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A theorem on absolute summability
of Fourier series by Riesz means

Prem Chandra

In 1951 Mohanty established the following theorem.

If ¢(¢)log log% 18 of bounded variation in (0, m) , where

kzme? and 6(¢) = Hflaove) + fla=t)} , then ] 4 (x) s
n=1

A ..
summable |R, exp{(logw)"}, 1| , for however large positive A .
In this present note we have generalised the above theorem by
taking a more general type of Riesz means and under the condition,
6
¢(t)(log log;) is of bounded variation in (0, m) , where ¢

is finite, imposed upon the generating function of Fourier series.

1. Definitions and notations

Let L = L(w) Ve a differentiable, monotonic increasing function of

w tending to infinity with w . For a given infinite series z an , we
write
r
Aw) = § {Lw)-L(n)}a, (r 2 0)
n=w

The series Z a, is summable |R, L, rl (r > 0) or symbolically

Zane|R,L,r| (r >0) , if
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L' (w) r=1
—_—— {L(w)-L{n)}Y "L(n)a ldw
E ‘{L(w)}”*l néw "%

is convergent, where A is a positive number. (Obrechkoff [2]1, [3].)

Let f(¢) be a periodic function with period 27 and integrable in
the sense of Lebesgue over (-m, T) . We can, without any loss of

generality, write the Fourier series of f(z) as
<« [« ]
} (a_cosnt+b _sinnt) = § 4 (t) ,
n n n
n=1 n=1
assuming that the constant term is zero.

Throughout we use the following notations:

(1.1) ¢(2) = 3{rla+t)+f(a-t)} 5

z L(n)cosnt(log 1og(n+2))c—l , (e is finite) ;
nw

(1.2) g(w, t)

(1.3) hw, t) Y L(n)sinnt/n(log log(n+2))l_c , (¢ is finite) .
n=w

2. Introduction

Concerning the absolute Riesz summability of Fourier series of order

unity, Mohanty [1] proved the following:

THEOREM M. If §(¢)log logs € BV(0, 7) ,! where k = me? , then

) An(x) € |R, exp{(logw)A}, 1| , for however large positive A .
n=1

Generalising the above theorem, we prove the following:

THEOREM. Let ¢ be finite and A be positive however large. If
the type of Riesz means L(w) satisfies the following conditions:

(2.1) {L(w)/w(10g 1ogw) ¢}

b 1f(x) € BV(a, b)' means f(x) is of bounded variation in

(a, b)
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18 monotonic increasing with w = Wy s 2

(2.2) wh' (0) = o{L(w)(logw)? ™1} .

e
~ Then, if ¢(¢) {108 log%) ¢ BV(0, m) , where k = me

o 4, (x)

€ |R, L{w), 1] .
n=1 {log 1og(n+2)}l_c | v |

3. Proof of the theorem

We have

=

T
A (x) f ¢(t)cosntdt

[¢)

A

i ky¢ cosnt
o(t) (10g logza — —— dt
© (log log%)

m COSNnu
——du

|ro

6
=5 ¢(m) (Log log;) =
° (log log;)

- %-f: d{¢(t)(log log%)c} f:

e
Since ¢(t)(log log%a ¢ BV(0, m) , the series

o An(x)

R, L(w), 1 if
n=1 {log log(n+2)}l"c | s
L’

e {L(w) }2
o(1)

uniformly in 0 < ¢t =7 .

Integrating by parts, we have,

2 In the case that {L{w)/w(log 1ogw)l-c}

2

then

coshu

k
[log log;)

-c
g(w, u)(1og logﬁ) duldw

(<]

181

du .

is monotonic decreasing,

the result follows by using the second theorem of consistency for absolute

Riesz summability.
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t t

glw, w) o - _hw, t) CJ h(w, u) du .
0 2N k° 0 k Kyt te
[log 1og;) (log log;) u(log;) (1og log;)
Therefore
-2 '
I =< (1og log%) FL(_"’L |n(w, t)|d
e {L(w)}?
+r L' (w) r’ c'u_lh(wjL u) auldw
2 1+e
e {L()} ° log%(log logs-]
=1y + Iy , say.

Now

t .

I SIonu Tio du = 0{(log(n+l))_l(log log(n+2))_(l+c)},

© ulog%(log log;]
we have

' -1
I, = o{r L' (w) 221 (n) idz"}
e {L(w)}? 'm=w 1log(n+1)(log log(n+2))2
= 0(1) ,
since
b -1 -2
1 (nlog(n+1))™" (10g log(n+2))™° < w .
n=1

A1
For T; = k/t and T, = (k/t)(log%) » We write

(log log%)—cUZl + JTZ + Ez] [—LL(—I‘-J-L—M(w, t)|dw]

b {L(w)}2
+ 11’3 , say.

y
n

=Lt

By using the fact |sinnt| < nt , we have
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Ln) |
y1-c|

.
A

< t JTl L' (x)
(108 log%)c e {L(w)}?

-c (T ' W
O{t(log log%) I ' —é—izl—~dw J L(z) ) dx} + 0(1)
e {Lw)}? 1 {log log(z+2)} ™

n<w {log log(n+2)

ke (F e
O{t(log 1ogz) J {10g log(z+2)} 'ldx} + 0(1)
1
o(1) ,

uniformly in 0 < ¢ =7 ; and using simnnt = 0(1) , we have

-¢ (T ' w0 -1
i, - O{(log log%) Jz L' (w) de x""L(x) 1cdx} + 0(1)
’ T, {L(w)}? ; {log log(x+2)} ™~
T, !
1o dx} +0(1)
T1{log log(x+2)}

O{(log logéa_c J

-1

0{(log lo Z) (logT2~logT1)} + 0(1)

o(1) ,

uniformly in 0 < ¢t =7 .,

Since, by applying Abel's Lemma, in view of (2.1),

r(w, t) = olt " o(w) w(1log 2ogw) ™} ,
we have
-C -1 ]
I .= O{t_l(log Logk) Iw w L (w) dw}
13 ¢, Lw) (108 logw)t™®

-c -2 A-1
O{t_l(log 1og§J Iw v (lomw) _ dw} (oy (2.2))
T

» (log logw)i™®

o(1) ,
uniformly 0 < ¢t =T .

This terminates the proof of the theorem.

https://doi.org/10.1017/50004972700045846 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700045846

184 Prem Chandra

References

{71 R. Mohanty, "On the absolute Riesz summability of Fourier series and
allied series'", Proc. London Math. Soe. (2) 52 (1951), 295-320.

{2] Nicolas Obrechkoff, "Sur la sommation absolue des séries de

Dirichlet", C.R. Acad. Sci. Paris 186 (1928), 215-217.

[3] Nikola Obreschkoff, "Uber die absolute Summierung der Dirichletschen
Reihen", Math. Z. 30 (1929), 375-385.

Government Science College,

Jabalpur, India.

https://doi.org/10.1017/50004972700045846 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700045846

