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GROUPS FORMED BY REDEFINING MULTIPLICATION 

BY 

K. A. CHANDLER 

ABSTRACT. Let G be a group with elements 1,. . . , n such that 
the group operation agrees with ordinary multiplication when­
ever the ordinary product of two elements lies in G. We show that if 
n is odd, then G is abelian. 

1. Introduction. In the American Mathematical Monthly [1], Rodney 
Forcade, Jack Lamoreaux, and Andrew Pollington conjecture that it is possible 
to form a multiplicative group on the set {1, 2 , . . . , n) so that for any two 
integers whose product under ordinary multiplication is k ^ n, their product in 
the group is k. Further, they believe, but have not proved, that such a group 
(which we shall refer to as an FLP group) must be abelian. 

In this paper we prove the following: 

THEOREM. Every FLP group of odd order is abelian. 

2. For sufficiently large groups, the theorem holds. Define H(n, y) to be the 
set of positive integers less than or equal to n all of whose prime factors are less 
than or equal to y. Let ^(n, y) be the number of elements of H(n, y). 

LEMMA 1. Let n be odd. If there is a number r such that ^(n, r) > n/3 and 
^(n, n/r) > n/9, then any FLP group G of order n is abelian. 

PROOF. Let q be a prime %nlr. Then for any prime p ^ r, qp ^ qr ^ n, 
hence q • p = p • q where • denotes the group product. Thus q commutes with 
every prime in H (n, r), and therefore with every element of H(n, r). If Z(q) is 
the set of elements which commute with q, \Z(q)\ > n/3. Since Z(q) is a 
subgroup of G, and G has no subgroups of index 2, Z(q) = G. That is, q is in the 
centre, Z(G), of G. Hence, H(n, r) is contained in Z(G). 

Now, [G:Z(G)] < 9 and is odd, hence G/Z(G) is cyclic, and so G is 
abelian. • 

Direct computation of ^ shows that all FLP groups of odd order ^=23000 are 
abelian. 
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More general results on the function ^(n, y) can be obtained by introducing 
a function p(u) (the Dickman function), which is the continuous solution of the 
differential difference equation: 

p(u) = 1, for 0 ^ u â 1 

up'(u) = —p(u — 1), for u > 1. 

It is known that p is strictly decreasing for u ^ 1, and that 0 ^ p(u) ^ 1. In [2] 
Ramaswami proves that, given c > 0 there is a constant K > 0 such that for all 
u â c and all « ^ 1, 

¥(n, « i /M) = n(p(u) ± K/\og n). 

Notice that for 1 ^ u ^ 2, p(w) = 1 - log w, and thus p(e2/3) = 
1 — log(e /3) = 1/3. Since p is strictly decreasing for u â 1, for any 
1 ^ w < e2 /3 , and for n sufficiently large, we have ^ ( H , n]/u) > n/3. Using the 
trapezoidal rule to estimate the required integral, we have shown that 
p(e2/3/(e2/3 - 1) ) > .28038 > 1/9, and so we can use Lemma 1 with r = nxiu, 
where u = e — e, for e > 0 and sufficiently small, together with Rama­
swami's formula, to obtain the next lemma. 

LEMMA 2. For odd n sufficiently large, any FLP group of order n is abelian. 

3. Finding the bound. To determine how large is "sufficiently large" in 
Lemma 2, we must examine the proof of Ramaswami's theorem using approxi­
mations for some number-theoretic quantities. In all that follows, p denotes a 
prime, and c = a ± b means that a — b ^ c ^k a + b. 

LEMMA 3. 

(a) If x > 1, TT(X) < 1.2555(x/log x), where TT(X) is the number of primes ^x. 
(b) There is a constant b such that 

log log x + b < 2 - < log log x + b + ~, for 1 < x ^ 108, 
P^xP ( logx) z 

and 

2 - = log log x + b ± ~> for x = 286-P^xP - « - - - - - 2(logx)2 ' 

For proofs of these, see [3]. Note that, in particular, if x > 1 and 1 ^ ux ^ 
u ^ ux + 1, then 

log JL ul— ^ 2 - ^ log - + "' + U\ 
H, (log x) 2

 x"»<ps*"»' p ux 2(log x) 2 
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LEMMA 4. 

(a) For u ^ 1, *(JC, xx/u) = [x\. 
(b) For 1 ^ u ^ 2, 

* (* , *1/M) = [JC] - 2 [*//>] 
* 1 / M < / > ^ J C 

(c) Let w, ^ 2. Suppose there exist positive constants X and K0 such that for all 
v ^ ul9 

* ( J C , x 1 / v ) = JC( 

for all x i? X '. Then for any u such that ux ^ M Si w, + \,andfor all x iË X, 

*(x, x1 / u) = xp(M) + *(x, x l / u ' ) - xp(Ul) 

I l o g x l \M,/ ( logx)2 / 3(log;c)2 J logxx \M,/ ( l o g x ) / 3(log x) 

PROOF, (a) and (b) are immediate. From [2], we get that for M ^ 2 

*(x, xi/u) = xp(u) + *(x, x1/ui) - xp(Ul) 

It) 

I ° x"«s,s»"«i log(x//>) I J x (log 0 2 " log ? 

f fc(0 /iogç^O\l* 11 
Vgo2Pv log/ )K"I)' l ( log?) 2 l \ log? 

where k{t) is defined by &(?)/(log t)2 = S^g, \/p — log log t — b. 
We have 

= M 1 A 0 , 2 ! 
JC 1 / M ^/^JC 1 / M ' l o g ( * / / ? ) log JC j C

1 / M ^ / ^ * , / M ' /> 

"l*0; Uog— ± -J , 
l o g x \ Wj ( l o g x ) / 

by Lemma 3(b), while 

1/*;;: _*«, j « 
l - ' ' ( log/) ' log? / 

I-'* (log?)2 \ log? / A \ log? / ( i og? r \ log, 

2= log x 
•J*"" ?(log? (log ?r 

, since 

log 

/log(x/Q\ 

I log / / 
1 for 
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t < xuu' = 
l og* 1 

3(iog tyi* r l / K . 

u — «i 

3(log x) 2' 

Finally, by Lemma 3(b), 

[ k(t) /log(x/OV 

l ( l o g 0 2 ^ log/ nx 

, j / « . 

(log x) 2' 

since if JC1/M> ^ 108 then 0 < k(xVu) < 1 and 0 < k(xl/u') < 1, while if JC17"1 > 
108 then xl/u > 104 > 286, so that \k(xl/u) \ < 1/2 and \k(xl/u*) | < 1/2. • 

Now, for 1 ^ w ^ 2, 

*(x, xl/u) = [x] - 2 [x/p] 
xl/u<p^x 

= [x] — x ZJ - + ^ , 
xl/u<p^xP xUu<p^x \p 

So, by Lemma 3(b), for 1 ^ w ^ 2, 

*(x, x1/M) > jcUii) " + ! 

2(log xf x 

^ x p(w) -
2.5 1 

(log x)2 

while 

[x/p] 

Thus, 

(1) 

A/u *(x,xuu) < x\p(u) 
(log xY 

2 + <*) • 

*(JC, x1/M) = x(p(u) ± ^ ^ for x ^ e5, 1 ^ u ^ 2, 
\ log x / 

by Lemma 3(a) and 

(2) *(JC, xl/u) > x(p(u) - .02505), for x ^ e10, 1 ^ w ^ 2. 

Then in Lemma 4(c), if we take X = e10, K0 = 2.0555, and ux = 2 we have for 
2 â u ^ 3 and JC â e10, 

^(JC, x1/w) = xp(n) + *(JC, V*) - *p(2) 

l logxx \ux1 (log *y + 
3u2 A- u3 - u] 

3(log x) 2 
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> xLu) - .02505 - ^Hifiogf") + _Jli_) 
I logjcl \2> ( log*)2 / 

-3 '1 + ',7'U(i). 

Therefore, if 2 ^ w ^ 2.12 

(3) ¥(*, x1/M) ^ x(p(w) - .1176), for JC ^ e10. 

Thus, for n ^ ew, in order to get ^(n, nx/u) > n/3, it suffices that p(w) ^ 
1/3 + .02505, by (2). Since p(u) = 1 - log u for 1 ^ w ^ 2, we get p(w) ^ 
1/3 + .02505 for 1 ^ w ̂  exp(l - 1/3 - .02505), in particular for u = 1.897. 
Now we will use (3) to show that for n ^ e10, ^(«, wO-897-i)/i.897) > n/g by 
showing that p(1.897/.897) - .1176 > 1/9. Here, 2 < 1.897/.897 < 2.115, so 
p(1.897/.897) > p(2.115), and by approximating the integral we get that 
p(2.115) - .1176 > .2540 - .1176 = .1364 > 1/9. Hence, for n > e10, we get 
that for u0 = 1.897, *(n, nl/u°) > n/3, while ^(w, w(Mo-i)/"o) > n/9m W e have 
verified the theorem directly for n ^ 23,000 using Lemma 1, so the proof of the 
theorem is now complete. 
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