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Compressibility effects on the secondary
instabilities of the circular cylinder wake
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With a growing interest in low Reynolds number compressible flows, compressibility
effects on the secondary instabilities developing on the circular cylinder periodic wake
are investigated. The unsteady and time-averaged two-dimensional flows are characterised
for Reynolds numbers Re ∈ [200; 350] and Mach numbers up to M∞ = 0.5, revealing
different flow structures which influence the characteristics of the secondary unstable
modes. The two-dimensional time-periodic solution is used as the base state for a
global linear stability analysis performed by means of Floquet theory coupled with
a time-stepping finite-difference approach of the nonlinear operator. The influence of
compressibility on mode A and mode B secondary instabilities which are responsible
for the three-dimensionalisation of the two-dimensional periodic wake is analysed.
A stabilising or a destabilising effect of compressibility is observed on mode A, depending
on the Reynolds number and the spanwise wavelength of the mode, while mode B is
stabilised by the increase of the Mach number. Compressibility is indeed found to decrease
the mode kinetic energy production due to base flow shear conversion, which drives the
growth of mode B. This results in a delay of the three-dimensionalisation process of the
wake due to compressibility.

Key words: compressible flows, instability, low-Reynolds-number flows

1. Introduction

The evolution of the wake behind a circular cylinder, which stands as the archetypal
configuration of flows around bluff bodies, has been widely studied since the 1960s
(Gerrard 1966; Williamson 1988, 1996c; Barkley & Henderson 1996, amongst others).
The flow regime is driven by the bulk Reynolds number based on the cylinder diameter.
At very low Reynolds numbers in the Stokes regime, Re < 5, the flow is attached
to the cylinder, until a first topological change occurs at Re = 5 with the appearance
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of two steady counter-rotating vortices behind the cylinder (Aref, Brøns & Stremler
2007), giving rise to the recirculation region. The two counter-rotating vortices become
unsteady as the primary global instability appears (first Hopf bifurcation) at Re ≈ 47
(Chomaz, Huerre & Redekopp 1988; Huerre & Monkewitz 1990) and the flow enters
into a two-dimensional (2-D) self-sustained periodic vortex-shedding regime known as
the von Kármán vortex street. Within the periodic regime, the amplitude of the oscillation
increases when increasing the Reynolds number. Then, a second bifurcation occurs,
which triggers the three-dimensionalisation of the flow, due to the deformation of the
von Kármán vortex street in the near wake (Williamson 1996a; Leweke & Williamson
1998; Thompson, Leweke & Williamson 2001). The three-dimensional (3-D) transition
involves two consecutive steps, defined by the emergence of the so-called mode A and
mode B secondary 3-D instabilities, whose time periodicity is the same as that of the base
state (Williamson 1988, 1996c; Gabbai & Benaroya 2005). These modes are illustrated
in figure 9 and can be characterised by their symmetry properties (Blackburn, Marques
& Lopez 2005), characteristic spanwise wavelengths and their structure with respect to
the base flow. Mode A appears first at Re ≈ 180–190 and is associated with an elliptic
instability of the primary vortex cores (Leweke & Williamson 1998; Thompson et al.
2001; Leontini, Lo Jacono & Thompson 2015), which deform along the spanwise direction
with a characteristic wavelength λz ∼ 4D pulling back upstream the base flow spanwise
vorticity which is progressively realigned along the streamwise direction to form periodic
counter-rotating streamwise vortices. These vortices loop over the upstream newly shed
spanwise vortex, inducing its spanwise deformation and resulting in a self-sustained
destabilisation process (Williamson 1996b). Mode B arises at Re ≈ 230–260 and is
instead associated with a hyperbolic instability. It develops in the stretched braid region,
which connects two-consecutive counter-rotating von Kármán vortices, and is related
to the formation of finer scale structures of characteristic wavelength λz ∼ 1D. In the
last years, many innovative applications such as stratospheric flight, Martian exploration
by drones and vac-trains have gained considerable interest. The wake flows concerned
by these applications are typical of low density and/or pressure environments and are
characterised by compressibility effects which are no longer negligible at low Reynolds
numbers, in contrast to flows in a standard pressure environment encountered in the
Earth’s atmosphere. Since these applications are very recent, compressible flows at low
Reynolds numbers are, to date, poorly explored. Previous studies on compressibility
effects on the flow around a circular cylinder have focused on Reynolds numbers of order
Re ∼ 104–106 in subsonic and transonic regimes (Lindsey 1938; Gowen & Perkins 1953;
Murthy & Rose 1977; Rodriguez 1984; Xu, Chen & Lu 2009; Xia et al. 2016) and in the
supersonic regime (Gowen & Perkins 1953; McCarthy & Kubota 1964; Kitchens & Bush
1972), while recent experimental (Nagata et al. 2020) and numerical (Canuto & Taira
2015) studies have analysed the effect of compressibility in the subsonic regime at even
lower Reynolds numbers, Re ∼ 103 and Re ∼ 10, respectively. In figure 1, the investigated
conditions for the flow around a circular cylinder are reported. Nevertheless, there still
is a lack of fundamental knowledge on how compressibility affects the emergence of
the first instabilities, so far mainly explored with the incompressible flow assumption.
Recent works (Meliga, Sipp & Chomaz 2010; Canuto & Taira 2015; Sansica et al.
2018; Rolandi et al. 2021) have investigated the influence of the Mach number on the
first instabilities developing on the wake of various bluff bodies, revealing contrasted
effects of compressibility. A stabilising effect of compressibility has been observed for
the first Hopf bifurcation of the flow past a circular cylinder up to M∞ = 0.5 (Canuto
& Taira 2015) and for that past an axisymmetric blunt-based bluff body (Meliga et al.
2010), delaying the onset of unsteady phenomena. Conversely, a non-monotonic effect of
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Figure 1. Investigated conditions for the flow around a circular cylinder in the (M∞, Re)-plane corresponding
to both experimental (Lindsey 1938; Gowen & Perkins 1953; Murthy & Rose 1977; Rodriguez 1984; Nagata
et al. 2020) and numerical (Xu et al. 2009; Canuto & Taira 2015; Xia et al. 2016) works. Figure adapted from
Nagata et al. (2020).

compressibility has been observed for the onset of unsteadiness in the wake of a sphere: a
destabilising effect in the weakly compressible regime (M∞ ≤ 0.3) and a stabilising effect
at higher Mach numbers (Sansica et al. 2018), up to the supersonic regime. Different
effects of compressibility have also been observed on the first Hopf bifurcation of the
2-D NACA0012 airfoil wake (Rolandi et al. 2021). In this case, compressibility has
been found to have either a stabilising or destabilising effect on the primary instability
depending on the angle of attack and the Reynolds number. Up to angles of attack α = 20◦
and M∞ = 0.5, the increase of compressibility induces an earlier onset of unsteady
phenomena (destabilising effect) while decreasing the growth rate of the most amplified
mode (stabilising effect) well above the critical threshold.

Works on the effect of compressibility on the first bifurcations on different bluff bodies
have focused on instabilities developing on a stationary base flow, while compressibility
effects on secondary instabilities developing on time-periodic wakes are so far unexplored.
In this context, the objective of this work is to analyse how compressibility affects the
three-dimensionalisation process of the circular cylinder periodic wake, which occurs
in conditions not so far investigated (see figure 1). This is done by investigating the
stability of the limit cycle solution (periodic wake) with the emergence of mode A and
mode B secondary instabilities and their dependence on the Mach number. The paper
is structured as follows. The governing equations and numerical approaches used for the
stability analysis are reported in § 2. In § 3, the effects of compressibility on both the base
flow and the emergence of mode A and mode B are presented for Reynolds numbers in
the range of [200; 350] and Mach numbers up to M∞ = 0.5. Finally, conclusions and
perspectives are given in § 4.

2. Numerical approach

2.1. Governing equations
The motion of compressible Newtonian fluids is described by the Navier–Stokes (NS)
equations, obtained by applying the laws of conservation of mass, momentum and energy.
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We consider the 3-D compressible NS equations in conservative form for an ideal gas:

∂ρ

∂t
+ ∇ · (ρu) = 0

∂ρu
∂t

+ ∇ · (ρu ⊗ u) = −∇p + ∇ ·
[
μ(∇u + ∇uT) − 2

3
μ∇ · u δij

]

∂ρE
∂t

+ ∇ · (ρuE + pu) = ∇ · (K∇T) + ∇ ·
(

u
[
μ(∇u + ∇uT) − 2

3
μ∇ · u δij

])

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.1)

where ρ is the fluid density, u the velocity vector, p the pressure, T the temperature and E
the total energy. The viscosity μ and the thermal conductivity K are constant. We introduce
four non-dimensional numbers:

Re = ρ∞U∞L
μ

, M∞ = U∞√
γ

p∞
ρ∞

, St = f L
U∞

, Pr = μcp

K
, (2.2a–d)

which are the Reynolds, Mach, Strouhal and Prandtl numbers, respectively. Here, the
Prandtl number is taken as constant (Pr = 0.7). Quantities with subscript ∞ indicate free
stream quantities, L is the characteristic length scale, cp is the specific heat at constant
pressure, γ is the heat capacity ratio and f is the shedding frequency. The corresponding
convective time scale is Tc = L/U∞. Considering q = (ρ, ρu, ρE)T the state vector and
N the nonlinear NS dynamical operator, we express system (2.1) in the following compact
form:

∂q
∂t

= N (q). (2.3)

The 2-D periodic base flow is computed by integrating system (2.1) over a 2-D domain
using the numerical solver IC3, a high-order compact solver for the compressible NS
equations developed at ISAE-Supaero (Bermejo-Moreno et al. 2014; Grébert et al. 2018;
Saez-Mischlich 2021). IC3 is a parallel finite volume based numerical solver with explicit
Runge–Kutta (RK) scheme for time integration. The third-order RK and the fourth-order
centred (Bermejo-Moreno et al. 2014) schemes have been used for temporal and spatial
discretisation, respectively.

2.2. Stability analysis
Linearising the NS system (2.3) around a base state qb which satisfies (2.3), hence
considering q = qb + εq′, with ε 
 1 and q′ the disturbance, the dynamics of the
perturbation is given by

∂q′

∂t
= Lq′, (2.4)

where L = ∂N (q)/∂q|qb is the Jacobian of the NS operator computed at the base state.
When the base state is a stationary solution of the NS system (i.e. a fixed point solution),
the Jacobian operator is constant and the solution of (2.4) is of the form

q′(t) = eLtq(0), (2.5)

which expresses the modal evolution of the perturbation. In particular, in a global modal
approach, the perturbation has the following form: q′(x, y, z, t) = q̂(x, y, z)eωt, where
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ω = ωr + iωi and q̂ are the solutions of the eigenvalue problem (EVP)

Lq̂ = ωq̂ (2.6)

corresponding respectively to the eigenvalues and eigenvectors of the Jacobian matrix.
When the base flow is time-dependent, a non-modal approach (Schmid 2007) is better

suited because it does not impose an exponential temporal dependence for the perturbation
and enables the consideration of possible transient growths in the short-time dynamics.
Nevertheless, in the particular case of time-periodic base flows (i.e. limit cycle solutions),
Floquet theory (Kuchment 1993) still allows an analysis of the problem with a modal
approach. In this case, system (2.4) becomes

∂q′

∂t
= L(t)q′, (2.7)

where the Jacobian matrix is a periodic linear operator, L(t) = L(t + T), with T indicating
the base flow oscillation period. Floquet analysis relates the study of the limit cycle to that
of a fixed point through the so-called Poincaré map. The Poincaré map is a collection of
points, obtained by storing a single point of the perturbation trajectory at each cycle of
motion (i.e. at each period T). Looking at the evolution of the points of the Poincaré map,
it is then possible to deduce whether the periodic system is stable or not. Introducing the
Floquet transition matrix φ(0, T), which relates the states of the system at time t = 0 and
t = T , one gets

q′(T) = φ(0, T) q′(0). (2.8)

The stability of the limit cycle depends on the eigenvalues of the transition matrix, referred
to as the characteristic Floquet multipliers μ: the limit cycle is said to be unstable if
|μ| > 1, while it is stable if |μ| < 1. Due to its periodicity, L(t) results in a constant
coefficient matrix on the Poincaré section, as in the case of a stationary base flow. Hence,
the comparison of expression (2.8) with the generic solution of the time-independent
coefficient system (2.5) yields φ(0, T) = eLT (Bauchau & Nikishkov 2001; Hochstadt
2014). The eigenvalues of the Floquet transition matrix can therefore be interpreted as
the eigenvalues of M = eLT , also called, in its generic form, an exponential propagator
matrix.

2.3. Eigenvalue problem
We are interested in solving the following eigenvalue problem:

Mq̂ = μq̂, (2.9)

and hence in computing the eigenvalues μ and corresponding eigenvectors q̂ of the
exponential propagator M = eLT , where T indicates the oscillation period of the base
flow. However, the dimension of matrix M is (5n) × (5n), where n is the number of
grid points/cells resulting from the spatial discretisation and the factor 5 refers to the
state vector variables. Therefore, assembling and computing the whole spectrum of such
a large-scale matrix can be prohibitively expensive, making the direct resolution of this
problem not affordable (Loiseau et al. 2019). For this reason, we adopt the Krylov–Schur
method (Stewart 2002; Hernández et al. 2007) for computing the most relevant eigenpairs,
coupled with a matrix-free approach (Gómez Carrasco 2013; Loiseau et al. 2019), to
avoid the matrix assembly. The Krylov–Schur method is based on the Arnoldi method
(Arnoldi 1951) which provides an approximation of the most relevant eigenpairs of a
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matrix, projecting the problem on a reduced space called the Krylov subspace. The Krylov
subspace of dimension m is generated by iterative matrix-vector products, starting from an
initial (white-noise) disturbance q′:

Km(M, q′) = span
{

q′,Mq′,M2q′, . . . ,Mm−1q′
}

. (2.10)

The reduced-order problem reads

MVm ≈ VmH, (2.11)

where Vm is an orthonormal basis of the Krylov subspace and H is an upper Hessenberg
matrix, whose eigenpairs (λj, xj) approximate the most relevant eigenpairs of matrix M.
An eigenpair has converged if ∥∥MVmxj − λjVmxj

∥∥ ≤ tol, (2.12)

where tol is the desired convergence tolerance. If the number of converged eigenpairs is too
low, either the dimension m of the Krylov subspace must be increased (Arnoldi method)
or the directions associated with the highest convergence error or with the most stable
modes must be removed before re-completing the Krylov subspace up to dimension m
by adding new directions (Krylov–Schur method). The latter is performed through a Schur
decomposition followed by an orthogonal transformation. The eigenpairs of the propagator
matrix are then computed as (μj, q̂j) = (λj,Vmxj).

The generation of the Krylov subspace is performed through a matrix-free approach,
because the explicit computation of the matrix M is not needed for the calculation of
the matrix-vector products. They are instead approximated with a second-order finite
difference of the nonlinear NS system (2.1). As originally proposed by Chiba (1998, 2001)
and applied by Tezuka & Suzuki (2006) and Rolandi et al. (2021) (these works were
rather focused on the detection of the primary Hopf bifurcation developing on a stationary
base flow leading to the limit cycle solution; in these cases, the method must be used
considering an integration time much smaller than the oscillation period, to avoid aliasing
effects (Rolandi 2021)), the application of the exponential propagator on a given vector
can be approximated as

Mq′ = q+
T − q−

T
2ε

, (2.13)

where q+
T and q−

T are obtained by integrating the NS equations (2.1) from the initial
conditions (qb + εq′) and (qb − εq′) up to a time T , corresponding to the base flow
oscillation period. The same numerical parameters used for the base state computation,
like the Courant–Friedrichs–Lewy coefficient, and numerical schemes (third-order RK
and fourth-order centred schemes) have been used for the computation of q+

T and q−
T .

The stability solver just described above is implemented in the numerical simulation
code IC3 (Rolandi 2021). This approach is extremely convenient since it only needs the
time-integration of the nonlinear operator, and hence it can be used with any CFD solver. It
avoids the implementation of the discretised linear equations system and, in particular, the
implementation of boundary conditions for the perturbation that might require particular
efforts, especially for compressible flows.

2.4. Computational set-up
The computational domain is displayed in figure 2. The streamwise length Lx is 90D with
15D upstream and 75D downstream from the centre of the cylinder, while the cross-wise
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Lx

Ly

Lz

Figure 2. Computational domain.

extent of the domain is Ly = 40D. Despite the homogeneous spanwise direction of the base
flow, the exponential form of the perturbation along the spanwise direction is not specified
a priori because the stability solver in IC3 has a tri-global formulation. To perform 3-D
stability analysis, the 3-D mesh and base flow fields have been generated by extruding
the 2-D grid and the associated DNS solution along the spanwise direction, considering
different extrusion lengths Lz ∈ [2D; 6D]. In other words, the unstable periodic 3-D base
flow is the stable 2-D periodic solution extruded along the spanwise direction. The need
for testing different spanwise extrusions is necessary to investigate the range of unstable
wavelengths because, for a given Lz, the tri-global analysis only provides information on
modes with wavelength λz = Lz/n with n ∈ N

∗. The boundary conditions used for the
nonlinear calculations consist of a no-slip adiabatic condition on the cylinder surface,
uniform constant velocity, pressure and temperature at both the inlet and the top and
bottom boundaries, a uniform constant pressure at the outlet and periodic conditions on the
lateral sides. The mesh convergence for the computation of both the 2-D periodic base flow
and the 3-D instabilities is reported in Appendix A along with a comparison with results
from Leontini et al. (2015) for a thorough validation of the present approach. The choice
of the base flow instant within the limit cycle has been seen to not significantly affect the
results (see Appendix B) on the Floquet multipliers. For this reason, the base flow instant
has not been fixed. Simulations have been conducted using a Krylov subspace dimension
m = 40 and the value of the finite difference parameter has been fixed to ε = 10−9 to
ensure linearity.

3. Results

3.1. Reynolds and Mach number effects on the base flow
The evolution with respect to the Mach number of the mean drag coefficient and Strouhal
number of the 2-D base flow is reported in figure 3 for Reynolds numbers in the
range Re ∈ [200; 350]. The drag coefficient increases with the Reynolds number and, as
previously observed by Canuto & Taira (2015) for Reynolds numbers up to Re = 100 and
experimentally by Nagata et al. (2020) for Reynolds number Re ∈ [103; 5 × 103], it also
increases due to compressibility effects. In their work, Canuto & Taira (2015) observed
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1.4
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1.7
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Re = 200 Re = 250

Re = 300 Re = 350

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

0.195

0.200

0.205

0.210

0.215

0.220

St

M∞ M∞

(a) (b)

Figure 3. (a) Mean drag coefficient and (b) Strouhal number of the 2-D base flow. Dashed lines superposed
to the drag coefficient curves are the theoretical predictions given by the Prandtl–Glauert transformation for
Re = 200 and 350.

that, for a Reynolds number equal to 20, the Prandtl–Glauert theoretical prediction

CD (M∞) = CD,inc√
1 − M2∞

, (3.1)

where the incompressible drag coefficient is evaluated here by CD,M∞=0.05, overestimates
the drag coefficient when increasing the Mach number, but this overestimation decreases
when the Reynolds number is increased up to Re = 100, for which the Prandtl–Glauert
transformation gives a correct approximation of the drag increase. Figure 3 confirms the
ability of the Prandtl–Glauert to provide a good estimation of the drag coefficient for
the range of Reynolds numbers considered up to a given Mach number, which decreases
with increasing Reynolds number from M∞ = 0.4 at Re = 200 to M∞ = 0.3 at Re = 350,
before diverging with an underestimation increasing with Re.

The Strouhal number exhibits a monotonic decrease with the increase of the Mach
number, for Re = 200. This trend is similar to that reported by Canuto & Taira (2015)
for lower Reynolds numbers with the relative difference decreasing for increasing
Reynolds number: (StM∞=0.05 − StM∞=0.5)/StM∞=0.05 ≈ 8 %, 3.5 %, 1.3 % and 1 % at
Re = 50, 100, 200 and 250, respectively. For Reynolds numbers higher than Re = 250,
the Strouhal number decreases for low-Mach-number values, before increasing with
compressibility. A similar change in the evolution of St with respect to compressibility has
been numerically observed for the two-dimensional NACA0012 airfoil wake at Re = 1000
by increasing the angle of attack from 16◦ to 20◦ (Rolandi 2021) and experimentally for
the 3-D cylinder wake, increasing the Reynolds number from Re = 1000 to 5000 (Nagata
et al. 2020). In the latter, the authors relate this change in trend to the oblique instability,
which is meaningful in their case, where three-dimensionality is taken into account, but
not in the present work since we are considering the 2-D base flow.

The structures of the 2-D time-averaged base flows are reported in figure 4. This figure
shows the streamlines and the zero longitudinal velocity contour of the time-averaged flow,
revealing substantial modifications of the flow structure within the range of Reynolds and
Mach numbers considered. These changes mainly depend on the three stages of the vortex
shedding, shown in figure 5: the development of an opposite sign vorticity region at the
cylinder base, the vorticity pulled upstream by the forming vortex and the vorticity rolled
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M∞ = 0.1 M∞ = 0.3 M∞ = 0.5

Re = 200

Re = 250

Re = 300

Re = 350

Unique recirculation region

Two recirculation regions

Three

separated

regions

D d

L2

L

Figure 4. Structure of the time-averaged base flow. Streamlines are shown in grey colour and the red line
corresponds to zero time-averaged longitudinal velocity ūx = 0. Characteristic lengths of the recirculation
region are indicated for Re = 250 and M∞ = 0.5. Black, orange and blue frames indicate different structure
types.

up/entrained by the opposite sign main vortex (Gerrard 1966). Three different mean flow
structures are hence identified in figure 4.

(i) The first structure (type 1), which is identified by the black frames in figure 4
and corresponds to cases with Re = 200 and M∞ ∈ [0.05; 0.3], exhibits a
unique recirculation region downstream of the cylinder with two time-averaged
counter-rotating symmetrical vortices. Instantaneous vorticity flow fields in
figure 5(a) show that vorticity with opposite sign to the one of the forming vortex
is stagnating at the base of the cylinder (t = T/8). This vorticity is due to the
interaction between the forming vortex and the cylinder wall, as pointed by the arrow
at t = T/8, and it is fed by the clockwise vortex that forms at t = 3T/8. At this
instant, it can also be observed that the formation of the clockwise vortex promotes
the generation of opposite sign vorticity at the wall, as indicated by the arrow.

(ii) The second structure (type 2), which is identified by the orange frames in figure 4
and corresponds to cases from Re = 200 and M∞ = 0.4 to Re = 300 and M∞ = 0.4
and Re = 350 and M∞ ∈ [0.05; 0.3], exhibits a mean second recirculation region
downstream of the cylinder, with two additional counter-rotating vortices in the
time-averaged flow. The induced vorticity and the feeding by the forming vortex
(figure 5b at t = 3T/8) are stronger and more compact compared with the first
case (maximum circulation within the forming vortex equal to 5.02 and 4.19,
respectively), which promotes flow separation at the base of the cylinder.

(iii) The third structure (type 3) is identified by the blue frames in figure 4
and corresponds to cases at Re = 300 and M∞ = 0.5 and Re = 350 and
M∞ ∈ [0.4; 0.5]. In these cases, the induced vorticity and the feeding by the
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t = T/8 t = T/4 t = 3T/8 t = T/2 Averaged vorticity

Opposite

sign

vorticity

Vorticity

pulled

upstream

Vorticity

entrained

(a)

(b)

(c)

Figure 5. Evolution of both the instantaneous positive (red) and negative (blue) vorticity saturated at 10 % of
the maximum and the isocontour of longitudinal velocity ux = 0 (black line) during the first half-period of
vortex shedding considering t = 0 the instant of minimum CL. The corresponding time-averaged vorticity is
given at the extreme right for comparison. (a) Structure of type 1 for Re = 200 and M∞ = 0.1, (b) structure of
type 2 for Re = 300 and M∞ = 0.3, (c) structure of type 3 for Re = 350 and M∞ = 0.5.

forming vortex (figure 5c at t = T/8) are stronger compared with the previous
cases (circulation within the forming vortex equals to 5.13). Hence, the entrainment
induced by the vortices (figure 5c at t = T/4) produces positive-signed velocity in
a wider area, which progressively extends the second recirculation zone until its
reconnection with the first one leading eventually to three distinct time-averaged
recirculation regions.

These three types of structure for the time-averaged base flow share a common feature
with the existence of two counter-rotating vortices at the rear of the cylinder. Three
main characteristic lengths can be introduced to characterise this recirculation region: the
streamwise distance of the hyperbolic stagnation point from the rear of the cylinder (L2)
or from the centre of the cylinder (L) and the cross-stream separation distance between
the centres of the two main counter-rotating vortices (d), as indicated in figure 4 for
Re = 250 and M∞ = 0.5. We will observe that these characteristic lengths correlate with
the characteristic wavelengths of the 3-D instabilities.

3.2. Reynolds and Mach number effect on mode A and mode B
In figure 6, compressibility effects on the Floquet multiplier μ as a function of the
spanwise wavelength is shown for the different Reynolds and Mach numbers. Similar to
the incompressible case, for which the critical Reynolds number is Rec ≈ 180, mode A is
the only unstable mode at Reynolds Re = 200 and 250 when the Mach number is increased
up to M∞ = 0.5. At these Reynolds numbers, compressibility has a stabilising effect on
mode A, delaying the 3-D transition so that at Re = 200 and M∞ = 0.4, the flow has
not transitioned yet. At this Reynolds number, the spanwise wavelength relative to the
maximum Floquet multiplier does not change with the Mach number and remains the
same as its value in the incompressible regime, i.e. λz ≈ 3.8D. In contrast, at Re = 250,
the most amplified wavelength is slightly shifted towards a smaller value for M∞ = 0.5,
i.e. λz ≈ 3.2D. At Re = 300, compressibility does not change the level of amplification
for mode A but rather induces a progressive shift of the unstable range towards smaller
wavelengths, with the most amplified wavelength decreasing from λz ≈ 3.5D at M∞ =
0.05 to λz ≈ 2.9D at M∞ = 0.5. Finally, at Re = 350, compressibility has a destabilising
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Figure 6. Floquet multiplier μ of the secondary instabilities as a function of the spanwise wavelength λz at
Reynolds number (a) Re = 200, (b) Re = 250, (c) Re = 300 and (d) Re = 350 for different Mach numbers.
Dashed lines represent the interpolation curves for a given Mach number.

effect on mode A with a substantial increase of the maximum Floquet multiplier together
with a similar shift of the unstable range of wavelengths. Regarding mode B, it is
unstable at low Mach numbers for Reynolds numbers above Re = 300, indicating that
the incompressible critical threshold lies in between Re = 250 and Re = 300, a result in
agreement with the stability analysis of Barkley & Henderson (1996) who determined a
critical Reynolds number of Rec = 259. In experiments, mode B has been observed at
lower Reynolds numbers, i.e. Rec ≈ 230 (Williamson 1996b), because it benefits from
the prior development of mode A which is not taken into account in linear stability
analysis. Compressibility has a stabilising effect on this mode as the amplification rates
are significantly reduced when the Mach number is increased. However, at Re = 300, the
most amplified wavelength is not sensitive to the change in Mach number, with a constant
value of λz ≈ 0.8D as in the incompressible regime. The effect of compressibility on mode
B remains quite similar at Re = 350, except that mode B is now unstable up to M∞ = 0.4
and that the most unstable wavelength is slightly decreased from λz ≈ 0.8D at M∞ = 0.05
to λz ≈ 0.6D at M∞ = 0.4.

In figure 7, we summarise the effects on the most unstable mode among all the
unstable wavelengths, showing isocontours of the maximum Floquet multiplier in the
(Re, M∞)-plane. These values are obtained by interpolating the results shown in figure 6.
Neutral stability curves for both mode A and mode B are also reported, highlighting the
delay in the transition due to compressibility: mode A becomes unstable at RecA ≈ 184
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Neutral stability curve mode B
μB = μA

Re

Mode A
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M∞
Figure 7. Isocontours of the maximum Floquet multiplier in the (Re, M∞)-plane with neutral stability curves

and the demarcation between regions where mode A and mode B are dominant.

for the incompressible case and RecA ≈ 215 for M∞ = 0.5, while the critical Reynolds
number for mode B increases from RecB ≈ 262 in the incompressible case to RecB ≈ 350
for M∞ = 0.4. The curve μB = μA delimits the two regions of predominance of mode B
and mode A, emphasising the differentiated effect of compressibility on these modes.

In figure 8, we observe that when mode A wavelengths are normalised by the
time-averaged flow characteristic lengths introduced in § 3.1 rather than by the cylinder
diameter D, the Floquet multipliers exhibit a maximum at an almost constant wavelength
of λz ≈ 2.7L − 3.1L (figure 8a) and λz ≈ 6.8d − 7.2d (figure 8c), while a constant low
wavelength cut-off is observed at λz ≈ 3.8L2 when normalised by L2 (figure 8b).

The 3-D structure of mode A and mode B is shown in figure 9. The iso-surfaces of
streamwise vorticity at Re = 350 are reported for two different Mach numbers. With this
representation, no particular change in the modes structures can be observed with respect
to compressibility. However, considering the overall distribution on a transverse plane,
different conclusions can be made. In figures 10 and 11, the streamwise and cross-stream
vorticity distribution at Re = 350 are shown for mode A at wavelength λz = 2.5D, 3D
and 4D and for mode B at λz = 0.66D at different Mach numbers M∞ = 0.1, 0.3 and
0.5. The slices are taken in the plane of maximum streamwise and cross-stream vorticity
along the spanwise direction, respectively. V1, V2 and V3 denote the first, second and
third vortex of the base flow, while B1 and B2 the first and second braid, as indicated in
figure 10 at M∞ = 0.1 and λz = 0.66D. For mode B, the maximum streamwise vorticity
(dashed black line) is located in between V1 and V2, while the maximum cross-stream
vorticity is located in B1. The positions of this maximum and the spatial distribution of
both streamwise and cross-stream vorticity are not affected by compressibility. In contrast,
different observations can be made on mode A. In figure 10, we see that for each Mach
number, as the wavelength decreases, the streamwise vorticity in V2 concentrates more
towards the zone of maximum intensity, which slightly varies with the wavelength, as
indicated by the dashed black line. A dipole is present within V3 at the largest wavelength
while a unique vorticity lobe is observed at λz = 2.5. In V1, instead, no noticeable
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Figure 8. Values of Floquet multipliers shown in figure 6, for all the Reynolds and Mach numbers considered,
as a function of the wavelength normalised by the characteristic lengths of the time-averaged flow: (a) L;
(b) L2; (c) d and (d) D. Increasing transparency for each colour corresponds to increasing Mach number.
Time-averaged flow characteristic lengths are indicated in figure 4.

change is observed at Mach number M∞ = 0.5, while for the lower Mach numbers,
the lobe decreases in intensity and concentrates more in the upper part of the vortex
when λz is decreased. For M∞ = 0.1, we observe higher intensities in B2, compared
with M∞ = 0.3 and 0.5 for each wavelength and this vorticity is of the same sign as
the one present in V3, or in the upper part of V3 when there is a dipole. However, at
M∞ = 0.5 and λz = 4D, B2 also presents a region of opposite sign vorticity close to V3.
In figure 11, the streamwise position of the cross-stream maximum intensity for mode
A in the incompressible case (M∞ = 0.1) strongly varies with the wavelength. At the
largest wavelength, the maximum vorticity is localised in V3 (λz = 4D) and, in this case,
V3 presents a dipole of opposite sign cross-stream vorticity, which is also the case for
M∞ = 0.3 and 0.5. For lower wavelengths, instead, the maximum cross-stream intensity
at M∞ = 0.1 first moves between V1 and V2 (λz = 3D) before lying in B1 (λz = 2.5D), in
the same zone of the maximum intensity of mode B, confirming the increase of intensities
in the braids associated with shorter wavelengths. The vorticity distributions in V1, V2
and V3 also change with the wavelength. In particular, the cross-stream vorticity intensity
decreases in V1, V2 and in the periphery region in between the two vortices when the
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M∞ λ = 0.66D λ = 4D

0.1

0.3

(a)

(b)

Figure 9. Normalised streamwise vorticity isocontour ωx/||ω||∞ for mode B at λz = 0.66D and mode A at
λz = 4D and Re = 350. Red and blue iso-surfaces correspond respectively to positive and negative values of
±0.1. The translucent iso-surfaces represent the base flow vorticity at level ±0.01.

λz = 0.66D λz = 2.5D λz = 3D λz = 4DM∞

0.1

0.3

0.5

B2

B1

V2

V3V1

Figure 10. Streamwise vorticity distribution in an (x, y) plane of mode A and B at Re = 350 for different Mach
numbers. The fields are normalised by the maximum absolute value ωx,max = max(|ωx|) and the spanwise
location of these planes corresponds to ωx,max. The black dashed line indicates the streamwise position of
ωx,max. Black solid lines indicate the base flow vorticity contours at levels ±0.1.

wavelength is decreased. In V3 at λz = 2.5D, the dipole has a different structure with
respect to λz = 4D. Likewise for the streamwise vorticity component, compressibility
induces a decrease of the vorticity concentration in B2 and an increase of the vorticity
concentration in the region between V1 and V2. Moreover, at M∞ = 0.3 and λz = 2.5 and
λz = 3D, the position of maximum intensity has moved in between V1 and V2, as in the
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λz = 0.66D λz = 2.5D λz = 3D λz = 4DM∞

0.1

0.3

0.5

Figure 11. Cross-stream vorticity distribution at Re = 350. Same convention as in figure 10 but considering
ωy.

case of M∞ = 0.1 and λz = 3D, while at M∞ = 0.5, the maximum intensity is still in V3
for the three wavelengths, as is observed for the largest wavelength in the incompressible
case M∞ = 0.1.

Overall, when moving from large to short wavelengths, the structure of the mode moves
from Kármán vortices to braids in the base flow. That is, the instability transitions from an
elliptic-type instability to a hyperbolic-type instability, which has also been observed for
plane mixing layers (Arratia, Caulfield & Chomaz 2013) and round jets (Nastro, Fontane
& Joly 2020). Our observations show that this transition is delayed as the Mach number
increases.

3.3. Energy budget analysis
To further investigate the influence of the Mach number on secondary instabilities of the
cylinder wake, we conduct an energy budget analysis. The linearised equation for the
perturbation velocity reads

∂u
∂t

+ U · ∇u + u · ∇U = 1
R

(
−∇p + μ

(
∇2u + 1

3
∇ · u

))

− ρ

R2

(
−∇P + μ

(
∇2U + 1

3
∇ · U

))
, (3.2)

where (U, P, R) and (u, p, ρ) indicate the base flow and perturbation primitive variables,
respectively. Multiplying (3.2) by the perturbation velocity u and integrating it over the
whole computational domain V leads to the temporal evolution of the kinetic energy of
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the perturbation E = ∫
V

1
2 |u(x)|2 dx:

dE
dt

=

P1︷ ︸︸ ︷
−

∫
V

u · (U · ∇u) dx

P2︷ ︸︸ ︷
−

∫
V

u · (u · ∇U) dx +

P3︷ ︸︸ ︷∫
V

u ·
(

ρ

R2 ∇P − 1
R

∇p
)

dx

+
∫

V
u · μ

[
1
R

(
∇2u + 1

3
∇ · u

)
− ρ

R2

(
∇2U + 1

3
∇ · U

)]
dx

︸ ︷︷ ︸
P4

, (3.3)

where four different terms can be identified in the right-hand side:

(i) P1 comes from the advection of the perturbation by the base flow and can be
reformulated as

−
∫

V
u · (U · ∇u) dx =

����������
−

∫
V

1
2
∇ · (U |u|2) dx +

∫
V

|u|2
2

∇ · U dx, (3.4)

which corresponds to the energy production/destruction due to the base flow
contraction/expansion;

(ii) P2 comes from the advection of the base flow by the perturbation and can be
expanded in the following form:

−
∫

V
u · (u · ∇U) dx

=

Pst︷ ︸︸ ︷
−

∫
V

(
u2

x
∂Ux

∂x
+ u2

y
∂Uy

∂y
+

�
�

�
u2

z
∂Uz

∂z

)
dx

−
∫

V

(
uxuy

(
∂Ux

∂y
+ ∂Uy

∂x

)
+

���������
uxuz

(
∂Ux

∂z
+ ∂Uz

∂x

)
+

���������
uyuz

(
∂Uy

∂z
+ ∂Uz

∂y

))
dx

︸ ︷︷ ︸
Psh

,

(3.5)

where Pst and Psh are the energy production/destruction due to the base flow strain
field and base flow shear, respectively;

(iii) P3 is the energy production/destruction due to the pressure gradients;
(iv) P4 is the viscous dissipation.

Figure 12 shows the contribution to perturbation growth rate σE = (1/2E)(dE/dt) of
the different terms of (3.3) with respect to the Mach number for mode A at Reynolds
numbers Re = 250 and Re = 350, and for mode B at Reynolds number Re = 350. The
values of the growth rate given by the stability analysis (σ = log(μ)/T) are also reported
for comparison. Discrepancies between the two values of σ and σE are attributed to the
computation of the gradients in the reconstruction of the perturbation fields, particularly
visible for the modes at small wavelengths and high Reynolds number: mode B at
λz = 0.66D in figure 12(c) and mode A at λz = 2.5D in figure 12(d). Nevertheless, these
differences do not change the overall trend of the different contributions.

In all cases, the growth rate results from a balance between the production term P2
associated with the base flow deformation and the dissipation P4. While the latter only
slightly varies with compressibility, P2 is very sensitive to the increase of the Mach
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Figure 12. Evolution with respect to the Mach number of the growth rate of the mode as well as the
contribution of each term of the kinetic energy budget, according to (3.3), for (a) mode A at λz = 3D and
Re = 250, (b) mode A at λz = 4D and Re = 250, (c) mode B at λz = 0.66D and Re = 350, (d) mode A at
λz = 2.5D and Re = 350, (e) mode A at λz = 3D and Re = 350 and ( f ) mode A at λz = 4D and Re = 350.

number and drives the growth rate variation with respect to M∞. This is particularly
visible for mode B (decreasing) and mode A (increasing) at wavelength λz = 2.5D and
Reynolds number Re = 350 in figures 12(c) and 12(d). Values of Psh and Pst, which both
contribute to the production term P2, are also reported. At Re = 250, their values do not
change significantly with respect to the Mach number, but an overall decrease of Psh in
favour of Pst is observed when the wavelength increases from λz = 3D, in figure 12(a), to
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Figure 13. (a) Strain and (b) shear conversion at Re = 350 as a function of the wavelength for M∞ = 0.1,
M∞ = 0.4 and M∞ = 0.5. The solid lines are the interpolation of the strain and shear conversion of mode A.
The dashed lines delimit the range of unstable wavelengths of mode A and mode B.

λz = 4D, in figure 12(b). However, at Re = 350, compressibility changes the contribution
of Psh and Pst to the growth rate of the mode as the Mach number is increased.

Figure 13 presents the contributions of Pst and Psh normalised by P2 at Re = 350
for three representative Mach numbers. Values of M∞ = 0.2 and 0.3 have been omitted
because they are very close to those of M∞ = 0.1, which could be due to interpolation
errors and therefore do not bring useful information. For each Mach number, Pst increases
while Psh decreases when moving from the smallest to the largest unstable wavelength
of mode A. At the largest unstable wavelength, the energy production is entirely due to
the base flow strain conversion Pst, with Psh turning negative. We can also observe that
mode A instability is mainly due to the Pst contribution while that of mode B to the Psh.
Moreover, compressibility increases the strain contribution and decreases the shear one at
all wavelengths.

4. Conclusions

Three-dimensional secondary instabilities developing in the 2-D periodic wake of the
circular cylinder have been analysed at various Reynolds and Mach numbers up to Re =
350 and M∞ = 0.5. The 2-D time-periodic base state is found to exhibit time-averaged
properties that substantially vary within the range of Reynolds and Mach numbers
considered. Specifically, three different types of time-averaged flow structure of the
recirculation region are identified when varying both Reynolds and Mach numbers.

Mode A and mode B secondary instabilities are obtained through a Floquet analysis,
which had proven to provide consistent results also in cases where the base flow is not
purely periodic in the very far wake. The increase of Mach number has a stabilising
effect on both modes close to the critical thresholds, delaying the 3-D transition without
modifying the spanwise wavelengths at which the flow becomes unstable. Conversely,
above the critical thresholds, compressibility still has a stabilising effect on mode B
but progressively becomes destabilising for mode A as the Reynolds number is further
increased. The range of unstable wavelengths does not change with M∞ for mode B,
while it shifts towards lower values for mode A as M∞ is increased. Interestingly, the
normalisation of the spanwise wavelengths of the modes with the characteristic length
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scales of the time-averaged recirculation region of the base flow highlights a correlation
between properties of the unstable modes and those of the time-averaged flow field.

The vorticity distributions of mode A and mode B are also analysed with respect to
the influence of compressibility. The structure of mode B remains unchanged with the
increase of Mach number, while the modifications of the mode A structure induced by
compressibility depends on the wavelength: the structure remains unchanged at large
wavelengths but is substantially modified at small wavelengths. These changes include
both a vorticity concentration in the braids and a vorticity depletion in the Kármán
vortices.

Through the analysis of the perturbation energy budget, it is observed that the growth
rates of both modes A and B results from the competition between the production through
base flow deformation P2 and the dissipation P4. Dissipation only varies slightly with
compressibility and P2 is the one that drives the growth rate variations with respect to the
Mach number. The production term P2 can be further decomposed into a base flow strain
conversion term Pst and a base flow shear conversion term Psh. The mode A kinetic energy
production is mainly due to the base flow strain conversion term and this term is increased
by compressibility. In contrast, the mode B kinetic energy production is mainly due to
base flow shear conversion term and this term is decreased by the compressibility. These
observations may be useful to elucidate on why mode A is destabilised by compressibility
while mode B is stabilised.

Beyond the present work, it would be interesting to extend this analysis to the
quasi-periodic (QP) 3-D mode that emerges in the cylinder periodic wake at higher
Reynolds numbers, i.e. Re ≥ 380 (Blackburn et al. 2005). The investigation of
compressibility effects beyond M∞ = 0.5 in the transonic and supersonic regime, as done
by Sansica et al. (2018) for the flow past a sphere, could be also considered.
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Appendix A. Mesh convergence study

Figure 14 shows the mesh convergence study for the 2-D base flow monitored through
the evolution of both the time-averaged drag coefficient CD and the Strouhal number St
with respect to the grid characteristic size (1/Ncells) of five different meshes, from M1 the
coarsest to M5 the most refined. M3 has been chosen for the 2-D resolution showing less
then 0.5 % of error with respect to the Richardson extrapolated value (red dot) on the drag
coefficient and a 0.1 % error on the Strouhal number. Values of the Floquet exponent μ

with respect to the discretisation in the (x, y) plane and Δz = D/8 are shown in figure 15.
Results obtained with mesh M3 differ by less than 1 % for mode A and 3 % for mode B.
In table 1, results for modes A and B at other wavelengths are also reported, including
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M5M4M3M2 M1
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St0.5 % error

0.1 % error

M∗M∗

(a) (b)

Figure 14. Convergence on (a) drag coefficient CD and (b) Strouhal number St with respect to five different
meshes at Re = 300. M1 is the coarsest, M5 the most refined. Here, M∗ (red dots) represents the asymptotic
value as given by Richardson extrapolation. Henderson (1995) reported CD ≈ 1.4.

M∗

1.64

1.66

1.68

1.70

1.72

1.74

Mesh

μ

1 % error

M∗M5M4M3 M4M3M2 M1 M5 M2 M1
1.60

1.70

1.80

1.90

Mesh

3 % error

(a) (b)

Figure 15. Convergence on the Floquet exponents for (a) mode A at a wavelength λz = 4D and (b) mode B
at a λz = 0.8D with respect to five different (x, y)-resolutions and Δz = 0.125D at Re = 300 and M∞ = 0.05.
Red dots correspond to the Richardson extrapolation.

the influence of the spanwise discretisation. The relative error for mode A between mesh
M3 with Δz = D/8 and M5 with Δz = D/32 is ≈0.5 %, while that for mode B between
mesh M3 with Δz = D/8 and M5 with Δz = D/32 is ≈1.5 %. The higher relative error
observed for mode B is due to its shorter wavelength to that of mode A. Results at Re =
300 and M∞ = 0.05 using mesh M3 and Δz = D/8 are also reported in figure 16 for all
the wavelengths and compared with results from (Leontini et al. 2015), showing good
agreement. Based on these results, mesh M3 with Δz = D/8 has been chosen.

Appendix B. Influence of the starting time within the limit cycle

The influence of the base flow initial instant within the period T on both modes A and B
Floquet multipliers is reported in figure 17, together with the lift coefficient (CL) evolution
along the period T of the base flow. The Floquet multipliers exhibit a sinusoidal evolution
with respect to the base flow starting point, with fluctuations of approximately 0.5 %
around the mean value. The evolution is out of phase for mode A and in phase for mode B
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M1 M2 M3 M4 M5

Mode A λz = 4D Δz = D/8 1.635 1.721 1.736 1.742 1.743

Mode A λz = 3D Δz = D/4 — 1.676 — — —
Δz = D/8 — — 1.711 — —
Δz = D/16 — — — 1.707 —
Δz = D/32 — — — — 1.718

Mode B λz = 0.8D Δz = D/8 1.629 1.889 1.902 1.924 1.938

Mode B λz = 0.75D Δz = D/4 — — — — —
Δz = D/8 — — 1.867 — —
Δz = D/16 — — — 1.838 —
Δz = D/32 — — — — 1.840

Table 1. Floquet exponents for mode A at a wavelength λz = 4D, 3D and mode B at λz = 0.8D, 0.75D with
respect to different resolutions at Re = 300 and M∞ = 0.05.

2.5

2.0

1.5

1.0

0.5
0 2 4 6

Present work

Leontini et al. (2015)

μ

λz/D

Figure 16. Results at Re = 300 and M∞ = 0.05 using mesh M3 with Δz = D/8 compared with the results
taken from Leontini et al. (2015). Dashed grey line represents the interpolation curve of the present results.

with respect to the CL evolution. These simulations have been performed on the coarsest
mesh M1 with Δz = D/8.

Appendix C. Base flow aperiodicity

The main assumption underlying Floquet theory is the periodicity of the base state. This
assumption allows to consider the periodic limit cycle as a fixed point on the Poincaré
section and therefore to have a constant Jacobian matrix at each period T . In wake
flows, such as the case discussed in this work, the base state is indeed periodic in the
near wake downstream of the cylinder as a consequence of vortex shedding, with period
T = 1/f . However, in the far wake, where vortex pairing can occur (figure 18a), the base
state may no longer be T-periodic, as shown by the velocity field difference between the
unsteady solution at times t and t + T in figure 18(b). Some recent works have discussed
this limitation and provided some methodologies to ensure that the base state remains
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1.65

μ

Mode A
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Figure 17. Effect of the base flow starting point on mode A and mode B Floquet multipliers with respect to
the lift coefficient evolution at Re = 300 and M∞ = 0.05.
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0
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(d )

Figure 18. (a) Normalised base flow velocity magnitude U/U∞ at Re = 300, M∞ = 0.05 and (b) velocity
magnitude field difference between base flow at times t and t + T . (c) Example of mode not affected by
aperiodic zone and (d) example of wake mode developing in the aperiodic region.

T-periodic in the whole numerical domain. This can be achieved either by reconstructing
the base flow solution and limiting the downstream extent of the numerical domain for the
stability calculation (Lo Jacono et al. 2010), or by computing and using phase-averaged
or stabilised base flows (Jiang 2021). These methods induce modifications of the unsteady
base flow solution, not fully representative of the actual flow. With the method adopted in
this work, the base flow is integrated in time with the perturbation as indicated by (2.13),
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–1

0

1

2

–1

0

1

2

μi

μr

BS = q(t)
BS = q(t + T )

–1.0 –0.5 0 0.5 0.51.0 –1.0 –0.5 0 1.0

μi

(a) (b)

Figure 19. Spectra obtained with different base states periods at (a) Re = 300, M∞ = 0.05 and
(b) Re = 350, M∞ = 0.3. Solid black line indicates the unitary circle.

preventing from using these approaches. Nevertheless, it is possible to assess the relevance
of the stability analysis performed here even if the base flow is only approximately periodic
in the far wake. To investigate the influence of the far-wake aperiodicity of the base flow,
results of Floquet analysis at two Reynolds and Mach numbers using base flows computed
at different periods are reported in figure 19. These spectra highlight that mode A and
mode B (μr > 0 and μi = 0) are not affected by the base flow aperiodicity in the far wake
because their Floquet multipliers do not vary for the different base state and their spatial
structures are located in the periodic near-wake region, as shown in figure 18(c) for the
least stable mode at Re = 300 and M∞ = 0.05. Conversely, the modes in the lower part of
the spectrum (μr < 0) show a dependence on the chosen period of the base flow and their
spatial structures are located in the far wake, as shown in figure 18(d), where the base flow
is no longer T-periodic. Hence, to analyse the far-wake instabilities, which have not been
considered in this work, approaches like those cited above should be used.
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