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Summary

Maternal effects play an important role in fitness and other aspects of individual performance in
many species, particularly mammalian, yet their impact on genetic variation within species and
its rate of loss during selection has been neglected. In this paper we extend the theory of expected
long-term genetic contributions to include maternal effects, and tested the accuracy of predicted
rates of inbreeding for populations under mass selection by comparison with simulations. The model
includes selective advantages of direct and maternal additive genetic effects, and also the selective
advantage of a common maternal environmental effect. The population structures investigated had
a fixed number of dams per sire and fixed family size. Most prediction errors of the rate of inbreeding
(DF) were less than 8% of the simulated means and were lower in magnitude than the prediction
errors of genetic gain (DG). The predictions of DG from contributions equalled previously published
predictions. A variation in maternal genetic effects resulted in a much larger DF than for an equally
sized variation in common maternal environmental effects. For a fixed genetic gain, DF increased as
the maternal heritability increased. The influence of family size, mating ratio and age structure on
DF was greater with maternal effects than with only direct genetic effects included. In conclusion,
maternal effects can be a very important aspect to consider when predicting DF in populations under
selection, and the developed methodology gives good predictions.

1. Introduction

Maternal effects play an important role in fitness
and other aspects of individual performance in many
species, particularly mammalian, and their impact
on selection response has been investigated exten-
sively. However, their impact on genetic variation
and its rate of loss during selection has received little
attention. This rate of loss is measured by the rate
of inbreeding (DF) and a better understanding of
how maternal effects influence DF will inform and
improve the design of animal breeding schemes and
genetic conservation programmes of wild populations
subjected to natural selection.

In phenotypic models including maternal effects,
the dam affects her offspring’s phenotype in two ways.
Firstly, her genetic contribution to the offspring’s

genes influences the phenotype of the offspring. Se-
condly, her ability to contribute to the development of
the offspring’s phenotype is modelled as a phenotypic
component attributable to the dam. This latter part
of the model is the maternal effect, and several differ-
ent models of this phenomenon have been developed;
these have been reviewed by Kirkpatrick & Lande
(1989). One of the main differentiating factors among
these models is whether the trait measured in the off-
spring is regarded as the same trait (e.g. Falconer,
1965) or a different trait (Willham, 1963, 1972) from
that describing the dam’s ability to contribute to the
offspring’s development. Intermediate models have
also been developed where the environmental com-
ponent of the mother’s ability is correlated with the
non-maternal environmental component of the pheno-
type measured in the offspring (Mueller & James,
1985; Riska et al., 1985). The studies reviewed by
Kirkpatrick & Lande (1989) focused on the selection
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response in populations, and did not investigate the
influence of maternal effects on DF.

The partition of the covariance between offspring
and dam among the direct additive effects and ma-
ternal effects, both inherited and environmental, has
been shown to influence genetic gain (Willham, 1963),
but this partition will also be critical in determining
DF. This is because a mother that is more able to take
good care of her offspring will tend to have more off-
spring selected under mass selection, and so increase
the co-selection of related individuals. Thus the ma-
ternal effect is a selective advantage for the dam.
Wray et al. (1994) considered the impact of maternal
effects on predicted DF with directional selection, but
assumed that the maternal selective advantage was not
inherited, i.e. a daughter’s maternal effect was inde-
pendent of its dam’s maternal effect. However, DF has
been shown to increase when selective advantages are
inherited (Robertson, 1961;Wray&Thompson, 1990).

Woolliams & Bijma (2000) showed that DF could
be predicted from the expected genetic contributions
of individuals conditional upon their selective advan-
tages. These expected contributions can be calculated
for mass and index selection with direct additive ef-
fects using general methods developed by Woolliams
et al. (1999), and the generality of their approach
suggested that inherited maternal effects could also be
incorporated into their model. This incorporation
would remove a major limitation of the methods of
Wray et al. (1994).

The development of accurate predictions of genetic
gain and rates of inbreeding is desirable since the

alternative is to use stochastic simulations for all
predictions, which is time-consuming and specific
to situations simulated, and restricts extrapolation,
interpretation and insight. Therefore our aim is to
extend the theory of expected long-term genetic con-
tributions to include maternal effects and, thereby,
investigate the influence of maternal effects on pre-
dicted DF for populations under mass selection, and
to test the accuracy of these predictions by compari-
son with simulations. The development is initially
based upon the phenotypic model of maternal effects
developed by Willham (1963, 1972), since this is rela-
tively simple and is the one most commonly used
for estimation of genetic (co)variances and breeding
values.

2. Methods

The notation for frequently used parameters of the
model is given in Table 1.

(i) Population models and parameters

We studied a model for maternal effects where the
phenotype of individual i is composed of an individ-
ual component, Pi, self, and a component determined
by the dam, Pi, maternal (Willham, 1963):

Pi=Pi, self+Pi, maternal:

Each of the genetic subcomponents of each pheno-
typic component is assumed to have Mendelian in-
heritance determined by an infinite number of loci,

Table 1. Notation of frequently used parameters

DF, DFL Annual rates of inbreeding and rates of inbreeding per generation
DGdir, DGmat Direct and maternal genetic gain per year
DG, DG Vector of annual genetic gain and total genetic gain (DGdir+DGmat)
Pi, Ai, Ei Phenotype, additive direct genetic effect and environmental effect
Md, Cd Additive maternal genetic effect and environmental maternal effect of the dam
si(q) Vector of selective advantages for individual i in category q equal to (Ai Mi Ci)

T ; mean
over all selected in category q is �ssq

ri(q), ui(q), mi(q) Long-term genetic contribution, expected long-term genetic contribution and linear predictor
of long-term genetic contributions

aq, bq Vectors of the coefficients for mi(q)
lpq Regression coefficients of proportion selected in category p on si(q) for parents in category q
ppq Regression coefficients of sj(p) on si(q) for parents in category q
ai, mi, gi(p) Direct and maternal Mendelian sampling terms of individual i, and vector of Mendelian sampling

terms equal to (ai mi 0)
T

h2A, hM
2 , hW

2 Direct, maternal and Willham heritabilities
c2, r, s2

I Common environmental variance, direct-maternal genetic correlation, and phenotypic variance
Nm, Nf, d Number of male parents, number of female parents, and dams per sire (Nf/Nm)
no, T Total number of offspring per dam, and number of candidates available for selection in each sex
N Vector of number of individuals in each category
ip, kp, i Intensity of selection and variance reduction term in sex p, and mean selection intensity

Subscripts
p, q, i(p) Indicators of categories, i(p) denotes individual i in category p
m, f Indicators of male and female
i, d, s Indicators of individual, dam and sire

L. Rönnegård and J. A. Woolliams 68

https://doi.org/10.1017/S001667230300627X Published online by Cambridge University Press

https://doi.org/10.1017/S001667230300627X


each having an infinitesimal effect (the infinitesimal
model ; Fisher, 1918), with:

Pi, self=Ai+Ei

Pi, maternal=Md+Cd,

where Ai and Md are the additive direct genetic effect
and additive maternal genetic effects, respectively,
and where subscripts i, s, d denote belonging to indi-
vidual i, sire s and dam d. Cd will be referred to as
the common environmental effect and is assumed to
represent environmental effects related to the dam’s
own attributes or other influences on its offspring that
are shared by the maternal sibs alone. Thus effects
common only to specific litters have been ignored
here. Cd was the sole maternal component modelled
by Wray et al. (1994). The terms Ai, Ei, Md and Cd

are assumed to be mutually independent with the
exception of Ai and Md. Furthermore, for a female
i, Ei (the environmental component specific to her
own performance) is independent of her maternal
contribution to her offspring. This latter assumption
distinguishes the model above from that of Falconer
(1965) ; see Discussion.

For each genetic component, inheritance is mod-
elled by:

Ai=1
2As+1

2Ad+ai

where V(ai)=1
2 h

2
A, and

Mi=1
2Ms+1

2Md+mi

where V(mi)=1
2 h

2
M:

An unrelated and randomly selected base popu-
lation is assumed in which V(Pi)=the total pheno-
typic variance=1, hA

2 =total direct additive genetic
variance, and hM

2 =total maternal additive genetic
variance. Within the base population Cov(Ai, Mi)=
rhAhM, where r is the direct-maternal genetic corre-
lation, and in all subsequent generations (neglecting
inbreeding)Cov(ai,mi)=1

2 rhAhM. Using these assump-
tions and denoting V(Cd) by c2, gives

V(E)=1x(h2
A+h2

M+rhAhM+c2):

Using this model, Willham (1972) showed that for
mass selection in the base population, the ratio of the
response to the selection differential applied is given
by h2

W=h2
A+

3
2 rhAhM+1

2 h
2
M. We refer to this fraction

as the Willham heritability.

(ii) Population structures

Each sire was mated at random to a fixed number
of d dams, and each dam produced no full-sibs (hier-
archical mating) with equal numbers of males and

females. For discrete generations the numbers of
male and female parents wereNm andNf, respectively,
with the mating ratio d=Nf/Nm. The phenotype
used for selection was assumed measurable in both
sexes, with the same genetic and environmental par-
ameters. Parents were selected by ranking the pheno-
types within each sex, and selecting the required
number of individuals with the highest rank. For
overlapping generations, the individuals were ranked
within age classes and were selected each year. There
was no reordering of ranking between ages.

(iii) Expected genetic contributions, gain and rate of
inbreeding

In this section predictions of genetic gain and rates
of inbreeding are derived for discrete generations
using the concept of long-term genetic contributions.
The basic approach follows Woolliams & Bijma
(2000) and Bijma et al. (2000), and uses similar no-
tation. The extension to overlapping generations is
given in the Appendix. All predictions were derived
for a population after several generations of selection
(Woolliams et al., 1999) where equilibrium genetic
(co)variances had been attained (Bulmer, 1971).

The long-term genetic contribution, ri(q), of indi-
vidual i in category q born at t1 is defined as the pro-
portion of genes present in individuals in cohort
t2 deriving by descent from i, where (t2xt1)p‘

(Woolliams et al., 1993).
The long-term genetic contribution of an individ-

ual i depends on the category that the individual
belongs to, where a category (in the present paper)
is defined by the individual’s sex and age. Further-
more, in a selected population superior parents are
likely to have more offspring selected than average
individuals. The superiority is defined by selective ad-
vantages (Woolliams et al., 1999) and the model as-
sumes that the selective advantages of an individual
i are given by Ai, Mi and Ci, since these three compo-
nents, and the corresponding terms for its mate(s),
influence the selection of future descendants of indi-
vidual i. For females, all of these will influence selec-
tion of offspring and Ai andMi will influence selection
of later descendants. For males, Ai will influence
selection of their offspring and later descendants, Mi

does not influence the selection of their offspring but
will influence selection through their selected female
descendants, whereas Ci does not influence the selec-
tion of their offspring or descendants and need not be
defined for a male.

Let si(q) be a vector of selective advantages for
individual i in category q so that si(q)=(Ai(q) Mi(q)

Ci(q))
T, where superscript T denotes the transpose

of matrices. The expected long-term genetic contri-
bution ui(q) is then defined as ui(q)=E(ri(q) si(q)xsq

�� ),
where sq is the average of selected individuals in
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category q. The linear predictor of ui(q) is :

mi(q)=ai(q)+bT
q (si(q)xsq) (1)

where am=1/(2Nm) and af=1/(2Nf). For discrete
generations, solutions for the coefficients in bq

T are
obtained from Woolliams et al. (1999) :

Nmbm

Nfbf

 !
=

1

4
Ix

1

2

pmm pfm

pmf pff

� �� �x1 lmm+lfm

lmf+lff

� �

(2)

where I is the 6r6 identity matrix, ppq are 3r3 sub-
matrices containing regression coefficients of selective
advantages of selected progeny in sex p on selective
advantages of parents in sex q, lpq are 3r1 sub-
matrices containing regression coefficients of pro-
portion selected in sex p on selective advantages of
parents in sex q, and subscripts m and f denote males
and females, respectively. Following equations (A5)
and (A6) in the Appendix for Willham’s phenotypic
model, the estimates of lpq and ppq are given by:

lp,m=
ip
2sI

(1 0 0 )T

lp, f=
ip
2sI

(1 2 2)T

pp,m=
1

2

1 0 0

0 1 0

0 0 0

0
B@

1
CAx

kp
s2
I

x 0 0

y 0 0

0 0 0

0
B@

1
CA

2
64

3
75

pp, f=
1

2

1 0 0
0 1 0
0 0 0

0
@

1
Ax

kp
s2
I

x 2x 0
y 2y 0
0 0 0

0
@

1
A

2
4

3
5

where x=Cov(Pi, Ai), y=Cov(Pi,Mi), ip is the selec-
tion intensity in sex p, kp is the variance reduction
term in sex p, and sI is the phenotypic standard devi-
ation.

The annual genetic gain (DG) was predicted by

DG=NmE[ri(m)gi(m)]+NfE[ri( f )gi( f )] (3)

where gi(p) is the vector of Mendelian sampling terms
corresponding to the selective advantages in si(p),
i.e. gi(p)=(ai(p), mi(p), 0)

T (Woolliams et al., 1999). The
expectations of rigi are given in equation (A9) in the
Appendix.

The rate of inbreeding per year, DF, was predicted
using the results of Woolliams & Bijma (2000) :

E[DF ]=
1

2

X
q=m, f

NqE(u
2
i(q))x

1

8T
(4)

where the last term is a correction factor for fixed
family size, with T equal to the total number of pro-
geny of each sex before selection, and ui(q) includes the
selective advantages of the mates so that :

E(u2
i(m))=a2

m+(1x1=Nm)bmV
*
mmb

T
m

+d(1x1=Nf)bfV
*
ff b

T
f (5a)

E(u2
i( f ))=a2

f+(1x1=Nf)bfV
*
ffb

T
f

+
1

d 2
(1x1=Nm)bmV

*
mmb

T
m (5b)

where Vqq
* is the (co)variance matrix of selective

advantages after selection in sex q as defined in the
Appendix.

The method implies thatDF is an equilibrium value.
The rates of inbreeding for the alleles defined in an
arbitrary base will be reached after a small number
of generations (Woolliams & Bijma, 2000), if equilib-
rium genetic covariances are assumed.

(iv) Stochastic simulations

The stochastic simulation programme described by
Bijma & Woolliams (1999) was developed to include
the maternal effects model described above for a
population undergoing mass selection with fixed
family size.

Since the randomly selected and unrelated base
population was assumed to have phenotypic vari-
ance=1, the genetic covariance matrix for the direct
and maternal effects in the base population was

V0=
h2
A rhAhM

rhAhM h2
M

 !
,

for which the lower matrix of the Cholesky factor-
ization is

L=
hA 0

rhM
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
M(1xr2)

p
 !

:

Additive direct and maternal genetic effects of the
sires and dams of the base population were simu-
lated as (Ai,Mi)

T=Lx, where x is a vector of two
independent random N(0, 1) numbers. The pheno-
typic value of individual i was then calculated as
Pi=Ai+Md+Cd+Ei, where Cd was sampled from
N(0, c2) and Ei was sampled from N(0, V(E)).

In subsequent generations the procedure was simi-
lar, but additive effects were calculated as Ai=1

2As+
1
2Ad+ai andMi=1

2Ms+1
2Md+mi, with the covariance

between Mendelian sampling terms Cov(ai,mi)=
1
2 rhAhM. Inbreeding was neglected in the calculation
of Mendelian sampling terms. Thus sampling was
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conducted using

(ai, mi)
T=

ffiffiffiffiffiffiffi
0�5

p
Lx:

For the calculation of genetic contributions, the
ancestor cohort t1 was set to 10 and the descendent
cohort t2 was 20. The long-term genetic contribution
ri of an ancestor in cohort t1 to individuals in cohort
t2 was obtained by summing contributions via all
pedigree paths leading from i to individuals in t2.

For each replicate observed, genetic contributions
were analysed using the linear model : ri=a+
b1(AixA )+b2(MixM )+b3(CixC )+ei, and bi was
then estimated from multiple regression of ri on the
selective advantages. Asymptotic rates of annual di-
rect and maternal genetic gain were calculated as
DGdir=(At2xAt1 )=(t2xt1) and DGmat=(Mt2xMt1 )=
(t2xt1). Inbreeding coefficients of individuals in co-
horts t1 and t2 were calculated from the simulated
pedigree, using the algorithm of Meuwissen & Luo
(1992). Rates of inbreeding per year were calculated

as DF=1x 1xFt2

1xFt1

� �(t2xt1)
x1

. Results were averaged over

500 replicates to give DFsim.

(v) Structure of population parameters investigated

To explore both the properties of the genetic model
and the validity of the predictions we considered five
sets of studies with specific objectives. This helped to
overcome the problems associated with the large
number of parameters that could be varied simul-
taneously, e.g. hA

2 , hM
2 , r, c2, Nm, Nf, no, age structure.

Case I. The origin of maternal effects. Parameters hM
2 ,

c2 and no were varied to exemplify differences between
inherited and non-inherited maternal effects in de-
termining DF. In this case hA

2 =0, Nm=25, and d=1.
Case II. Partitioning a constant (hA

2 +hM
2 ). The impact

of hA
2 and hM

2 on DF was examined for fixed hA
2 +hM

2

(=0.4) and with r=0.
Case III. Partitioning a constant hW

2 . The differential
impact of hA

2 , hM
2 and r on DF was examined when

these parameters were constrained to give a fixed
hW
2 =0.2. Thus, hM

2 was varied from 0 to 0.4 as in case
II but for fixed DG. The population structures were
varied so that with random selection and mating and
Poisson family size DF was expected to be 0.01.
Case IV. Varying hW

2 . The impact of varying hW
2 on DF

was examined. The values of hA
2 , hM

2 and r were con-
strained by using the results from the review of genetic
parameters in beef cattle by Mohiuddin (1993) : hM

2 /
hA
2 =0.6, r=x0.15. In addition, it was assumed that

c2=0.07 (Mohiuddin, 1993).
Case V. Overlapping generations. The influence of age
structure on rates of inbreeding per generation (DFL)
was investigated in a population with two age classes,
following the structure described in table 2 of Bijma

et al. (2000). Differences between direct and maternal
effects were compared for Nm=20 and Nf=20, and
the age distribution was varied for one sex at a time.
The proportion of individuals in age class 2 of each
sex was varied from p2=0 to 1; so N=[20, 0,
20(1xp2), 20p2]

T when the dam distribution was
varied, and N=[20(1xp2), 20p2, 20, 0]

T when the sire
distribution was varied.

For all cases the results of the simulations were
compared with predictions of DG and DF given
above. In the case of DG the predictions were also
compared with those from ‘conventional ’ selection
theory (see e.g. Van Vleck, 1993) :

DGdir= V(Ai)+1
2Cov(Ad, Md)

� �
i=sI (6a)

DGmat= Cov(Ai, Mi)+1
2V(Md)

� �
i=sI (6b)

where i is the mean intensity of selection, and sub-
scripts i and d denote the individual and its dam,
respectively. No substitution has been made for hA

2 ,
hM
2 and r, since the expressions given above will hold

for both the base and the equilibrium genetic par-
ameters (Bulmer, 1971). The term ‘genetic gain’ refers
to DG=DGdir+DGmat, unless stated otherwise.

3. Results

(i) Case I. The origin of maternal effects

This case was explored quantitatively by deriving the
algebraic expressions of b (Table 2). For females the
ratio between genetic and environmental b is within
the range 1.0 to 1.5. Hence, a genetic maternal effect
has greater impact on the long-term genetic contri-
butions than an environmental maternal effect. This
is in accordance with the predicted DF in Table 3,
where maternal effects that were inherited had greater

Table 2. Algebraic expressions for male and female b
for each separate selective advantage when the
variances of the other two selective advantages are
zero (derived from eq. [2])

Male b Female b

Ai
a 1

D1
r

i

2NmsI

1

D1
r

i

2NfsI

Mi
b 1

2D2
r

i

2NmsI

3

2D2
r

i

2NfsI

Ci 0
i

2NfsI

a D1=1+
V(Ai)

2s2
I

(kf+km).

b D2=1+
V(Md)

8s2
I

(3kf+km).
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effect on rates of inbreeding than those of equal size
but environmental origin. An additional component
to this increase in DF was that b>0 for males, unlike
the environmental case. Table 2 shows the regression
on Mi was 3/d times greater in females than in males,
i.e. was equal in magnitude when d=3 and greater
when d>3.

For low to moderate litter sizes and maternal ef-
fects, the prediction accuracy of DF was approxi-
mately the same as the prediction errors given by
Bijma et al. (2000) for additive direct effects only.
However, DF could not be predicted for large ma-
ternal variances and large litter sizes. In the model
for predicting DF it was assumed that the expected
long-term contributions were linearly related to the
selective advantages (eq. 1). However, in the extreme
case of Table 3 (no=50, c2=1 or h2

M=1) the dam with
the highest maternal effect would have all its offspring
selected and all other dams would have no offspring
selected. Consequently, the assumption of linearity
was severely violated and predictions were poor.

For random selection and Poisson variance of
family size, the numbers of sires and dams in the
present case (Nm=Nf=25) correspond to DF=0.01,
which has been suggested as a maximum acceptable
level (see Franklin, 1980; Meuwissen & Woolliams,
1994). However, for mass selection and moderate
variances of maternal effects, the values of DF ex-
ceeded 0.01, even though the family size was fixed
(Table 3). Furthermore, DF was increased by more
than 20% for moderate hM

2 compared with c2 of equal
size.

(ii) Case II. Partitioning a constant (hA
2 +hM

2 )

DF increased and DG decreased when the proportion
of the total additive genetic variance attributed to ma-
ternal effects increased with r=0, as shown in Fig. 1.
The prediction errors of DF (<3%) were smaller than
the prediction errors of DG (<9%), where the pre-
dictions of DG equalled conventional ones (difference
<0.7% of DG). The maximum prediction error was
obtained for hM

2 =0.4, and DG was over-predicted as
expected due to finite family size and the intra-family
correlation (see Hill, 1976; Meuwissen, 1991).

Table 3. Predicted rates of inbreeding compared with simulations for
populations with Nf=25, d=1, varying number of offspring per dam, no,
and varying values of the variance of common maternal environment, c2 and
maternal heritability, h2M (and h2

A=0). Standard errors of simulated rates of
inbreeding were less than 3% of DFsim

no=4 no=8 no=50

c2 h2M DFpred
a Error%d DFpred

b Error% DFpred
c Error%

0.1 0 0.0081 +3 0.0103 +1 0.0142 x2
0 0.1 0.0089 +3 0.0122 +3 0.0197 +4

0.2 0 0.0087 +2 0.0119 +3 0.0189 x7
0 0.2 0.0101 +6 0.0151 +3 0.0277 0

0.4 0 0.0099 +4 0.0150 +1 0.0276 x23
0 0.4 0.0121 +10 0.0198 0 0.0401 x8

0.6 0 0.0112 +5 0.0181 x2 0.0365 x36
0 0.6 0.0137 +8 0.0234 x7 0.0496 x19

1 0 0.0163 x2 0.0243 x40 0.0543 +184
0 1 0.0163 x2 0.0291 x13 0.0640 +235

a DFpred=0.0075 for random selection (hW
2 =0).

b DFpred=0.0088 for random selection.
c DFpred=0.0098 for random selection.
d 100%r(DFpredxDFsim)/DFsim.

0·025

0·020

0·015

0·010

0·005

0 0·25 0·750·5 1·0

0·5

0·4

0·3

0·2

0·1

0

�
F

�
G

Proportion maternal genetic variance

Predicted inbreeding

Simulated inbreeding

Predicted gain

Simulated gain

Fig. 1. Rates of inbreeding and total genetic gain for a
fixed sum of direct and maternal genetic variance equal to
0.4 (i.e. hA

2 +hM
2 =0.4, r=0). The proportion of maternal

genetic variance is equal to hM
2 /(hA

2 +hM
2 ). Total genetic

gain is the sum of direct and maternal gain. Nf=25, no=8,
and d=1.
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Table 2 also shows the magnitude of b when
comprised of either pure direct effects or maternal
effects. For similar population structure and the same
equilibrium heritability (either direct or maternal), the
ratio bM/bA was approximately 0.5 for males and 1.5
for females. Thus, the long-term contributions are
more evenly spread among males for maternal effects
than for direct additive effects, whereas the distri-
bution of long-term contributions among female
parents is more varied for maternal effects than for
direct effects.

(iii) Case III. Partitioning a constant hW
2

In this case DG was constant within each population
structure by studying a constant hW

2 . The rates of in-
breeding increased when the component of hW

2 due to
maternal genetic effects increased (Table 4), because
there is an increase in the co-selection of full-sib
families when maternal effects increase. Accordingly,
the increment of DF with hM

2 was smaller when the

number of offspring per dam was reduced. Further-
more, the increase in DF was also smaller when the
number of dams per sire was increased, because for a
high mating ratio (d=Nf/Nm) the influence of the ma-
ternal effects diminishes and the male part of DF
dominates. In the case where there are only maternal
genetic effects bf/bm=3/d (Table 2), and consequently
the selective advantages of each individual female
have less impact on DF as d becomes higher. This is
in accordance with the results in Fig. 2. The ratio be-
tween the rates of inbreeding when hW

2 is made up
of only direct effects compared with only maternal
effects, increased for low mating ratios and was close
to 1 for large mating ratios.

Fig. 3 shows that r has a considerable effect on DF
when hA

2 is high. Because these comparisons are made
at equal rates of gain, making the correlation negative
increases the magnitude of hM

2 required to maintain
the same DG, and as noted in the earlier cases I and II,
this has a potent effect on DF. When r is positive the
magnitude of hM

2 required to achieve equal DG is de-
creased. The trends observed for increasing hA

2 are

Table 4. Predicted rates of inbreeding for different combinations of hA
2 , hM

2 and r, in the base population with
hW
2 =0.2 (c2=0). Standard errors of simulated rates of inbreeding were less than 2% of DFsim

Nm=25, d=1, no=4 Nm=25, d=1, no=8 Nm=15, d=4, no=8

h2A h2M r DFpred
a %Errord DFpred

b %Error DFpred
c %Error

0.2 0 0 0.0091 +3 0.0125 +3 0.0141 +4
0.1 0.1 0.33 0.0100 +5 0.0147 +4 0.0154 +1
0.2 0.2 x0.33 0.0103 +6 0.0154 +4 0.0160 +1
0.1 0.2 0 0.0106 +8 0.0162 +3 0.0164 +1
0 0.4 0 0.0121 +10 0.0198 0 0.0185 x6

a The predictions of DG varied within 0.144–0.146, DFpred=0.0075 for random selection (h2W=0).
b The predictions of DG varied within 0.226–0.229, DFpred=0.0088 for random selection.
c The predictions of DG varied within 0.287–0.290, DFpred=0.0095 for random selection.
d 100%r(DFpredxDFsim)/DFsim.
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consistent with case II, where it was observed that a
partition in favour of more hA

2 and less hM
2 produces

greater DG and lower DF.
The predictions of direct and maternal genetic gain

in Table 4 equalled those from conventional predic-
tions using equilibrium genetic (co)variances (differ-
ence <0.5% of DG). Further, even though we used
fixed hW

2 (=0.2), the predicted equilibrium genetic
gains (DG) varied slightly between predictions within
the three population structures in Table 4. These
small variations (<1% of DG) were caused by the
differential influence of the Bulmer effect on the gen-
etic (co)variances.

(iv) Case IV. Varying hW
2

For typical estimates of direct and maternal (co)-
variances (hM

2 /hA
2 =0.6, r=x0.15, c2=0.07, from

Mohiuddin, 1993), the rates of inbreeding increased
when the Willham heritability increased (Fig. 4). Note
that with these assumptions h2W<0.7 since otherwise
V(E )<0 in the base population. The prediction errors
were small (<7%).

(v) Case V. Overlapping generations

Fig. 5 shows the relationship between the rate of in-
breeding per generation, DFL, and the distribution of
parents over two age classes. For pure maternal gen-
etic effects (hM

2 =0.5, hA
2 =0, c2=0) the variation in

age distribution of dams, with all sires being 1-year-
olds, had a greater affect on DFL than did a variation
in age distribution of sires, with all dams being 1-year-
olds. Further, for direct additive effects (hA

2 =0.5,
hM
2 =0, c2=0), a variation in dam or sire distribution

influenced DFL equally. Searches close to p2=0.5 were
performed and we found that for both direct effects
and maternal effects the maximum of DFL was

reached when p2 was 0.5, i.e. when the number of
parents entering the population per generation was
minimized. Fig. 5 also shows that the effect of dam
age distribution on DFL was less pronounced for di-
rect genetic effects than for maternal genetic effects.
For maternal effects the rate of inbreeding was equal
for p2=1 whichever sex was varied (i.e. DFL was 0.018
for both N=[20, 0, 0, 20] and N=[0, 20, 20, 0]), be-
cause the lifetime contributions of females and of
males are the same in both cases.

4. Discussion

This study has developed methods for predicting ex-
pected long-term genetic contributions to predict DF
and DG, with good precision, for a phenotypic model
including maternal effects of both genetic and en-
vironmental origin, as well as direct genetic effects.
This extends the models of Woolliams et al. (1999)
and Bijma et al. (2000) by incorporating the inherit-
ance of maternal effects. The extension allowed us to
quantify the impact of maternal effects on DF, and the
results showed the impact was much greater when
maternal effects were genetic in origin rather than
environmental (DF was increased by more than 20%
in a small population; Table 3). Furthermore, selec-
tion for traits with maternal effects that have equal
hW
2 , i.e. with equal expected DG, may result in con-

siderably different DF, indicating the inadequacy of
hW
2 as the single summary parameter for determining

selection outcomes when maternal effects are present.
When compared at the same DG, lower DF would be
expected as the partitioning of the variance favours
direct additive genetic rather than maternal genetic
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effects, and for these to be positively rather than nega-
tively correlated. More widely these results accentuate
the importance of considering inheritance of selective
advantages in predictions of DF, and not merely
selective advantages in one generation, as pointed out
by Bijma et al. (2000).

A general conclusion from the study was that the
predictive precision of DF was good, and that, except
in extreme cases, the overall prediction errors for DF
were similar to those of DG (whether using long-term
contribution methods or conventional methods). In
the specific setup of case III the prediction errors of
DF were even smaller than those of DG. This quality
of prediction extended to overlapping generations
where (as shown in Fig. 5) the complex relationships
between DF per generation and the inheritance mod-
els were modelled very closely. The major errors arose
when the litter sizes were large compared with the
numbers selected and when the variation in maternal
effects was large, as previously noted by Wray et al.
(1994). As hM

2 tends to 1, unlike the case of hA
2 =1, all

sibs have similar phenotypes and selection becomes
‘family selection’. The reason for this discrepancy is
that the expected contributions were assumed to be
linearly related to the selective advantages – often a
reasonable assumption (Wray & Thompson, 1990),
but not with very high selection intensities. More im-
portantly, DF was predicted satisfactorily for litter
sizes and maternal effects corresponding to practical
situations in animal breeding. If acceptable predic-
tions are to be made for the more extreme situations,
then our model has to be developed for non-linear
predictions of genetic contributions, which may also
be the case in BLUP selection (Bijma & Woolliams,
2000).

The predictions of DG made using genetic con-
tributions (eq. 3) and using the conventional ap-
proach (eqs. 6a, 6b) were very close, differing only in
the third significant digit. One of the findings of
Woolliams et al. (1999) was to show the equivalence
of the conventional and contribution approaches in
predicting DG for direct genetic effects ; however, in
this extended model, the proof of equivalence is more
challenging and requires the algebraic inversion of a
4r4 matrix. This has not been done and so the
question of the consistency of the extension with the
existing tenets of quantitative genetics remains open.

The study has shown that the impact of maternal
genetic variance on DF can be dramatic, more so than
when the maternal effects are purely environmental in
origin, and that the relationship between DG and DF
depends critically on the partitioning of the genetic
variance. An immediate consequence of this is to
make clear that consideration of selection schemes
with maternal variance using hW

2 alone is inadequate
for describing the properties of the scheme. Further-
more, hW

2 is often referred to as the total heritability

(e.g. Meyer, 1992; Koch et al., 1994; Mohiuddin,
1993). We recommend that this all-embracing term,
total heritability, should not be used, because hW

2 does
not completely describe the genetic properties of the
population and its unconsidered use may seriously
mislead the design of breeding programmes.

The influence of population structure on DF with
maternal effects may best be viewed through con-
sideration of the regressions of the long-term contri-
butions on the selective advantages. Some general
principles concerning litter size and mating ratio are
predictable from consideration of the action of the
selective advantages and the gene-flow equations.
Firstly, there is the potentiating effect of family size
(i.e. no) since, as described above, maternal effects
work directly through the co-selection of maternal
half-sib families, and the larger the family size, the
more intense the selection and the stronger the re-
lationship between long-term contribution and Mi.
Secondly, increasing d reduces the relative influence
of V(Mi) relative to V(Ai) in determining DF. This is
due to an asymmetry between the sexes and the
selective advantages in that long-term contributions
are more strongly influenced by maternal effects in
female ancestors than male ancestors (since, unlike a
female, Mi does not influence selection of its off-
spring; see Table 2). When d is increased the import-
ant individual contributions to DF come primarily
from the male ancestors, thereby reducing the impact
of V(Mi).

The results suggest that the impact of operational
tools for maximizing genetic gain for a predefined rate
of inbreeding by controlling the population structure
and pedigree development (Meuwissen, 1997; Grundy
et al., 1998) may be even greater with maternal effects
than for only direct effects. Evidence for this con-
clusion comes from two observations : (i) DF was
more sensitive to the population structure (no, d and
age distribution in overlapping generations) with ma-
ternal effects compared with when there were only di-
rect effects (Bijma et al., 2000) ; and (ii) DF was higher
when maternal effects contributed to the Willham
heritability, suggesting that selection decisions to
satisfy pre-determined policies on DF are more de-
manding when V(M)>0. A further implication of
these observations is that not only may such tools be
more valuable in breeding schemes where maternal
effects are part of the evaluation models used, but
they may also be more needed.

An important, and straightforward, extension of
the method would be to encompass more general
models of maternal effects (see Kirkpatrick & Lande,
1989). This study has followed Willham’s model,
where the maternal effect satisfies the property that
Cov(Pi, Ed)=0, i.e. the dam’s environmental com-
ponent of its own performance is independent of its
offspring’s performance. However, other models do
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not make this assumption (e.g. Falconer, 1965), and
in such models the selection effects upon the environ-
mental means of the dams have an impact upon the
mean phenotypic value in the progeny generation.
Consequently, the environmental part of the maternal
effect is inherited, e.g. as a socially inherited trait.
Thus, the influence of the maternal effect on DF may
be even greater for populations where Falconer’s
model applies.

We conclude that, even for a moderately low vari-
ation in maternal effects, it is important to consider
maternal effects when predicting DF in a population
under mass selection, especially if the maternal effects
are inherited. The method of expected long-term
genetic contributions gives good predictions of DF
and DG in populations with maternal effects under
mass selection, for both discrete and overlapping
generations. The extension to BLUP selection (Bijma
& Woolliams, 2000) with maternal effects may re-
quire further research. However, the method is easily
extended to index and multi-trait selection (using the
Appendix) in the same manner as for direct effects
(Bijma & Woolliams, 1999) and can be developed for
models of maternal effects other than Willham’s.
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We thank Erling Strandberg for valuable comments on an
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Appendix. Expected long-term genetic contributions

with overlapping generations and multiple selective

advantages

This appendix summarizes the theory of expected
contributions with multiple selective advantages and
overlapping generations as developed by Woolliams
et al. (1999), Bijma &Woolliams (1999), Woolliams &
Bijma (2000) and Bijma et al. (2000). A more detailed
description of the method is found at http://journals.
cambridge.org.

The linear predictor of the expected long-term
genetic contribution ui(q) of individual i in category
q is given by:

mi(q)=ai(q)+bT
q (si(q)x�ssq) (A1)

Let ns be the number of defined selective advantages
in si(q) and nc be the number of categories. For sim-
plicity of notation, the equations to calculate ai(q)

and bT
q were slightly changed by defining the age struc-

ture by a vector N of length nc (instead of a diag-
onal matrix N as in equations 7b and 9 of Woolliams
et al., 1999) :

(N� a)=[GT+(GT �DT)(IxGT �PT)x1

r(GT �LT)](N� a) (A2)

(N� b)=(IxGT �PT)x1(GT �LT)(N� a) (A3)

where � denotes element-by-sub-matrix multipli-
cation of matrices, I is the ncnsrncns identity matrix,
N is a vector with elements Nk equal to the numbers
of parents selected from each category, P is a ncnsr
ncns matrix containing sub-matrices ppq (nsrns) of
regression coefficients of selective advantages of selec-
ted progeny in category p on selective advantages of
parents in category q, L is a ncrncns matrix contain-
ing sub-matrices lpq (1rns) of regression coefficients
of proportion selected in category p on selective ad-
vantages of parents in category q, G is a ncrnc
modified gene flow matrix connecting selected off-
spring to parental categories, D is a ncnsrnc matrix
of deviations of selective advantages from the mean
of the selected category, a is a vector (length nc) of
elements aq, and b is a vector of length ncns containing
the sub-vectors bq.

Let (si(q) sj(p) Ij(p))
T have the partitioned covariance

matrix:

V=

Vqq Vpq vp

VT
pq Vpp vq

vTp vTq s2
I

0
B@

1
CA (A4)

where p and q are progeny and parent categories, re-
spectively, and Ij(p) is the index upon which the selec-
tion of individual j(p) will be determined.P andL are
then obtained from (see appendix B in Woolliams
et al., 1999) :

ppq=V*
pqV

x1
qq (A5)

lpq=ips
x1
I vqV

x1
qq (A6)

where V*
pq is the genetic (co)variance matrix after

selection

V*
pq=(Vpqxkps

x2
I vpv

T
q ) (A7)

and kp is the variance reduction term in category p.
Define gj(p) as a vector of Mendelian sampling terms

corresponding to the selective advantages in si(p) (in
our paper gj(p)=(aj(p), mj(p), 0)

T ). The annual genetic
gain is then:

DG=
Xnc
q=1

NqE[ri(q)gi(q)] (A8)

and

E[ri(q)gi(q)]=aqiqs
x1
I vg+bT

q (Vpgxkqs
x1
I vpv

T
g ) (A9)

follows by extension of appendix B in Bijma &
Woolliams (1999) to multiple selective advantages,
where the matrices Vpg, vg and vp are covariance
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matrices of (sj(p) gj(p))
T, (gj(p) Ij(p))

T and (sj(p) Ij(p))
T,

respectively.
Rates of inbreeding per year, DF, are predicted as

(equation 29 in Woolliams & Bijma, 2000):

E[DF ]=
1

2

X
smales

nsE(u
2
i, s)+

1

2

X
sfemales

nsE(u
2
i, s)

+
1

8

X
s

nsds (A10)

where ns is the number of individuals with a certain
life history of reproduction defined by the categories
that an individual was selected in. The third term is
the correction for non-Poisson distribution of family
size (Bijma et al., 2000).

The generation interval, L, is defined as the time
in which the long-term contributions sum to unity
(Woolliams et al., 1999) : L=1=

Pnc
k=1 nkak. The pre-

dicted rate of inbreeding per generation, DFL, may
then be calculated as DFL=E(DF)rL.

References

Bijma, P. & Woolliams, J. A. (1999). Prediction of genetic
contributions and generation intervals in populations
with overlapping generations under selection. Genetics
151, 1197–1210.

Bijma, P. & Woolliams, J. A. (2000). Prediction of rates of
inbreeding in populations selected on best linear unbiased
prediction of breeding value. Genetics 156, 361–373.

Bijma, P., Van Arendonk, J. A. M. & Woolliams, J. A.
(2000). A general procedure to predict rates of inbreeding
in populations undergoing mass selection. Genetics 154,
1865–1877.

Bulmer, M. G. (1971). The effect of selection on genetic
variability. American Naturalist 105, 201–211.

Falconer, D. S. (1965). Maternal effects and selection re-
sponse. In Genetics Today, vol. 3, Proceedings of the
Eleventh International Congress of Genetics (ed. S. J.
Geerts), pp. 763–774. Oxford: Pergamon Press.

Fisher, R. A. (1918). The correlation between relatives on
the supposition of Mendelian inheritance. Transactions
of the Royal Society of Edinburgh 52, 399–433.

Franklin, I. R. (1980). Evolutionary Change in Small
Populations. In Conservation Biology: An Evolutionary-
Ecological Perspective (ed. M. E. Soulé & B. A. Wilcox).
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