is 0,
by completeness, the maps ¢ : Roo — Rgni" /0n induce a surjection R, — R‘Smiv. Furthermore, in
the paragraph before [CEGGPS16, Corollary 2.11], a map Rgniv — Tzi(Up, O)m is
described as the inverse limit of maps R — ']I“;”T (Um,O)m (or equivalently of maps
RymY T?I;_(UQ N, O/ )m) at finite level. Using the explicit generators given by the surjection
TSpouniv _, T?”T (UP,0)m (again for us with operators at v; excluded) and [CHTO08, Proposition
3.4.4(2)], each of these maps at finite level is surjective. By completeness, the map Rgni" —
’]I‘ZI’T(U P.O)m is surjective. We conclude that the composition Ro, — REMY — ’]I";i(Up, O)m is
surjective. Composing with the natural map Tz’;(UP, O)m — T, gives a surjective homomorphism
Ry — T,.

The proof of [CEGGPS16, Corollary 2.11] shows that the first identification of part (iii) is
R.o-equivariant, with R, acting via the map Rgni" — ’]I‘?Z’T (UP, O)m on the right-hand side, since
at each finite level N, the map 1 : MY/a => §§7T(U2N, O/ ) is Roo-equivariant, with R
acting via the map Ry™Y — T?‘;(UQN, O/@w™)m on the right-hand side. This shows that the
second identification is also Ro.-equivariant, with R., acting on the right-hand side via the map
R — T, constructed above. Part (iv) follows from part (iii), noting that a C ker(Ro — T,)
by part (iii). O

Let R be the Roo-subalgebra of Endr_ (Moo (7)) generated by Uy and Us.

LEMMA 5.2.2. The ring R is local with maximal ideal (mz, Uy, Us).
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Here, by abuse, m7 denotes the image of the maximal ideal of R, in R.

Proof. As My (7) is a finitely generated Roo(7)-module, we deduce that the ring extension
Roo(7) C R is finite, hence myz C rad(R). In particular, a C rad(R), and hence also vaR C rad(R).
By Theorem 5.2.1(iii), the action of R /a on My (7)/a factors through T,, and hence the action
of R/a on My (7)/a factors through T, giving rise to a surjective homomorphism R/a — T. As
the action of R on My (7) is faithful, the R/a-module M (7)/a has full support by [Tay08,
Lemma 2.2] (i.e., is nearly faithful in the terminology of [Tay08]). Since T is reduced, we get an
induced isomorphism (R/a)yeq =5 T. It follows that R is local, and U; € mp, as U; € mp by the
proof of Theorem 4.5.2 (i = 1, 2). It is then easy to see that mp = (mz, Uy, Ua). O

We now show that Theorem 5.1.1 follows from the following theorem.

THEOREM 5.2.3. Let 7 be as in Theorem 4.5.2(i) with FL(7|g,, ) # 0o. The module M (T) is
finite free over R.

Proof of Theorem 5.1.1. As My (7) is finite free over R by Theorem 5.2.3, M. (7)/a is finite free
over R/a. Hence the natural surjection R/a — T considered in the proof of Lemma 5.2.2 is an
isomorphism. We complete the proof by Theorem 5.2.1(iii). a

5.3 The Diamond—Fujiwara trick
In this section, we prove Theorem 5.2.3 using the method of Diamond and Fujiwara. Let B C
GL3,z, be the algebraic subgroup of upper-triangular matrices. For a dominant character A of B,

let W, () be the algebraic induced module (IndgL3 wo )8 ®z, O R, considered as representation

of K = GL3(Zp). (This is the characteristic 0 version of the module defined in §3.) Let W dof

Wo,(—c—1,-b,—a+1).
PROPOSITION 5.3.1. The module My, (W) is non-zero and finite free over its support in R.

Proof. Note that F(—c — 1,—b,—a + 1) = W ®g, F by [Her09, Proposition 3.18(ii)]. Hence
M (W) # 0 by Theorems 4.4.1 and 5.2.1(iii), as well as [Lel5, Proposition 5.1.1]. Let o

(a—1,b,c+1) and
def ~ D,Tﬁg/ =
ROO(W)/ = ®v’|p - ®R§Dl [[.%’1, ... 7xq73[F+:Q}H>
where R?’W is the framed crystalline deformation ring for ?|éF~ of Hodge-Tate weights

Yy + (2,1,0). Then Mo (W) is supported on Spec Roo (W) by [CEéGPSlG, Lemma 4.17(1)].
(Note the dual in the definition of ‘Hodge-Tate weights prescribed by oay’ in [CEGGPSI6,
§4].) By the proof of [CEGGPS16, Lemma 4.18], M. (W) is a maximal Cohen-Macaulay
Roo(W)'-module. By the choice of vy, Rgl is formally smooth over Op, see [CEGGPSI6,

Lemma 2.5]. By [CHTO08, Lemma 2.4.1], RED,’%' is formally smooth over Op for all v'|p. As
Roo (W) is a regular local ring, My (W) is a projective and hence free R (W )-module by the
Auslander-Buchsbaum—Serre theorem and the Auslander-Buchsbaum formula. O

Let n be the (free) rank of My, (W) over its support.

LEMMA 5.3.2. Let T be as in Theorem 4.5.2(i) with FL(7|q,, ) # oo. The R-module M (7) is
generated by n elements.
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Proof. Let T def ®o, F. By Nakayama’s lemma, it suffices to show that My (7)/(mz, Uy, Us)
has dimension n. Consider

(Moo (T)/(mz, Uy, Us))Y = Homg (7, ML) [mz, Uy, Us]
=~ Homg (7, Mg/o[mﬂ)[Ul, Us)
=~ Homg (7/M, M) [m]
= (Moo(7/M) /mz)",

where the third isomorphism holds by Lemma 3.1.11, and where M is the minimal
subrepresentation of 7 containing F(—c,—a,—b —p+ 1) and F(—a+p —1,—-b,—c —p+ 1)
as Jordan—Holder factors. By the isomorphism My (7)/(mz, U, Us) = Moo (T /M) /mz, it suffices
to show that M. (7/M)/mz has dimension n. By [Lel5, Proposition 2.2.2] and Theorem 4.4.1,
M is of length 3 and (7/M)" contains no element of W,,(7) other than F(a —1,b,c+ 1). Hence
by [Lelb, Proposition 5.1.1], the natural inclusion Moo (F(—c —1,—b,—a+ 1)) = My (7/M) is
an isomorphism. We conclude that the maps

Mo (W) /mz — Moo (F(—c—1,-b,—a+1))/mz = Moo (T/M)/mz
are isomorphisms of n-dimensional F-vector spaces, by definition of n. |

Proof of Theorem 5.2.3. By Lemma 5.3.2, we can and do fix a surjection R" — My (7) with
kernel P. This induces an exact sequence

0 — P[L/p] — (RIL/p)" = Muo(7)[1/p] — 0. (5.3.3)

We now freely use the notation of [CEGGPS16, §4]. First, we note that R (7)[1/p] = R[1/p]
is an isomorphism by [CEGGPS16, Theorem 4.1 and Lemma 4.17(2)]. Note that while the
construction of M, is slightly different in this paper, the proof of Lemma 4.17(2) still applies
verbatim.

By [EGH13, Proposition 2.4.7] (and its easy converse) 7 ®o, Q, is an irreducible smooth
representation of K that is associated to the inertial type @ @@ ¢ @@~ by the inertial local
Langlands correspondence [CEGGPS16, Theorem 3.7]. Hence by Theorem 5.2.1(ii), Moo (7)[1/p]
is a projective R (7)[1/p]-module. We claim that it is of constant rank n. The rank is clearly
no larger than n by (5.3.3). Thus it suffices to show that each irreducible component of
Spec(Roo(T)[1/p]), or equivalently of Spec Ry (7), contains an E-point over which the fiber
of M (7)[1/p] has E-dimension at least n.

First, we claim that each irreducible component Z of Spec Ro(7) has an E-point in the
closed subscheme Spec T,. Indeed as My (7) is finite free over So, by Theorem 5.2.1(i), Roo(T)
is a subring of a matrix ring over S, and hence a finite torsion-free Soo-module. From this, we
see that R (7) is Cohen-Macaulay and in particular equidimensional. As Z — Spec S is a
finite map between irreducible schemes of the same dimension, it is surjective. In particular, the
base change Z Xgpecs., Spec(Sec/a) C Spec Roo(7)/a has a non-empty generic fibre. Just as in
the proof of Lemma 5.2.2, we have an isomorphism (Reo(7)/@)req —> Tq. Since E is sufficiently
large, Spec(T,[1/p]) is a union of copies of Spec E. We conclude that the underlying reduced
subscheme of the generic fiber of Z Xgpec 5., Spec(Ssc/a) is a non-empty union of copies of Spec E
in SpecT,.

Second, we claim that for each Opg-point of Spec T, with corresponding prime ideal p,,
Moo (7) /9, has generic rank at least n. Let M be the minimal subrepresentation of 7 containing
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F(—c—1,—b,—a+1) as a Jordan-Hélder factor. By [Lelb, Proposition 2.2.2] and Theorem 4.4.1,
(7/M)" contains no element of Wy, (7). By [Lel5, Proposition 5.1.1], the natural map Mo (M) —
Mo (7) is an isomorphism. The natural surjection My, (M) - Moo (F(—c—1,—b,—a + 1)) gives
a surjection Moo(T) - Moo(F(—c — 1,—b,—a + 1)), and therefore a surjection M (7)/mz —
Moo (F(—c—1,—b,—a+1))/mz. Since Moo (F(—c—1, —b, —a+1))/mz has dimension n by definition
of n, M (T)/mz has dimension at least n. For any O g-point of Spec T, with corresponding prime
ideal g, Mo (T)/pr is p-torsion free by Theorem 5.2.1(iv) and so has generic rank at least n.
As Moo (7)[1/p] is projective of rank n over R[1/p] (& Roo(7)[1/p]), we conclude by (5.3.3)
that P[1/p] is projective of rank zero and hence 0. As R is p-torsion free, P is 0. O

Let Ry be the Roo-subalgebra of Endgr_  (Ms (7)) generated by Usa, and let Ty be the Op-
subalgebra of End(S(UY, V' ),I,{éfb’fc’fa)) generated by T% and Us.

THEOREM 5.3.4. Let T be as in Theorem 4.5.2(i)—(ii). We have Ry = R and Ty =T, i.e. U1 € Ry
and Uy € Ty. Moreover, S(U?, V') [mz]1(=b=c=a)[1]y] = S(U?, V') [mz] (=001, Uy).

Proof. The argument for Theorem 5.2.3 goes through to show that the module M. (7) is also
finite free over Rg, and the free rank is the same as for R. (The main thing that changes in the
proof is that the analogue of M in the proof of Lemma 5.3.2 now has length 2, and we need
that FL(7|q,, ) & {0,00} in order to deduce that (7/M)" contains no element of W, (7).) Now
Ry C R is a finite ring extension, hence mp N Ry = mp,. As E is sufficiently large, the residue
fields of Ry and R are both equal to F. It follows that the surjection My (7)/mp, = Mo (7)/mp
is an isomorphism. Therefore any Rs-basis of My (7) is also an R-basis, so R2 = R. The other
claims follow. a

Remark 5.3.5. If Wy, () = {F(a—1,b,c+1)}, then we even deduce (by the same argument) that
Reo(T) = R, T, = T, and that Uy, Uy annihilate S(U?, V’)[mgz]5(-b—¢—a),

Remark 5.3.6. The analogues of all the above results in this section hold for the ‘dual’ lattice

o def Indf (R *@w?) ®z, Op, provided one interchanges Uy with Uz and the condition

FL(|q,, ) # 0o with FL(F|g,, ) # 0.

We now show that Theorem 4.5.2 applies to Galois representations of any possible invariant
outside 0, co.

THEOREM 5.3.7. Suppose that p : Gg, — GL3(FF) is upper-triangular, maximally non-split, and
generic. Then, after possibly replacing F by a finite extension, there exist a CM field F', a Galois
representation 7 : Gp — GL3(F), a place w|p of F', groups G ,p+ and S/0,,+ and a compact
open subgroup UV (where v = w|p+) satisfying all hypotheses of the setup in § 5.1 such that
F‘GFw =p.

In particular, if FL(p) ¢ {0,000}, Theorem 4.5.2 applies to T.

Proof. We suppose that p is as in (2.1.1) with (az,a1,a0) = (a, b, c). We note that p satisfies the
two hypotheses of [CEGGPS16, §2.1]: p1 6 by genericity, and p has a potentially diagonalizable
lift of regular weight: for example, by Corollary 4.4.4 or by [GG12, Lemma 3.1.5] there exists
a crystalline lift with distinct Hodge—Tate weights in the Fontaine-Laffaille range. Therefore
the procedure of [CEGGPS16, §2.1], building on [EG14, §A], yields a ‘suitable globalization’
7 : Gp — GL3(F) (after possibly replacing F) for a CM field F with F/FT unramified at all
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finite places. For each place v’ € S;L there exists a place v’ of F' lying over v" with Fiy = Q, and
T|gp, = p, which is Fontaine-Laffaille and regular. We see that hypotheses (ii)—(v) in §5.1 are
satisfied.

Choose a unitary group G with integral model G as in §5.1. Fix any v € S;’, let w % v, and

define V' = ®v/eS;\{v}W%' with ay = (a—1,b, c+1) for any o' € S\ {v}. There exists a compact
open subgroup U =[], Uy < G(AY,) with Uy = S(OFJ?) (respectively U, hyperspecial) for all

places v" which split (respectively are inert) in F' such that S(U?, % Jm- 7 0, where P and my are
defined as in §5.1. (Note that a priori the proof of [EG14, Corollary A.7] does not give us any
information about the type (A, 7) in [EG14, Definition 5.3.1]. However, we can get the desired
type by choosing appropriate lifts locally at places dividing p in applying [BLGGT14, Theorem
4.3.1] in the proof of [EG14, Lemma A.5].) By choosing a place v; and redefining U, as in §5.1,
we see that hypothesis (ix) in §5.1 is satisfied. O
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Appendix A. Some integral p-adic Hodge theory

The first aim of this appendix is to collect some results in integral p-adic Hodge theory. Several
of these are slight generalizations of known results in the literature, incorporating coefficients

and descent data. The second aim of the appendix is to prove some lemmas and propositions of
§62.2 and 2.3.

A.1 On certain categories of torsion modules

The goal of this section is to recall the definition of various categories of p-torsion modules with
additional structures (Breuil modules, Kisin modules, ¢-modules) and the relations between
them.

Recall that Ko = W(k)[1/p] and that K = Ky(w), where w = —p and e > 1 divides
pl*Fpl —1. Also recall our definitions of S = k[u]/u® and Sw (k) in §2.2. We will always suppose
that 0 < 7 < p — 2. For the purpose of establishing Proposition 2.2.1 we will consider general e,
but sometimes we will specialize to e = 1. We hope that this will not cause any confusion.

If A is any additive category we let F-A denote the F-linear additive category whose objects
consist of pairs (A,i), where A € A and F — End(A) is a ring homomorphism (the morphisms
are the obvious ones). We will often use below, without further comment, that a functor A — B
of additive categories gives rise to a functor F-A — F-B.

We consider the general setting of §2.2.1. In particular, we write BrMod” to denote the
category of Breuil modules over S; and BrMod], for the category of Breuil modules without
monodromy (also called quasi-Breuil modules), defined in the evident way. Note that these
categories are respectively denoted by ﬁr, ﬁg in [Car06, Bre99b].

In [Bre99a, §2.2.1] (cf. also [Car06, § 2.1]) the authors introduce certain categories of modules,
noted as M", M{. We actually only consider their full subcategories formed by p-torsion objects,
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though we keep the same notation. The objects of these subcategories are finite free modules
over Sy (k)/PSw (k). We have the following commutative diagram:

M —L - BrMod”

|

My —— BrModj
Jo

where the functors T, Ty inducing equivalences of categories are defined in [Bre98, §2.2.2] when
e = 1 and [Car06, §2.3] in general, and the vertical arrows are forgetful functors. (Strictly
speaking, this diagram and the ones that follow only commute up to equivalence.)

Choose a sequence (pp), € @§ verifying ph | = (—1)P~1p, for all n and pog def —p, SO
NKo(pni1)/Ko(pn) Pnt1) = P Let k((p)) be the field of norms associated to the field extension
(K0)oo/ Ko, where (Kp)oo e Unen Ko(pn), and let k[[p]] be its ring of integers. In particular, p
is identified with the sequence (pp)n. We write Mody ., for the category of (¢, k[[p]])-modules

of height less than or equal to r defined in [Bre99b, §2.3].
We have an equivalence of categories:

(cf. [Bre99b, §4], where the functor is noted by ©,.).

We finally define the category 9MMody((,)) of étale (¢, k((p)))-modules as the category of finite-
dimensional k((p))-vector spaces ® endowed with a semilinear map ¢ : ® — ® (with respect
to the Frobenius on k((p))) and inducing an isomorphism ¢*® — D (with obvious morphisms

between objects).
By work of Fontaine [Fon90], we have an exact anti-equivalence

F—Sﬁook(@) AN RGPF(G(KO)OO)
D +— Hom(D, k((p))*P).

When e = 1 we have the fully faithful embedding ¥, : L1 — BrMod} of [Bre99b, §5] (via
the equivalence Ty above). By composition we obtain a fully faithful functor

F

Fgglor I, F-BrModj, <— F- Dﬁobk[[p” — F-DMody (),

where the last functor in the sequence is localization at p (which is fully faithful by [Bre99b,
Proposition 2.3.7]). a

We are now going to define the analogous categories and functors with descent data. Recall
that w = /—p € K. There is a unique sequence (wy), € @S such that wf = pp, wh, | =
(—1)P~1e, for all n, and wo . n particular, Nk, . 1)/K(wn)(@nt1) = @n. By letting
Ko ¥ Unen K (7on) we have a canonical isomorphism Gal(Koo/(Ko)o) — Gal(K/Kj) which
lets us identify we with a character of Gal(K s /(K0p)oco)-

As w® = p and e divides |k*|, the field of norms k((w)) associated to K /K is a cyclic
extension of k((p)) of degree e. Note that Gal(K./(Kp)eo) = Gal(k((m))/k((p))) acts on k((w));
concretely this action is determined by ¢ - @ = we(g)w for g € Gal(Kuo/(K()oo)-

2275

https://doi.org/10.1112/50010437X17007357 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X17007357

F. HErziG, D. LE AND S. MORRA

We write 2ody;; for the category of (¢, k[[w]])-modules of height less than or equal to r,
described in [Carll, §2.1] (where it is denoted by Mod/e) By [Carll, Théoreme 2.1.2] (building

on Breuil [Bre99b, Théoreme 4.1.1]) we have an exact equivalence of categories

We define in the evident way the category DMMody . qq consisting of (¢, k[[=]])-modules

(@
endowed with a descent data from K to Ky, i.e. a semilinear action of Gal(K~/(Kp)so) that

commutes with ¢ (the morphisms now being required to be compatible with the descent datum).

LEMMA A.1.1. There exists an exact covariant functor
MG : ]F—mUOZ[[z”,dd — F—BrMOdeD
which establishes an equivalence of categories.

Here, the category F-BrModg, ; has the same definition as F-BrModg4, except that we drop
monodromy.

Proof. We may assume that F = [F,. By above we only need to check compatibility with the
descent data. For this we follow the strategy outlined in [EGH13, proof of Proposition 3.2.6].
More precisely, given an object 9 € fmobz[[z]] qq and an element g € Gal(K/Ky) we define its
twist M) as k[[w]] ®g k[ M with ¢ acting diagonally. It is easily checked that me) e MOD} (]

and that § : 9 — 991 induces a morphism g : M) — M in 9)?007,;[[@”; moreover, gi\L =go h9)
for any g,h € Gal(K/Kj). It is formal to verify that the datum of a family of morphisms
G : M) — M verifying the cocycle relation is equivalent to a descent datum on M from K to
K.

Recall now that the functor Mg : fmob};[@” — BrModj is defined as the base change induced
by the morphism k[[@]] — Sj, — S, where the first map sends 3 A\ to S Ajuf. Therefore
Mg (M) = (Mg(MM))9), where the twist in the right-hand side is the one defined in [EGH13,
proof of Proposition 3.2.6].

By functoriality, the quasi-Breuil module M = def Mg (9M) is thus endowed with a family of
morphism M) — M verifying the above cocycle relation, i.e. M is endowed with descent data
from K to Ky. We conclude that the composite functor Emobk[[ I,dd — i)ﬁobk[[w] -~ BrMod},
factors though BrModgjy g — BrModg. Its exactness and the induced equivalence follow as a
formal consequence of the analogous properties of Mg, cf. [Carll, Théoreme 2.1.2]. |

We can finally introduce the category 900y, ((x)),da of étale (¢, k((z)))-modules with descent
data: an object ® is defined in the analogous way as for the category 9100y,(,)), but we moreover
require that © is endowed with a semilinear action of Gal(K/Kj) that commutes with ¢.

We can now define a functor by composition:

My (=)
F- BrModjy —— F-BrMody o <M;C F-0M007 111 da » F-DN00dy,((w)),dd

A.2 Some basic lemmas on Breuil modules
LEMMA A.2.1. Let N be an S-submodule of a Breuil module M € F-BrMod”. Then N is an
Si-direct summand of M if and only if N is free as S-module.
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Proof. By Baer’s criterion the noetherian ring S}, is self-injective; in particular an Sj-module is
injective if and only if it is projective. As Sy, is local, N is an Sj-direct summand of M if and only
if N is free as Sp-module. This is equivalent to N being free as S-module by [EGH13, Remark
3.2.1]. a

LEMMA A.2.2. If M € BrMod", then Fil" M/u® Fil" M is a free k[u] /u®-module of rank rankg, M
and the map B
Sk Qo k[u] Jue Fil" M/u®Fil" M — M (A.2.3)

given by 1 ® ¢, is an isomorphism.
Proof (Cf. [Bre98, Lemme 2.2.1.2] when e = 1). As M is finite free over Sj and u"M C Fil" M

the first claim follows. Clearly the map (A.2.3) is well defined and surjective. It is an isomorphism
for dimension reasons. 0

COROLLARY A.2.4. If M e M", let
Fil™ ! M X (Fil Sy ) (FII7 M) + (FiUH Syp )M
Then the natural map
Fil” M/ Fil" ™ M — Fil” T(M) /u Fil" T(M)

is an isomorphism of Sy )/ (p, Fil! Swk)) = k[u] /u®-modules, and the map

Sw () /P D kfu] fue FiI” M/ Fil" 1 M - M (A.2.5)
given by 1 ® ¢, is an isomorphism.
Proof. The first claim follows, as ker(M — T(M)) = (Fil” Sy ))M C Fil" ™1 M. Thus by

Lemma A.2.2 both sides of (A.2.5) are free Syy(;)/p-modules of the same rank. As Sy is

local, it suffices to check that (A.2.5) is an isomorphism after the base change Sy xy/p — Sk,
and hence we have finished by Lemma A.2.2. a

A.3 Functors towards (Galois representations
The aim of this section is to briefly recall the constructions of various functors towards Galois
representations defined on the categories of § A.1.

The functors towards Galois representations are defined via certain period rings introduced
in [Bre99a, §2.2.2] (cf. also [Car06, §§2.2 and 2.3]). We have a natural surjective morphism
Swk) —> Si, as well as Sw (x)-algebras Ast, Acris, which are endowed with an action of Gx. We
have the following commutative diagram:

l l (A3.1)

Acris /P — Acris ©5,,4, Sk = Ao

which becomes equivariant by endowing the ringslzzl\, A\Q with the actions of G, Gk, inherited
from Ast/p, Aeris/p, and Sj. The choice of w lets us extend these actions to G, (respectively

! We remark that the rings A\, ;[0, Acris/p admit alternative descriptions. We refer the reader to [Car06, §§2.2
and 2.3], where it is shown (Lemme 2.3.2) that Aeis/p = RPT, RP being a certain period ring introduced in
[Bre99b, § 3.2], and where the ring A is explicitly described.
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G (K)o 1D the case of EO), as explained in [EGH13, §3.1]. The horizontal maps in the diagram
are then G ,-equivariant, while the vertical maps are G ), -equivariant.
Let us consider the contravariant functors

M — Repy, (GK) My — RGPJFP(GKOO)
M — HOHI(M Ast/p) MO g H0m<MO7AcriS/p)

(where homomorphisms, here and in the following, respect all Structures) and their analogues
on the categories BrMod", BrMody,, defined by replacing the rings Ay /D, Acris/p with A Ao
respectively. (The functor Hom(—, E) on the category BrMod" is often denoted by T%. This is
compatible with the notation T} in §2.2 for the functor on the category F- BrMody,.)

These functors have been extensively studied in [Bre99a, §2.3.1], [Bre99b, §§3.2 and 4],
[Car06, §§ 2.2 and 2.3] and the morphisms between the various period rings (A.3.1) induce natural
transformation between the functors toward Galois representations. The following result provides
us with a precise description of the relations between the categories and functors introduced
above.

PROPOSITION A.3.2. The natural maps (A.3.1) induce a commutative diagram

Hom(—,gst /p)

e
F-M" ——~—— F-BrMod o Repp(Gk)

res

Hom(—,A
F-Mj, * F-BrModj % Repp(Gk..)

\—//"

Hom(fyAcris/p)

where the unlabeled morphisms are forgetful functors.

Proof. We may assume that I = [F,. The left square is commutative by above, and the external
square is commutative by [Bre99a, Lemme 2.3.1.1].

We now indicate why the upper and lower triangles are commutative, completing the
proof. For the upper triangle this follows from [Car06, Proposition 2.3.4]. However, the second
paragraph of the published proof needs to be fixed as follows. (We thank Xavier Caruso for
the argument.) Given ¢ : T(M) — A, we get an induced map P Fil"T(M) — - Fil" A. Also, as
o, Kkills the kernel of the map Ast /p — A we get an induced map @, : Fil" A — Ast /p. The
composite @, o ¢ induces a map Fil” T(M) /u¢ Fil” T(M) — Ay /p that is linear with respect to
the homomorphism ¢ : k[u]/u® — Sw (k) /p. Extending scalars, and using the isomorphisms of

Corollary A.2.4, we get an Syy(y)-linear map ¢ : M — Est /p. Tt is now straightforward to check
that 1 lifts ¢ and that ¢ is compatible with all structures. (We note that the results of [Car06]

that we cite do not depend on the assumption er < p — 1 made there.)
The lower triangle is commutative by an analogous argument. |

Recall the rings k[[p]], k[[w]] introduced in §A.1. The theory of the field of norms
[Win83] lets us endow the ring k[[=]]® = k[[p]]® with an action of Gk, in such a way that
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the natural morphism

k[[pﬂs - Acris/p (A33)

becomes G/ . -equivariant (cf. [Bre99b, §4.2], where k[[p]]® is noted by X*; note that we need
to take the composite of ¢ : X* — R in [Bre99b, §4.2] with the natural map R — RPP = A i /p).

We have an exact, contravariant functor Hom(—,k[[p]]°) toward Galois representations
(cf. [Bre99b, §2.3], [CL09, §2.1]).

PROPOSITION A.3.4. The morphism (A.3.3) and the equivalence Mg induce a commutative
diagram as follows.

F—BI‘MOdS m RepF(GKoo)
om(—,Aq

Hom(—k[[p]]*)

F-DMody )

Proof. By Proposition A.3.2 the result follows from [Bre99b, Proposition 4.2.1] (which is stated
for e =1 but whose proof generalizes line by line to the case e > 1). O

We consider finally the category of (¢, k((=w)))-modules. By a classical result of Fontaine
[Fon90], we have an anti-equivalence

Qﬁﬂak((z)) AN Repr(GKOO)
D +— Hom(D, k((p))*)
and it is an exercise to prove that the composite functor
Mod((e)) a0 = MOV ((a)) = Rep, (Grce)

factors naturally through the restriction Repg, (G (k,),,) = Repr,(Gk..). Indeed, for any g €
G (ko) | € Hom(D, k((p))°) we define the element

def ~—1
g-f=gofog , (A.3.5)
where g denotes the endomorphism of D associated to § € Gal(K s /(Kp)oo) via the descent data.

It is easy to see that the assignment (A.3.5) is well defined and endows the former Hom-space
with a continuous Gk, -action, thus providing us with the claimed factorization of functors.

LEMMA A.3.6. The base change along k((p)) — k((m)) induces a commutative diagram of
equivalences of categories as follows.

F-DN00y,((x)), dd

IR

RepIF(G(KO)OO) = | = ((p) F (=)

1%

F-DMody, ()

Proof. We assume that F = F,. For commutativity one just observes that for any (¢, k((p)))-
module Dy, the natural isomorphism

Hom g 1)) (Do, k(())*) —> Homg k((m))) (Do @r((p)) k(@) k((0))*)
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is G (f,)..-equivariant once we endow the right-hand side with the G, -action induced by the
descent data on Do ®j((p)) k((z)). The vertical arrow is an equivalence by Galois descent for
vector spaces. - O

As in the case of (¢, k((w)))-modules, the contravariant functor Mo0% 1)) ,aa = MOV =

Repp, (Gk..) factors through the restriction Repg (G(r,),,) = Repg,(Gk. ) and we have the
following lemma.

LEMMA A.3.7. The functor BrModgy — BrModgq g = Mo0% (1)), aa fits into the following
commutative diagram.

F-BrMod{jq —— F-90d} 1 4q

T;tHom(—,A\)J/ JHom(—Jﬂ[[p 1%)

RepIF(GKo) & RepF(G(Ko)oo)

Proof. As usual we prove the result when F = F,. Combining Propositions A.3.2 and A.3.4 we
have a commutative diagram (the arrows being the evident ones):

BrModjq ——— BrMod{q g ¢—— 9001 44

J J |

BrMod” ————— BrModj ¢ Mod},

| J |

Repr, (Gx) — Repy, (GKk..) == Repy, (Gk..)
where the natural functorial isomorphism on the right-hand side
Hom(Me(—), Ag) — Hom(—, k[[p]]*) (A.3.8)

is induced by the morphisms between the period rings described by (A.3.1), (A.3.3). By using
twists as in the proof of Lemma A.1.1 and the fact that the morphisms between period rings
are ()., -equivariant, it follows that (A.3.8) is compatible with the G g, -action induced by
the descent data assignment (A.3.5). An analogous argument applies to the left-hand side of the
diagram. O

In a similar fashion, we obtain the following.

LEmMMA A.3.9. The localization functor F-ﬂﬁob};“w”’dd —> F-M00y((x)),aq induces a commutative
diagram as follows. o

]F-E):RUD};HE”’ dd — F-mobk((z))7dd

Proof. Without descent data this is [Bre99b, Lemme 2.3.3] (the latter being stated for e =
1 but its proof generalizes). The statement with descent data follows now as in the proof of
Lemma A.3.7 (noting that k[[p]]* — k((p))® is obviously Gk, -equivariant). 0
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A.4 On dualities
We recall that we have a notion of duality on the category F- BrMod,; more precisely, there is
an involutive contravariant functor

F- BrModgq — F-BrModj,
M - M*

such that TL (M) = TE (M*). For details, see [EGH13, Definition 3.2.8] (building on work of
Caruso [Car(05, Chapitre V]).

A.5 Proofs of some results in § 2.2

Proof of Proposition 2.2.1. As usual we may assume that F = F,. By Lemmas A.3.6, A.3.7
and A.3.9 the commutativity of the upper square and of the right triangle in the statement of
Proposition 2.2.1 is clear. Concerning the lower square, we consider the fully faithful functor
F, o : FLOPA 5 BrModP~? defined in [Bre98, §2.4], which extends the functor of the same
name considered in § A.1. On the other hand, we have the functor My () : BrMod?~—? —
OMody((p)) obtained by specializing the functor My, (z)) of §A.1 to the case when e = 1. The
diagram

Repg, (Gr,) — Repr, (G k) s)

LA

5 My,
FLOP2 222, BrMod” 2 — 2L Mody )

commutes: for the triangle, see [Bre98, Proposition 3.2.1.1], whereas the square is the
specialization of the upper square of the statement of Proposition 2.2.1 to the case when e = 1.
The composite morphism F£0P~2 — Repr(G( Ko)eo) 18 fully faithful, as the functor F in § A.1
has this property. O

Proof of Lemma 2.2.4. Lemma A.2.2 shows that ¢, induces a Gal(K/Ky)-equivariant and ¢ ® 1-
semilinear isomorphism Fil” M/uFil" M —> M/uM. We complete the proof by Nakayama’s
lemma and the semisimplicity of (k ®p, F)[Gal(K/Ko)]. O

Proof of Lemma 2.2.6. By passing to the new basis e - A we may assume, without loss of

generality, that A = 1. As v M C FiI" M we deduce that u®" = VZ’ in M,,(5) for some V' €
M,,(S). Letting V' € M, (k ®F, F[[w]]) denote any lift of V such that Vi; € (k ®, F[[=]]) p—laja;

w

we see that @ = VIW = WV for some W € M, (k ®F, F[[z]]). Let ¢* denote the basis of M*

that is dual to e, and let f* o e* - "W, where W € M, (S) denotes the reduction of W. One

easily computes that f e Fil'M and or(fF) = e for all i. As ¢, induces an isomorphism
Fil” M* /uFil" M* — M*/uM* (cf. the proof of Lemma 2.2.4), it follows that f* generates
Fil” M as S-module. Also, gef = (w-%(g) @ 1)e}.

Define M € F'MUDZ[[Q}],dd of rank n by giving it basis ¢ and defining the maps ¢, g by

Mat,(¢) = 'V and Ge; = (w_pila" (9) ®1)e;. (It is easy to check that 91 is of height less than or
equal to 7, and the condition on V;; above implies that go ¢ = ¢ 03g.)
We can compute M’ def Mg (9) without coefficients and descent data by the recipe in [CL09,

§2.1], so M/ = S, @ kf[w]) M- It has S-basis €’ def g ®, ¢. By functoriality, M has an F-action
with A € F acting as 1 ® A. By the twisting argument of the proof of Lemma A.1.1, M’ has
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descent data with g € Gal(K/Kj) acting as g ®g. Letting f’ def e W, it is easy to check that
fI € FiI' M and ¢, (f]) = €] for all i. In particular, as above, we deduce that f’ generates Fil” M/
as S-module. Also, gej = (wz% (g) ® 1)ej. Hence M = M* in F-BrModgg o O

w

Proof of Lemma 2.2.7. In the following e = 1, so Sy = k[u]/uP. Note that N o Fp—2(M) €

IF‘—B]rModlg_2 has S-basis e (or more precisely 1®e € Sp @ M ). A computation shows that
Fil’"?N has generating set f with Mat (Fil’"?N) = Diag(uP~2"™0, ... uP~2 ™n-1) and
Matgi((pp_g) =F.

We now apply Lemma 2.2.6 with e = 1 and M = N*, noting that Mj,(,))(N) = F(M) in this
case. B O

Proof of Lemma 2.2.8. This is elementary. Indeed, by (2.2.9), one has
(V +u "M B = AV

Q.

for some element M € M,,(S). By considering descent data, we see that f, e, (V +uctr D A

is a framed generating family of Fil” M and one has B
Mate s (¢r) = Mate f(¢r) = A.

Note that f = V'=f ' B-As B € GL, (S) and by considering descent data, we see that f isa
framed system of generators for Fil” M. The last statement follows from ¢, (f') = o, (f Dp(B) =

e- Ap(B) = ¢ - p(B). O

A.6 Proofs of some results in § 2.3
Recall that in Definition 2.3.1 we defined the notion of a Breuil submodule.

Proof of Lemma 2.3.2. We note that N is a finite free S-module by Lemma A.2.1. Let Fil" N def

Fil" M NN, so uN C Fil"N. The map Fil" N/u® Fil" N — Fil” M/u® Fil" M is injective (as N is
an Sg-direct summand). It is in fact a split injection of k[u|/u-modules by Lemma A.2.2, as
klu]/u® is self-injective. Thus, using again the same lemma, we have the following commutative
diagram.

Sk @ kfulfue Fil' N/uf Fil" N—— Si @, g1 jue Fil” M/uf Fil" M

1®¢TJ :Jl@@r

N¢ M
It follows that the left vertical map is injective, hence surjective by dimension reasons. It is now
obvious that N inherits from M the structure of a Breuil module with descent data.

By defining Fil"(M/N) def (Fil" M 4+ N)/N = Fil" M/Fil" N we see that the Frobenius ¢, on
Fil” M naturally induces a semilinear morphism ¢, : Fil"(M/N) — M/N and it is immediate that
the triple (M/N, Fil"(M/N), ¢,) inherits the structure of a Breuil module with descent data.

By construction, the complex 0 - N — M — M/N — 0 is an exact sequence in F- BrMod} .
The last statement in the lemma is obvious. O

Recall that given an exact sequence

0= My 5> ME My >0

in F- BrMod}4, the morphisms f and g are respectively said to be an admissible monomorphism
and an admissible epimorphism.
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LEMMA A.6.1. Let f: M — N be a morphism in F-BrMody,. Then we have the following.

(i) The morphism f is an admissible epimorphism if and only if f induces S-linear surjections
M — N and Fil" M — Fil" N.

(ii) The morphism f is an admissible monomorphism if and only if f induces an S-linear
injection M — N and Fil" M = f~}(Fil" N).

Proof. The ‘only if’ part, in both (i) and (ii), is obvious. Let us assume f : M — N induces
S-linear surjections M — N and Fil” M — Fil" N. Then ker(f) is clearly a Breuil submodule of
M; by Lemma 2.3.2 it is an object in F- BrModjj; and the complex 0 — ker(f) - M - N — 0
is an exact sequence in F- BrMod.

Assume now that f induces an S-linear injection M — N and that Fil" M = f~1(Fil" N).
Then, using Lemma A.2.1 one sees that f(M) is a Breuil submodule of N. As the map f :
M — f(M) is an isomorphism in F-BrModjy, Lemma 2.3.2 implies that f is an admissible
monomorphism, as required. O

Recall from § A.4 that we have a duality on the category F- BrMod],.
LEMMA A.6.2. The functor M — M* preserves exact sequences in F- BrMody.

Proof. By definition of Fil"(M*) and the self-injectivity of S/u®" (cf. Lemma A.2.1) one has an
exact sequence of S-modules

o%mmmﬂaWﬁaHm@WwWMmmm@wﬂaa

which is functorial in M. In order to prove the lemma it is enough to prove that the functor
M +— Fil"(M*) is exact (in S-modules) which is in turn equivalent, thanks to the exact sequence
above and the self-injectivity of S/u®", to the exactness of the functor M +— Fil" M/u®"M (in S-
modules). But the exactness of M — Fil” M/u®"M is an easy consequence of the snake lemma. O

We are now finally in a position to prove Propositions 2.3.4 and 2.3.5.

Proof of Proposition 2.3.4. Clearly F-BrMod}, is an additive category and the class of exact
sequences is closed under isomorphism. Moreover, given an exact sequence

0= My > ML My >0

in F- BrMod}} it is clear that f is the categorical kernel of g. By duality, ¢ is the categorical
cokernel of f.
We shall now check the axioms Ex0, Ex1, Ex2, Ex2° of [Kel90, Appendix A].

(Ex0): It is obvious as 0 — 0 is an admissible epimorphism.

(Ex1): By Lemma A.6.1 a composition of admissible epimorphisms is an admissible
epimorphism.

(Ex2): Let a : M — My be an admissible epimorphism and § : N — My a morphism in
F-BrMod};. By Lemma A.6.1 the map M&N — Mo, (z,y) — a(x) — B(y) is an
admissible epimorphism, so its kernel P is a Breuil submodule of M@ N. The same
lemma shows moreover that the natural map P — N is an admissible epimorphism. It
is then clear that P is a categorical pullback of («, ).

(Ex2°P): It follows from (Ex2) via the duality functor on F- BrMody.

It remains to prove the exactness of the functor Tf;. Let

0 M 2 ML M0 (A.6.3)
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be an exact sequence in F-BrMody,. Then, by forgetting monodromy, descent data and
coefficients, we deduce that the exact sequence (A.6.3) arises from a sequence 0 — My — M —
My — 0 in 9)?002[[2” via the equivalence Mg. By [CL09, Proposition 2.3.2] the latter sequence
is exact. By Proposition A.3.4 and the exactness of the functor Hom(—, k[[p]]®) we deduce that
0 — T (M;) —» T (M) — TL (Mz2) — 0 is an exact sequence in Repr(GK;). O

Proof of Proposition 2.3.5. Let T" C Tg (M) = T% (M*). By the proof of [EGH13, Proposition
3.2.6] we get a unique (up to isomorphism) surjective homomorphism f : M* — N’ in F- BrModj4
such that im(T%(f)) = 7". We claim that f is an admissible epimorphism. We recall from
[EGH13, proof of Proposition 3.2.6] and [Carll, proof of Proposition 2.2.5] that f is obtained
from a surjective homomorphism f : M* — 9 in Dﬁobz[[z” via the equivalence Mg, and that we
have an exact sequence in Mody .y given by 0 — ker(f) — MM* — N — 0. By the exactness of
Mg we deduce that f is indeed an admissible epimorphism. By Lemma A.6.2 the image of (N')*
inside M is the desired Breuil submodule in M mapping to T” via . It is unique by construction.

We still need to check that © is order preserving. Suppose that Mo, M; are Breuil
submodules of M such that My C M;. Then by Lemma 2.3.3 we have O(Mz) C O(My).
Moreover, we have a natural isomorphism ©(M;)/0©(Msz) = T (M;/Ms) by the exactness of
T7,. Conversely, given To C 17 C Tg (M) then, by the above, we have T = im(T{, (f1)) for some
admissible monomorphism f; : M; < M and, similarly, 75 = im(T% (f2)) for some admissible
monomorphism fs : My < M. Then fj o f5 is an admissible monomorphism and, by uniqueness,
we obtain finally

efl(Tg) = im(f1 o fg) - irn(fl) = @71(T1). O
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