PERFECT CODES IN THE GRAPHS O, AND L(Ox)

by D. H. SMITH
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In [6] the question of the existence of perfect e-codes in the infinite family of
distance-transitive graphs O, was considered. It was pointed out that it is difficult to rule
out completely any particular value of e because of the difficulty of working with the
sphere packing condition. For e=1, 2,3 it can be seen from the results of [6] that the
condition given by the generalisation of Lloyd’s theorem is satisfied for infinitely many
values of k. We shall show that this is not the case for ¢ =4 and we shall prove that there
are no perfect 4-codes in O,. '

Hammond [5] has constructed perfect 1-codes in the line graphs L(O,). In fact L(O,)
contains 2k —1 perfect 1-codes which form a partition of the vertex set of L(O,). We
show that the codes described by Hammond are unique.

2k-1
Derinition. The graph O, (k =2) has ( -1 ) vertices indexed by the (k — 1)-subsets

of the set {1,2,...,2k—1}. Two vertices are joined by an edge if and only if their
indexing sets are disjoint.

DeriniTion. The line graph L{O,) has vertices which correspond to the edges of O,,
with two vertices of L(O,) being adjacent whenever the corresponding edges of O, are
incident.

DerinimioN. A perfect e-code in a graph T is a subset C of the vertices of I' with
minimum distance 2e+1 such that any vertex of I' is at distance at most e from some
vertex of C. We consider only nontrivial codes (|C|> 2).

DerintTioN. Define the sequence of polynomials {v;(A)} by vy(A)=1, v,(A)=A],
G 1Vis1(A) = Av(A) + b v (A) =0 where G =[z3i+1)] and b;=k—[3(i+1)]
(i=1,2,...,d—-1). Let

i
xj()\)= Z vi(A).
i=0
The following lemma is the generalisation of Lloyd’s theorem.

Lemma 1. [4], [6]). If O, contains a perfect e-code, then the roots of x,(A) are members

of the set {—(k—1), (k—2), —(k—=3),..., (-1}

Lemma 2 [6). If O, contains a nontrivial perfect e-code, then k= (e*+4e+2)/2 (e
even) and k= (e*+4e+3)/2 (e odd).

Lemma 3 [6]. If a# —1 is a root of x,(A), then so is —a—1. If e is odd, —1 is a root of
x.(A).
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Now let %,(A) = ¢x,(A) (c constant) be a monic polynomial and consider %,(—3) which
is a polynomial in k of degree [e/2]. (The use of the polynomial x,(—3) was suggested by
E. Bannai.)

Consider the case e =4. Suppose the roots of x,(A) are a,, a,, —a;—1, —a,— 1.

Z(~H=(—-a) (-3~ @)(- i+ a + (=t ap+1)
and so we have
16%,(—3) = QRa; +1)*Qa,+1)*=w?. (1)
Straightforward calculation reveals that
XsA)=[A 203+ AT —4k) + A6 —4k)+2(k — 1)(k —2)])/4
and so the equation (1) becomes '
32k*—80k +41=y>. (2)

Also since
7_4k = al("‘al - 1) + ala2+ al(—az_ 1) + (—a1 - 1)a2

+(—a; - 1)(~a,— D)+ a(—ay—1)
=—a,(a;+1)—ay(a,+1)+1,
we have
4k -6=qa(a;+ 1)+ ay(a,+1)
and
2(k = 1)(k=2)= ay(a; + Day(a, +1).

Hence a;(a;+1)=2k-3++(2k*— 6k +5). Since a, is an integer, 2k>— 6k + 5 is a perfect
square and so

32k?~96k +80 = 22. 3)

Hence if a perfect 4-code exists in O,, equations (2) and (3) have a simultaneous integer
solution and from Lemma 2, k=17. From (2) and (3) we have 16k —39=y?— 22, Write
z=vk>0. Then (yk)?=32k2-96k +80 gives y <4v2<6 and k =17 gives (yk)*>25k?
so y>5. If we write y = yk +i (where i is a positive integer) we have 16k —39 = 2yki + i?,
)

10ki+i* <16k —39 <12ki+i>.
The first inequality gives i <2 and the second excludes i = 1. Hence we have:
THeEOREM 1. There is no nontrivial perfect 4-code in O,.

Note. It seems possible that a similar method would work for e =5. The equations
replacing (2) and (3) can be written

6(8k-11)>-114=p*  3(k—-2)*+1=4%
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It is possible that the method of Baker and Davenport [1] will extend to this case, but the

calculation is formidable.
Now consider the case of perfect 1-codes in L(O,). Let X={1,2,...,2k—1} and let

e-f be the edge of O, joining vertices e and f For any xeX let C, =
{c—d|{cUd}=X\x} and C, be the corresponding set of vertices in L(O,). Hammond

[5] has shown that for each x € X the code C, is a perfect 1-code.
THEOREM 2. The codes C (x € X) are the only perfect 1-codes in L(O,).

Proof. The case k =3 is easily dealt with directly. Suppose k >3. Let D be a code in
L(O) not isomorphic to any C, and let D be the corresponding set of edges in O,. D
contains vertices of C, and C, for some x, ye X, x# y. Choose x,y, pe C,, ge C, with
p, g€ D in such a way that p and q are as close as possible with x# y. Let C’, consist of
those vertices in L(O,) adjacent to vertices of C,. Let p, ay, a,,.. ., a,, q be a path of
minimum length joining p and q. Clearly a,€C}, a,€ Cj} but all possibilities for a,
contradict the choice of p and g unless n=2.

Since O, has girth 6 (k >3) we have two cases:

Case 1

(a—be D corresponds to p, f— g € D corresponds to q).

Either c—e is in D or c—e is adjacent to an edge of D. In either case the minimum
distance of D would be 2. This is a contradiction.

Case 2

a
(a—be D corresponds to p, e — f € D corresponds to q).
Then, rearranging X if necessary, we can write without loss of generality
a=(12...k-1) b=(kk+1...2k-2)
d=(123...k—1;2k-1) c=(k+1k+2...2k-1).

Then it is easy to see that f=(1;k+1k+2...2k~2), e=(23...k). Then eUf=
{X\(2k-1)}=aUb contradicting the fact that a—b corresponds to p and e —f corres-
ponds to q.
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Note. Theorem 1 together with Theorem 2 of [6] show that there are no nontrivial
perfect 4-codes in the graphs 2. O, [6). The modifications required to the proof of
Theorem 2 for the case of perfect 1-codes in the graphs L(2. O,) are straightforward.
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