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Abstract Let K be a complete ultrametric algebraically closed field and let A be the Banach K-algebra
of bounded analytic functions in the ‘open’ unit disc D of K provided with the Gauss norm. Let
Mult(A, ]| - ||) be the set of continuous multiplicative semi-norms of A provided with the topology of
simple convergence, let Mult,, (A, || - ||) be the subset of the ¢ € Mult(A, || - ||) whose kernel is a max-
imal ideal and let Multq (A, || - ||) be the subset of the ¢ € Mult(A, || - ||) whose kernel is a maximal
ideal of the form (z — a)A with a € D. We complete the characterization of continuous multiplicative
norms of A by proving that the Gauss norm defined on polynomials has a unique continuation to A as
a norm: the Gauss norm again. But we find prime closed ideals that are neither maximal nor null. The
Corona Problem on A lies in two questions: is Multy (A, || - ||) dense in Multy, (A, || - ||)? Is it dense in
Mult(A, || - ||)? In a previous paper, Mainetti and Escassut showed that if each maximal ideal of A is the
kernel of a unique ¢ € Mult,, (A, || - ||), then the answer to the first question is affirmative. In particular,
the authors showed that when K is strongly valued each maximal ideal of A is the kernel of a unique
¢ € Multy, (A, | - ||). Here we prove that this uniqueness also holds when K is spherically complete, and
therefore so does the density of Multq (A, || - ||) in Multym (A, || - ).
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1. Introduction and results

Let B = H*(D) be the unital Banach algebra of bounded analytic functions on the open
unit disc D in the complex plane. Each a € D defines a multiplicative linear functional
¢ on B by ‘point evaluation’ i.e. ¢,(f) = f(a). If a function f lies in the kernel of all
the ¢,, then clearly f = 0. This tells us that the set of all the ¢, is dense in the set
Z(B) of all non-zero multiplicative linear functionals on B in the hull-kernel topology
that is lifted from the kernels of the functionals, which are the maximal ideals of B (each
maximal ideal, being of codimension 1, is the kernel of a multiplicative linear functional).

The Corona Conjecture of Kakutani was that one also has density with respect to the
weak-x topology (or Gelfand topology) which is the topology of simple convergence on

B, defined on the space Z(B). This was famously proved by Carleson in [4]. The key
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fact is that if f1,..., f, belong to B and if there exists d > 0 such that, for all a € D,
we have

1A+ + | fa(2)] > d,

then the ideal generated by the fi,..., f, is the whole of B. People often transfer the
name ‘Corona Statement’ to this key fact. Indeed, this Corona Statement implies that
the Corona Conjecture is true, due to the fact that all maximal ideals of a C-Banach
algebra are of codimension 1.

Now consider the situation in the non-Archimedean context. Let K be an algebraically
closed field complete with respect to an ultrametric absolute value | - |. Given a € K
and r > 0, we denote by d(a,r) the disc {z € K | |xr —a| < r}, by d(a,r™) the disc
{r e K||r—a| <r}, by C(a,r) the circle {x € K | |t —a| =r} and set D = d(0,17).
Let A be the K-algebra of bounded power series converging in D which is complete with
respect to the Gauss norm defined as

oo
g anpz"
n=1

we know that this norm is actually the norm of uniform convergence on D [8,15].

In [19] the Corona Problem was considered in a similar way to that for the field
C [4,14]: the author asked whether the set of maximal ideals of A defined by the points
of D (which are well known to be of the form (z — a)A) is dense in the whole set of
maximal ideals with respect to a so-called Gelfand topology. In fact, as explained in [11],
this makes no sense because the maximal ideals which are not of the form (x — a)A are
of infinite codimension [11]. Consequently, the Corona Problem should be defined in a
different way, as explained in [11]. However, in [19] a ‘Corona Statement’ similar to that
mentioned above was shown in our algebra A and it is useful in the present paper, as it
was in [11].

Roughly, the ‘Corona Statement’ shows that each maximal ideal is just the ideal of
elements of the algebra B, vanishing along an ultrafilter, on the domain D. Therefore,
on C, f(z) has a limit along the ultrafilter and the limit defines a character which, by
definition, lies in the closure of the set of characters defined by points of D. And there
are no other characters. On the field K, although a similar ‘Corona Statement’ remains
true [19], we cannot manage the problem in the same way because f(z) has no limit
along an ultrafilter (the field is not locally compact). But we may consider continuous
multiplicative semi-norms and then |f(x)| has a limit along an ultrafilter, which defines
again a continuous multiplicative semi-norm. But do we get all continuous multiplicative
semi-norms whose kernel is a maximal ideal in that way? That is the problem (solved
when the field is strongly valued [11]). Here we will examine it when the field is spherically
complete.

‘ = sup |anl;
neN

First, here we shall complete the characterization of continuous multiplicative norms
on A (begun in [11]). Next, we shall look for prime closed ideals other than maximal
ideals and the zero ideal: we shall show such ideals do exist. And finally, when the
field is spherically complete, we shall show that each maximal ideal is the kernel of

https://doi.org/10.1017/50013091508000837 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091508000837

Ultrametric Corona Problem and spherically complete fields 355

only one continuous multiplicative semi-norm, which implies the density of the set of
continuous multiplicative semi-norms whose kernel is a maximal ideal of codimension 1
in the set of all of continuous multiplicative semi-norms whose kernel is a maximal ideal
(it is well known that the field C, is not spherically complete [17] but it admits a
spherical completion). The main tool with which to solve this problem is the ultrametric
holomorphic functional calculus [7,9], but we also examine ultrafilters.

Given a commutative K-algebra B with unity, provided with a K-algebra norm || - ||,
the set of continuous multiplicative K-algebra semi-norms of B was studied in [1,7-9,13]
and is usually denoted by Mult(B, || - ||) [7-9,13]. For each ¢ € Mult(B, || - ||), we denote
by Ker(¢) the closed prime ideal of the f € B such that ¢(f) = 0. The set of the
¢ € Mult(B, || - ||) such that Ker(¢) is a maximal ideal is denoted by Mult,,(B,] - ),
the set of the ¢ € Mult(B, || - ||) such that Ker(¢) is a maximal ideal of codimension 1
is denoted by Mult, (B, | - ||) and, here, the set of continuous multiplicative norms of A
will be denoted by Mult, (B, | - ||).

We know [9,13] that

sup{o(f)[¢ € Mult(B, || - [)} = lim (|f*[)V/" Vf € B.

On the other hand, Mult(B, || - ||) is provided with the topology of simple convergence
and is compact for this topology.

We know that, for every M € max(B), there exists at least one ¢ € Mult,,, (B, || - ||)
such that Ker(¢) = M, but in certain cases there exist infinitely many ¢ € Mult,,, (B, ||-]|)
such that Ker(¢) = M [6,9]. A maximal ideal M of B is said to be univalent if there
is only one ¢ € Mult,,(B, | - ||) such that Ker(¢) = M, and the algebra B is said to
be multbijective if every maximal ideal is univalent (so, non-multbijective commutative
Banach K-algebras with unity do exist).

Thus, the ultrametric Corona Problem may be viewed at two levels.

(1) Is Mult, (A, ] - ||) dense in Mult,, (A, || - ||) (with respect to the topology of simple
convergence)?

(2) Is Mult, (A, | - ||) dense in Mult(A, || - ||) (with respect to the same topology)?

Actually, this way to set the Corona Problem on an ultrametric field is not really different
from the original problem once considered on C, because on a commutative C-Banach
algebra with unity all continuous multiplicative semi-norms are known to be of the form
|x|, where x is a character of A. Thus, the Corona Problem is equivalent to showing that
the set of multiplicative semi-norms defined by the points of the open disc is dense inside
the whole set of continuous multiplicative semi-norms, with respect to the topology of
simple convergence.

Remark 1.1. Given a filter G, if, for every f € A, |f(z)| admits a limit pg(f) along G,
the function g obviously belongs to Mult(A4, ||-||). Moreover, it clearly lies in the closure
of Mult, (A, || - ||). Consequently, if we can prove that every element of Mult,, (A, || -|) is
of the form ¢g, with G a certain filter on D, problem (1) is solved. And similarly, if we
could prove that every element of Mult(A4, | - ) is of the form ¢g, problem (2) would be
solved.
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Studying such problems first requires knowledge of the nature of continuous multi-
plicative semi-norms on A. The first part of our study consists of studying continuous
multiplicative norms on A by completing a study made in [11]. We recall the role of
circular filters and of ultrafilters.

1.1. Definitions and notation

Let a € D and let R € ]0,1]. Given r,s € R such that 0 < r < s, we set I'(a,r,s) =
{reK|r<|z—al<s}.

We call a circular filter of centre a and diameter R on D the filter F that admits as
a generating system the family of sets I'(c, 7', r"") N D with a € d(a,R), ¥ < R < 1",
i.e. F is the filter that admits for its basis the family of sets of the form

q
Dn < ﬂ F(ai,r;,rgl)>

i=1

with oy € d(a, R), r; < R<r/,1<i<q qgeN.

Recall that the field K is said to be spherically complete if every decreasing sequence
of discs has a non-empty intersection (it is known that C, is not spherically complete
but it has a spherical completion).

In a field which is not spherically complete, one has to consider decreasing sequences
of discs (D,,) with an empty intersection. We call the circular filter with no centre, of
canonical basis (D,,), the filter admitting for its basis the sequence (D,,) and the number
lim,, o diam(D,,) is called the diameter of the filter.

Finally, the filter of neighbourhoods of a point a € D is called a circular filter of the
neighbourhoods of a on D and its diameter is 0. Given a circular filter F, its diameter is
denoted by diam(F).

Here, we shall denote by W the circular filter on D of centre 0 and diameter 1 and by )
the filter admitting for its basis the family of sets of the form I"(0,7,1) \ (U, 2, d(an, 7))
with a, € D, 1, < |ay,| and lim,,, |a,| = 1.

An ultrafilter &4 on D will be called a coroner ultrafilter if it is thinner than W.
Similarly, a sequence (a,,) on D will be called a coroner sequence if its filter is a coroner
filter, i.e. if limy, oo |an| = 1.

Let ¢ € Mult(A4, | - ||). Then ¢ will be said to be coroner if its restriction to K[xz] is
equal to || - .

In [11] regular ultrafilters were defined: let (a,)nen be a coroner sequence in D. The
sequence is called a regular sequence if
inf an —aji| > 0.

jENneﬁlfl#' o

An ultrafilter U is said to be regular if it is thinner than a regular sequence. Thus, by

definition, a regular ultrafilter is a coroner ultrafilter.

Two coroner ultrafilters F,G are said to be contiguous if, for every subset F € F,
G € G of D, the distance from F to G is null.
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On K{z], circular filters on K are known to characterize multiplicative semi-norms by
associating to each circular filter F the multiplicative semi-norm ¢ defined as = (f) =
limg | f(x)| [7-9,12].

We know that every f € A is an analytic element in each disc d(a,r) whenever r €
10, 1 [8]. Consequently, by classical results [8], several properties of polynomials have
continuation to A: given a circular filter F on D of diameter less than 1, for every f € A,
| f(z)| has a limit along F denoted by ¢ #(f) and then ¢ is a continuous multiplicative
semi-norm on A. In particular, given a € D and r € ]0, 1], if we consider the circular filter
F of centre a and diameter r, we denote by ¢, the multiplicative semi-norm ¢ which
actually is defined by @q,(f) = lim|g_q|—, | f()] and is a norm whenever diam(F) > 0.
So, if F is the circular filter of centre 0 and diameter r, we set |f|(r) = ¢x(f). Next,
©yy defines the Gauss norm on K[z] and therefore admits a natural continuation to A
as || Y07 | anx™|| = sup,,cy |a,|. However, by [11] we know that this continuation is far
from unique.

So the problem is first to determine whether such multiplicative semi-norms defined
on K|[z] by circular filters on D have a unique continuation to A.

Theorem 1.2 was proved in [11].

Theorem 1.2. Let F be a circular filter on D of diameter r < 1. Then ¢ x admits a
unique continuation to A defined by ¢ £(f) = limz |f(x)| and px is a norm on A.

Thus, the problem arising here is the continuation to A of the Gauss norm defined on
K|[x], which is not that simple: we have to consider coroner ultrafilters.

Every ultrafilter ¢/ on D defines an element ¢y of Mult(A, ||-1) as ¢y (f) = limy | f(2)];
such a limit does exist because each function f € A is bounded and therefore | f(x)| takes
values in the compact [0, || f]]].

Recall now the following theorem [11, Corollary 12.1].

Definitions. An element f € A is said to be quasi-invertible if it has finitely many
zeros. Then we know that such an element is of the form Pg with P € K|[z]|, P having
all its zeros in D and ¢ an invertible element of the algebra A.

Given a filter F on U, we denote by J(F) the ideal of the f € A such that limz(f) = 0.

A maximal ideal M of A will be said to be coroner (respectively, regular) if there
exists a coroner (respectively, reqular) ultrafilter U such that M = J(U).

Theorem 1.3. Let M be a maximal ideal of A. Either M is of codimension 1 and is
thus of the form (x — a)A(a € D), or it is of infinite codimension and thus is coroner.
Moreover, if M is of infinite codimension, then

(i) @u belongs to the closure of Mult, (A4, || - ),
(ii) given any f € M, f is not quasi-invertible.
By [11, Theorem 23], we have the following result.

Theorem 1.4. Let U be a regular ultrafilter. Then J(U) is a regular maximal ideal
of A.
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Remark 1.5. Characterizing the coroner ultrafilters I/ such that J (i) is a maximal
ideal appears to be very difficult. For instance, consider an ultrafilter ¢ thinner than
V. It is a coroner ultrafilter. But J(U) = {0}. Indeed, suppose a non-identically zero
function f lies in J(U). Let (ay,) be its sequence of zeros, set r, = |a,|, n € N, and let

E=D\ U d(ap,r,).

n=0

Clearly, |f(x)| = |f|(|z]) for all z € E. However, E belongs to ), and therefore U is
secant with E, a contradiction with the hypothesis f € J(U).

On the other hand, the mapping J from the set of coroner ultrafilters to the set of
ideals of A is not injective: as noted in [11], two contiguous coroner ultrafilters define
the same ideal.

Now, two corollaries can be derived from Theorems 1.3 and 1.4.

Corollary 1.6. If A is multbijective, then for every ¢ € Mult,, (A, || - ||) there exists
a coroner ultrafilter U such that ¢ = py.

Corollary 1.7. If A is multbijective, then Mult, (A, || - ||) is dense in Mult,,, (A, | - ||).

Corollaries 1.6 and 1.7 have immediate applications to the case when K is strongly
valued.

Definitions and notation. The field K is said to be strongly valued if at least its
residue class field or its value group is not countable [8].

Theorem 1.8. If K is strongly valued, every commutative K-Banach algebra with
unity is multbijective [7,9].

Corollary 1.9. If K is strongly valued, then for every ¢ € Mult,,(A,| -||) there
exists a coroner ultrafilter U such that ¢ = . Moreover, Mult, (A4, || - ||) is dense in

Thus, by Theorems 1.3 and 1.8, if an element ¢p € Mult(A4, || - ||) is neither the Gauss
norm nor of the form ¢ on the whole set A, with F a circular filter on D of diameter
r < 1, then its restriction to K[z] must be the Gauss norm on K[z]. So its kernel is
a prime closed ideal included in a maximal ideal of the form J(U), with & a coroner
ultrafilter.

Here we shall first examine the problem of the continuation of ¢y, to A through
multiplicative norms, which was not done in [11].

Notation. Let F' be a field, let R be a commutative F-algebra with unity and let
D be a derivation on R. Let J be an ideal of R. We will denote by .J the set {f € R |
D™ ¢ J ¥n € N}.

On A we shall apply this notation to the usual derivation of functions. Let ¢ €
Mult(A, | - ||). Here we set

Subker(y)) = Ker(1)).
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In [11], we asked if there exist prime closed ideals which are neither zero nor maximal
ideals. We are now able to answer this question. To do this we first note quite an easy
theorem, whose proof mainly holds in basic algebraic considerations.

Theorem 1.10. Let F' be a field, let R be a commutative F-algebra with unity and
let D be a derivation on R. Let J be an ideal of R. Then J is an ideal of R and (J) =J.
Moreover, if F' is of characteristic 0 and if J is prime, so is J.

Since ||f'|| < ||f]| for all f € A, we can derive the following corollary.

Corollary 1.11. Suppose that K is of characteristic 0. Let P be a prime ideal of A.
Then P is a prime ideal of A such that (P) = P. Moreover, if P is closed, so is P.

Corollary 1.12. Suppose that K is of characteristic 0. Let 1 € Mult(A, || - ||). Then
Subker () is a prime closed ideal.

In order to prove Theorem 1.14 and give a counterexample to Theorem 1.10 when K
is of characteristic p # 0, we shall state the following theorem.

Theorem 1.13. There exist regular maximal ideals M of A and f € M, having
a sequence of zeros of order 1 and no other zeros, such that f' ¢ M, and such that

M # {0}.

Theorem 1.14. Suppose that K is spherically complete and let M be a regular
maximal ideal of A. There exists f € M, having a sequence of zeros of order 1 and no
other zeros, such that f' ¢ M.

Remarks 1.15.

(i) Now, we may notice that when the field is of characteristic 2 it is easy to show that,
for certain maximal ideals M of A, M is not prime. Indeed, by Theorem 1.13, there
exist a regular maximal ideal M and f € M such that f' ¢ M. Hence, f does not
belong to M. Now consider g = f2. Then ¢’ = 2ff’ = 0; hence, g™ € M for all
n € N. If K is of characteristic 3, we can also construct a similar but less simple
counter-example.

(ii) In the algebra of bounded complex holomorphic functions in the open unit disc of
C, the derivation is not an endomorphism. Consequently, ideals of the form P do
not exist.

Following Theorem 1.2, we can now complete the characterization of continuous mul-
tiplicative norms on A.

Theorem 1.16. Let ¢» € Mult(A4, || - ||) be coroner. Then Subker(t)) is not null. More-
over, if K is spherically complete, then, for every f € A such that ¥(f) < | f||, there
exists g € Subker(vy) admitting no zeros except zeros of f and admitting each zero of f
as a zero of order superior or equal to its order as a zero of f.

Corollary 1.17. Let ¢ € Mult(A, || - ||) be coroner. Then 1) is not a norm.

By Theorems 1.2 and 1.10, we now can state the following corollary.
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Corollary 1.18. Let ¢ € Mult(A,| - ||) be a norm. If ¢ is not || - ||, there exists a
circular filter F on D, of diameter r < 1, such that ¥ = ¢r.

On the other hand, each coroner maximal ideal is the kernel of some coroner continuous
multiplicative semi-norm of A. Consequently, we have the following.

Corollary 1.19. Let M be a coroner maximal ideal of A. Then M is not null.
Concerning the Corona Problem, we may note the following.

Corollary 1.20. Mult,(A, || - ||) is included in the closure of Mult, (A4, || - |)-
By Theorems 1.14 and 1.16, we can derive the following theorem.

Theorem 1.21. Let K be spherically complete and let M be a regular maximal ideal.
Then M is neither null nor equal to M.

Remark 1.22. The prime closed ideal we shall construct, in the proof of Theorem 1.21,
which is neither null nor maximal, does not seem to be the kernel of an element of
Mult(A, || - ||)- Recall that in [3] an example of a Banach K-algebra of analytic elements
with no divisors of zero, admitting no continuous multiplicative norm, was constructed.

Corollary 1.23. Suppose that K is of characteristic 0. Then A admits prime closed
ideals that are neither null nor maximal ideals. Moreover, if K is spherically complete,
then every regular maximal ideal M of A contains a prime closed ideal M that is neither
null nor equal to M.

Next, we will consider continuous multiplicative semi-norms whose kernels are maximal
ideals when the field is spherically complete and we can answer the first question asked
at the beginning of the paper.

Theorem 1.24. If K is spherically complete, then A is multbijective.

Corollary 1.25. If K is spherically complete, then for every ¢ € Mult,, (A, - |) \
Mult, (A, || - ||) there exists a coroner ultrafilter U such that ¢ = oy.

Corollary 1.26. If K is spherically complete, then Mult,(A,]| - ||) is dense in
Mult,, (A, [} - )-

In [11] we considered the following conjectures.

Conjecture 1.27. A is multbijective no matter what the complete algebraically closed
field K.

This conjecture obviously implies that every ¢ € Mult,, (A, | - ||) is of the form ¢y
with U an ultrafilter on D, and hence that Mult, (A4, || - ||) is dense in Mult,, (A, | - ),
independently of the complete algebraically closed field K. It seems very unlikely that A
might be non-multbijective for non-spherically complete fields such as C),. However, in
Proposition 2.17, due to Lazard’s problem [16], the hypothesis ‘K is spherically complete’
is crucial to factorize a function h in the form hh.

Conjecture 1.28. Mult, (A4, || - ||) is dense in Mult(A4, || - |]).
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This seems much more difficult to prove. By Corollary 1.20 we prove that all contin-
uous multiplicative norms are known and do belong to the closure of Mult, (A4, | - ||).
And, by Corollary 1.25, we have proved that (provided K is spherically complete, or
strongly valued) every element of Mult(A, | - ||) is defined by a limit of | f(x)| on a filter,
except maybe some elements whose kernel is a prime closed ideal that is neither zero nor
maximal. Thus, if Mult, (4, || - ||) were not dense in Mult(4, || - ||), this would only be due
to such elements.

But on the other hand, by Theorem 1.13, we have seen that in characteristic 0 there
exist prime closed ideals that are neither null nor maximal ideals. Could they be ker-
nels of continuous multiplicative semi-norms? A natural candidate for such a semi-norm
admitting for kernel Subker(¢)) would be defined as t)(f) = sup,en((f(™)). But this
semi-norm is not multiplicative when the residue characteristic of K is p # 0. If p = 0,
the answer to this question is not clear.

2. The proofs

Proof of Theorem 1.10. J is obviously an ideal of R. For convenience, let us set
f) =DM (), neN, with (O = f. Now let f € J and consider f*). Given any n € N,
we have (f(#)(") = f(»+k) ¢ J: hence, f*) belongs to J. Consequently, %) belongs to
J for every k € N. So J is included in (J) and therefore is equal to this.

Now, suppose that F is of characteristic 0 and that J is prime. We will check that J
is a prime ideal. Let f,g € R\ J. So there exist integers k,! € N such that f@) e J for
all j <k, g € Jforall j <land f*) ¢ .J, g) ¢ J. Consider

-+l
k41 . .
(fg)FHD = Z ( ) ) F@) gleti=),

=0

It is easily seen that f()g(k+1=7) ¢ J for all j < k and for all j > k and that f(*) g1 ¢ J
because J is prime. Consequently, since F' is of characteristic 0,

ket
k41 ; i
Z( | )f(”g(’““ N,
=0\ 7

which shows that J is prime. O

In the proof of the other theorems we shall need several basic results. Lemma 2.1 is
immediate and Lemma 2.2 is well known [8].

Lemma 2.1. Let Z;o:() u, be a converging series with positive terms. There exists a
sequence of strictly positive integers t,, € N satisfying

oo
th <tpt1, n €N, lim ¢, = +o0, Z tmUm < +00.
n—o0

m=0
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Lemma 2.2. Let f € A be non-quasi-invertible and let (a,)nen be the sequence of
zeros with multiplicity q,,. Then the series

Z dn lOg(|an|)
n=0

converges to log(|f(0)]) — log || f|I-

In Proposition 2.17, we shall use the following classical lemmas (Lemmas 2.3-2.6) [8].
Lemma 2.3. Let a € K andr >0 and b € d(a,r). Then ¢, , = @b,

Lemma 2.4. Let f € A. Forevery r € ]0,1[, f has finitely many zeros. Let a € C(0,r).
If f has no zero in d(a,r ™), then |f(x)| = |f|(r) for all x € d(a,r™).
Moreover, the following three statements are equivalent:

(i) f is invertible in A;
(ii) f has no zeros in D;
(iii) |f(x)| is a constant in D.

Lemma 2.5. Let f,g € A be such that every zero a of f is a zero of g of order superior
or equal to its order as a zero of f. Then there exists h € A such that g = fh.

Lemma 2.6. Let f € A. Then
|£1(r)

r

I 1(r) < Vr < 1.

By classical results on analytic functions we have the following lemma (see, for example,
[8, Theorem 23.13]).

Lemma 2.7. Let f € A admits zeros ay, . ..aq of respective order k;, j =1,...,q, in
I'(0,7',7""). Then

q

17167y = A1) T lagD*

j=1
In the proof of Theorem 1.14, we shall need the following lemma.

Lemma 2.8. Let -
= Z anz™ € H(C(0,71))
n=0
and assume that f has a unique zero «, of order 1, in C(0,7). Then |f'(a)| = |f'|(r).

Proof. By hypothesis, f(z) is of the form (z — a)h(z) with h € H(C(0,r)), having
no zero in C(0,7). Then |f|(r) = r|h|(r). Moreover, since h has no zero in C(0,r), we
have |h(a)| = |h|(r). And, by Lemma 2.6, |f’|(r) < |f|(r)/r. Therefore, we have

7@ < 17169 < 20— i) = ) = 10

and hence |f'(a)| = |f'|(7). O
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The following theorem is [8, Theorem 25.5].

Theorem 2.9. Let (a;)jen be a sequence in d(0,17) such that 0 < |ay,| < |ap41]| for
every n € N and lim,,_,o |an| = 7. Let (gn)nen be a sequence in N* and let B € |1, 4+00].
There exists f € A(d(0,r7)) satisfying the following conditions:

(i) f(0)=1;
(i) ||f] < BH?:O lan/a;]|% whenever n € N;
(iii) for each n € N, a,, is a zero of f of order z, > ¢y.
As a corollary of this theorem, we can write the following.

Corollary 2.10. Let (a;j)jen be a sequence in d(0,r~) such that 0 < |an| < |@n41]
for every n € N, lim,,_, o |a,,| = r and let (g, )nen be a sequence in N* such that

n q;
11 ('a”|> > 0.
i=o N "

Let B € ]|1,400]. There exists f € A satisfying the following conditions:
() £(0)=1;

(i) £l < BII;Zo(r/lan|)% whenever n € N;

(iii) for each n € N, a,, is a zero of [ of order z, > qy,.

Lazard’s Theorem is well known in the case when K is spherically complete [10,16].
Here we will just write it in the unit disc.

Theorem 2.11. Let K be spherically complete. Let A’ be the K algebra of all power
series converging in D. Let (a;);en be a coroner sequence and let (g,) be a sequence of
positive integers. There exists f € A’ admitting each a,, as a zero of order q,, and having
no other zeros.

Consider a function f € A’ such that f(0) # 0, admitting for zeros the a,, with order
1 and no other zeros. Then, by Lemma 2.7, we have

1
1£1r) = 1£(0)] r|[ <||>

Consequently, such a function is bounded if and only if [~ |a,| > 0. Thus, we can
derive the following corollary.

Corollary 2.12. Let K be spherically complete. Let (a;)jen be a coroner sequence
such that 7, |an| > 0. There exist f € A admitting each a,, as a zero of order 1 and
having no other zeros.
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Proof of Theorem 1.13. By [8, Theorem 23.15] we know that there exist bounded
sequences (ap)neny in D such that the sequence |ay/an41| is strictly increasing and
then the function f(z) =3 " a,2™ admits a sequence of zeros (o )nen- satisfying
|an| = |an/an+1]. Thus, in particular, if we set r, = |an/an+1], then f admits exactly
one unique zero in each circle C(0,r,,), each of order 1, and has no other zero in D.
Consequently, by Lemma 2.8, we can see that |f/(a,)| = |f/|(rn) for all n € N*. Now,
let U be an ultrafilter thinner than the sequence (au,)nen+. On the other hand, we can
check that the sequence (ay,) is regular; hence, U is a regular ultrafilter. Consequently,
by Theorem 1.4, J(U) is a maximal ideal of A. Now, f belongs to J(U/) but f’ does not.

Now, for each n € N, let u, = log(r,). Then, by Lemma 2.2, we have log(||f]|) =
—ZZOZO Un. By Lemma 2.1, there exists an increasing sequence (s, )nen of N such that
lim,,_y o0 8, = +00 and such that the series ZZOZO Splly, CONverges.

By Corollary 2.10, there exist g € A (not identically zero) such that, for each n € N,
a, is a zero of g of order z, > s,. And since lim,_,, s, = 400, for every fixed k € N,
we can see that f*)(a,) = 0 when n is sufficiently large; therefore, g*) belongs to M.
Consequently, M is not null, which ends the proof. O

Lemma 2.13. Let (a,)nen be a regular sequence, let

6 = inf —

p 11 oo
n#k,neN

and let p = inf 4y i nen |an — ag|. Let f € A admit each a,, as a zero of order 1 and have

no other zero. Then

@) > 17162 for all z € | J d(an, (69)).
n=0
Proof. Let us fix t € N, let r = |a;| and let E = d(at,7—). Set u =z —ay, g(u) = f(x)
and consider |g|(d). The zeros of g in D\ d(0,0~) are the a, —a; with n # t. Consequently,
by Lemma 2.7, we can check that |g|(p™) = |9l [, lan — a:| and therefore

l91(p) = ligllo = [l110. (2.1)

Consider now |¢'(u)| inside d(0,p~). Since g has a unique zero at 0 in this disc, by
Lemma 2.7 we have |g|(r) = (r/p)|gl(p). Now, g(u) is of the form uh(u), with h € A
having no zero in d(0, p~). Thus, h is of the form ¢(1 + I(u)) with I € A and |I(u)] < 1
for all u € d(0, p~), and hence |I|(r) < 1 for all » < p. Now, ¢'(u) = ¢(1 + I(u) + ul’(u)).
Now, in d(0, p~), since [I(u)|(r) < 1, by Lemma 2.6 we have [I'(u)|(r) < 1/r and hence
|ul’(u)|(r) < 1. Consequently, |1 4+ (u) 4+ ul’(u)| = 1 for all u € d(0, p~) and therefore

lg/(u)] = || V€ d(0,p7). (2.2)

Now, |g|(p) = |uh(u)|(p) = p|h|(p). Since |h(u)| is the constant |c| inside d(0,p~), by
(2.1) we can see that |c| > || f]|d/p. Hence, by (2.2) we have |¢'(u)| > ||f||0/p for all
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u € d(0,p7), ie. |f(x)] = ||f||6/p for all € d(at,p~). This is true for every zero a; of
f and, therefore, by setting
E =[] d(an,6"),
n=0

we have |f'(x)| = || f]|6/p for all x € E. But clearly E lies in ¢ and therefore f’ does not
belong to J(U). O

Proof of Theorem 1.14. Since M is a regular maximal ideal, there exists a regular
sequence (ay) and a regular ultrafilter &/ thinner than the sequence (a,) such that M =
J(U). Since the sequence is regular, we have

6 = inf — = inf — .
lgelN H |ap, —ar| >0 and p k;énl,%,neN lan, —ax| >0
n#k, neN

Since K is spherically complete, since § > 0 we may apply Corollary 2.12 showing
there exists f € A admitting each a,, as a zero of order 1. Now, by Lemma 2.13 we have

/(@) = [|I£116° for all z € | ] d(an, (3p)7),
n=0
which shows that ¢y (f’) > 0. Consequently, f’ does not belong to M. O

Lemma 2.14. Let ¢ € Mult(4, || - ||) satisfy ¢(P) = || P|| for all P € K|z]. Every
quasi-invertible element f € A also satisfies ¥(f) = || f]|-

Proof. First, suppose that f € invertible in A. Then 1 = ¥ (f)y(f~1). But ¥(f) <
IfI, w(f~1) < ||f7Y|; hence, both inequalities must be equalities. Now, let f = Pg € A
be quasi-invertible, with P € K[z] and g € A, invertible in A. Then 9(f) = ¢(P)y(g) =
IPIllgll = [Pgll = 1 £l 0

Proof of Theorem 1.16. The proof takes advantage of the proof of a theorem in [2].
Suppose the claim is wrong. Let ¢ € Mult(A4, || - ||) be an absolute value on A which is
different from the Gauss norm || - || on A. Thus, there exists a circular filter F on D,
of diameter r < 1, such that ¢(P) = ¢x(P) for all P € KJz]. But, by Theorem 1.2,
we know that r = 1, and hence the restriction of ¢ to K[z] is the Gauss norm. Now,
since 1) is not the Gauss norm on A, there exists f € A such that ¥(f) < | f]|. Actually,
without loss of generality, we can choose f € A such that ¥(f) <1 < ||f||- Let p = ¥ (f).
And, up a change of origin, we can also assume that f(0) # 0. By Lemma 2.14, f is
not quasi-invertible; hence, f has a sequence of zeros (a,)nen in D, with |a,| < |ant1]-
For each n € N, let ¢, be the multiplicity order of a,. By Lemma 2.2 we know that
oo o —anlogla,| < +oo. Consequently, by Lemma 2.1 there exists a sequence ¢, of
strictly positive integers satisfying

oo
tn Stnpr, €N, lim t, = +o0, X%tnqn log(lan|) < +o0.
n—
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By Corollary 2.10 there exists a function g € A admitting each a, as a zero of order
Sn = tnqn, such that

n tngn
an
< -
oltanl) < 2| T[ (%) | wnen
k=0
and, consequently, g belongs to A.
Now, for each n € N and for each k =0,...,n, let u, ; = max(0,%,qx — sx) and let

n

Po(z) = [[ (@ — ax)"~*.

k=0

Clearly, all coefficients of P, lie in D except for the leading coefficient, which is 1.
Consequently, | P,|| =1 for all n € N and therefore

1Pagll = llgll- (2.3)

On the other hand, since the sequence ¢,, is increasing, we can check that, for each fixed
n € N, each zero ap of fi» is a zero of P,g of order greater than or equal to txqs.
Consequently, by Lemma 2.6, in the ring A we can write P,g in the form f‘»o,, with
on € A.

By (2.3), we have ||o,]|[| ft»

= ||g||; hence, since || f|| = 1, we can see that ||, | < ||g]|.

But now, since the restriction of 1 to K|[z] is || - ||, we have ¢(P,) = 1; hence, ¥(P,g) =
Y(Pp)Y(g) = ¥(g) and therefore
U(g) = ([ on) = ()" d(on) < plgll- (2.4)

Relation (2.4) holds for every n € N; hence, lim,,—, 1 p'"||g|| = 0. Consequently, 1(g) =
0, which is a contradiction. This ends the proof of Theorem 1.16. (]

In Propositions 2.18 and 2.19 we will denote by | - |, the Archimedean absolute value
on R.

Let B be a commutative K-algebra with unity and let f € B. We denote by sp(f) the
set of the a € K such that f — « is not invertible in B.

Proving Proposition 2.16 requires the knowledge of monotonous filters on an infracon-
nected set, particularly T-filters. Let E be a closed bounded infraconnected subset of K
and let E be the smallest disc of the form d(0,r) containing E. Let a € E and R € R? be
such that I'(a,r, R)NE # () whenever r € ]0, R] (respectively, I'(a, R,7)ND # () whenever
r > R). We call an increasing (respectively, a decreasing) filter of centre a and diameter
R, on E the filter F on E that admits for its basis the family of sets I'(a,7,R) N E
(respectively, I'(a, R,r) N E). For every sequence (y)nen such that r, < r,y; (respec-
tively, 7, > 7rp41) and lim, o7, = R, it is seen that the sequence I'(a,r,,R) N E
(respectively, I'(a, R,7,) N E) is a basis of F and such a basis will be called a canonical
basis.

For convenience, in a field that is not spherically complete, we also call a decreasing
filter with no centre, of canonical basis (Dy)nen and diameter R > 0, on E the circular
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filter on F that admits for its basis a sequence (D), € N in the form D,, = d(an, r,)ND
with Dyy1 C Dy, g1 < T, limy o0 7 = R and (), o d(an, ) = 0.

Now, given a monotonous filter F on FE, it is called a T'-filter if the holes of E satisfy
a certain arithmetical condition [5,8] also defined by T-sequences [7,18].

From the classical Krasner—-Mittag—Leffler Theorem, here we can state the following
proposition [8,16].

Proposition 2.15. Let E be a set of the form d(0, R) \ U, d(ai,r;) (where J is
a set of indices). Then any element h € H(E) has a unique decomposition of the form
> neohn, whereas hg € H(d(0,R)) and, for each n > 1, h,, € H(K \ d(a;,,r; )) and
lim| ;| oo P () = 0, where the sequence of holes (d(as, ,r; ))nen of E is linked to h and
defines its decomposition. Then

in

1l = max (1olago, rys up(hnll e (agar, - )
7L>1 n

Furthermore, hq is of the form 377 ag j7 with |[hol|ao,r) = sup;sg |ao,;| R’ and, for
n > 1, hy, is of the form

> an (@ —a(r;,))?
j=1

with [[hnll \(aay,, r7, ) = SUPsz1 1n.51(ri )

Proposition 2.16. Let (B, | - ||) be a commutative ultrametric K-Banach algebra
with unity. Suppose that there exist f € B, ¢, € Mult(B, || - ||) such that ¥(f) < ¢(f),

sp(f) N L0,9(f),o(f)) = 0 and there exists € € |0,p(f) — ¥ (f)| further satisfying
|(f —a)~t|| < M for all a € T'(0,9(f),d(f) — ¢). Then there exists v € B such that

() =1, ¢(v) =0.
Proof. Let || - ||s; be the spectral norm defined on B defined as

1l = tm /77

Then we know that || f]|s; = sup{6(f) | 6 € Mult(B, | - ||)}-
Let s =v¢(f), t = ¢(f) —e and R = || f||. We first check that

= m "
and therefore .
”(f - a)71||si > g

But of course ||g|lsi < |lg]| for all g € B, so (2.5) holds.
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Now, let L = 1/M. For each r € |K|N]s,t[, we choose a(r) € C(0,r) and denote by E
the set d(0, R) \ (U, 15 d(a(r), L7)). We notice that d(a(r),L™) C C(0,r). Now, there
exists a natural homomorphism o from H(FE) into B such that o(z) = f. And since
R = ||f]l and [|(f —b)7Y| < M for all b € I'(0,s,t), the topological properties of the
Krasner-Mittag—Leffler Theorem recalled above show that o is clearly continuous with
respect to the norms || - [|g of H(E) and || - || of B. Now, let ¢/ =4 oo, ¢’ = ¢poo. Then
both ¢’ and ¢’ belong to Mult(H (E), || - ||) and satisfy ¢'(z) = s, ¢'(x) = t. So ¢’ is of
the form @, with F a circular filter secant with d(0, s), and ¢’ is of the form ¢g, with
G a circular filter secant with d(0, R) \ d(0,¢7).

By the properties of T-filters [8,9,18], we know that, for every r € |s,t[, E admits
an increasing idempotent T-sequence d(a,,L~) of centre 0 and diameter r, such that
|an| < |@n+1]- Consequently, E admits an increasing T-filter of centre 0 and diameter
r (and, similarly, it admits a decreasing T-filter of centre 0 and diameter r) [18]. Then
by [8, Theorem 37.2] there exists h € H(E) meromorphic on each hole d(a,, L) such
that h(u) = 0 for all w € d(0, R)\d(0,r ), further admitting each a,, as a simple pole or a
holomorphic point and no other pole in d(0, R) [8]. Moreover, since h is a quasi-invertible
element in H(d(0, s)), we may choose h having no zero in d(0, s). Consequently, |h(z)| is
then constant in d(0, s) and may be taken equal to 1.

Let v = o(h). Then ¢(y) = ¢'(h) = 1 and ¢(y) = ¢'(h) = 0, which ends the proof. O

By [19, Theorem 3.2], we have the following proposition.
Proposition 2.17. Let fi,..., f; € A satisty ||f;|| <1 forall j=1,...,q and

inf{ max (1f; (@) ‘ x € D} =w>0.

J=1,....q
There exist ¢1,...,94 € A such that Zj-:l g;fj =1 and max;j—1, 4 |lg;|| <w™2.

Proposition 2.18. Let M be a non-principal maximal ideal of A and let U be an
ultrafilter on D such that M = J(U). Let f € A\ M be non-invertible in A and let
g€ A, h € M such that fg =1+ h. Let A\ = ¢y (f), let € € ]0,min(\, 1)[ and let

A={z e D|[|f(x)g(z) = lo <& [[f(#)] = Moo <&}

Suppose that there exist a function heA admitting for zeros in D the zeros of h
in D\ A and a function heA admitting for zeros the zeros of h in A, each counting
multiplicities, so that h = hh. Then |h(z)| has a strictly positive lower bound in A and
h belongs to M.

Moreover, there exists w € ]0,A[ such that w < inf{max(|f(z)|,|k(z)|) | = € D}.
Furthermore, for every a € d(0, (A—¢)), we have w < inf{max(|f(z)—al, |h(z)|) | z € D}.

Proof. Let u € A and let s be the distance of u from K \ A. So the disc d(u,s™) is
included in A, and hence fg has no zero inside this disc. Consequently, |f(x)g(x)| is a
constant b in d(u, s~). Consider the family F, of radii of circles C(u, r), containing at least
one zero of fg. By Lemma 2.4, F}, has no cluster point different from 1. Consequently,
there exists p > s such that fg admits at least one zero in C'(u, p) and admits no zero in
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d(u, p~); then | f(x)g(x)| is a constant ¢ in d(u, p~). However, at u we then see that b = ¢,
and therefore d(u, p™) is included in A. Hence, p = s and therefore fg admits at least

one zero « in C(u, ). Thus, at o we have h(a) = —1. Therefore, in the disc d(a, s7) we
can check that ¢, s(h) > 1. But, by Lemma 2.3, ¢q s(h) = @y s(h); hence, ¢, s(h) > 1.
Now, . B
13 1 1 I 1

Sou,S(h) B Wu,s(il) @u,s(ﬁ) - (PU,S(;").

Therefore, since ¢, s(h) > 1, we obtain

Il

oenlh) < [IA]l- (2.6)

But, since by definition d(u,s™) is included in A, h has no zero in this disc; hence, |h(z)]
is constant and equal to @, ,(h). Consequently, by (2.6) we obtain ||A||/|A(u)| < ||h]| and
therefore we have I . |

~ h

|h(uw)] > 7l Yu € A.
This shows that & does not belong to M. Consequently, h does belong to M.

Now, by hypothesis, we have fg—fLiL = 1. Since both ¢ and & belong to A and therefore
are bounded in D, it is obvious that inf{max(|f ()|, |k(z)|) | # € D} > 0. So we may
obviously choose w € ]0, A — ¢ such that w < inf{max(|f(z)|,|h(z)|) | z € D}.

Let A" ={z € D||f(z)] 2 X—e} and let a € d(0,(A —€)7). When S lies in A’, we
have |f(8)| > |al; hence, max(|f(8) — al, |h(8)]) > w. Now, let § lie in D\ A" and let 7
be the distance from 3 to A’. Since D \ A’ is open, 7 is greater than 0. Thus, we have
0g.(f) = X —e. If f has no zero in d(8,77), we would have pg(f) = |f(B)] < A —¢,
which a contradiction. Hence, f must have a zero ~ in d(3,77). Then |h(v)| > w. But
since, by definition, A C A’, the zeros of h belong to A’. And since dg,7)nA =0,
actually % has no zero in d(3,7). Consequently, |h(z)| is constant in d(3,7) and hence
|h(B)| > w, which completes the proof. O

By Propositions 2.15-2.17, we can easily state the following proposition.

Proposition 2.19. Suppose that K is spherically complete. Let M be a non-principal
maximal ideal of A and let U be an ultrafilter on D such that M = J(U). Let f € AAM
satisfy || f|| <1, let A = ¢y (f) and let € € |0, A[. There exists w > 0 such that, for every
a € d(0,\ — ¢), there exists g, € A satisfying (f —a)g, —1 € M and ||ga|| < w™2.

Proof. Suppose first that f is invertible in A. Then, by Lemma 2.4, | f(z)| is a constant
and hence is equal to A. Therefore, |f(z) — a|] = A for all a € d(0, A — ). Consequently,
f — a is invertible and its inverse g, satisfies ||ga|| = A~!. Thus, we only have to show
the claim when f is not invertible.

Since f does not belong to M, we can find g € A and h € M such that fg =1+ h.
Let

A={z e DI[||f(z)g(x)] - lo <&, [[f(2)] = Moo <}

https://doi.org/10.1017/50013091508000837 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091508000837

370 A. Escassut

Since K is spherically complete, we can factorize h in the form hh, where h € A is a
function admitting for zeros in D the zeros of h in D\ A and h € A is a function admitting
for zeros the zeros of h in A, each counting multiplicities, so that h = hh. Moreover, we
can choose hh so that ||h]| < 1. Thus, we have fg—(h)(h) = 1, with ||| < 1, ||| < 1. By
Proposition 2.18, there exists w > 0 such that w < inf{max(|f(z)|,|h(z)]) | z € D} and
that, for every a € d(0, (A — ¢)), we have w < inf{max(|f(z) — al, |h(z)|) | z € D}. Now,
we notice that ||f — a|| < 1 for every a € d(0,\ — €), so we may apply Proposition 2.17
and obtain gq, he € A such that (f — a)ge + hha = 1, with [|ga] < w2, ||ha|l < w™2.
Since hh, belongs to M, (f —a)g, — 1 belongs to M, which completes the proof. a

Proof of Theorem 1.21. Suppose that A is not multbijective and let M be a maxi-
mal ideal that is not univalent. Let F' be the quotient field A/ M, let § be the canonical
surjection from A onto F and let | - ||, be the K-Banach algebra quotient norm of F.
By [11, Corollary 12.1] there exists an ultrafilter & on D such that M = J(U). Thus,
there exists ¢ € Mult(A4, | - ||) such that Ker(y) = M and ¢ # ¢y Consequently, there
exists f € A such that ¥(f) # ou(f), with ¥(f) # 0, wu(f) # 0. We shall check that
we may also assume that ¥(f) < ¢y (f). Indeed, suppose that ¥(f) > ¢y (f). Let g € A
be such that 6(g) = 6(f)~!. Then we can see that 1(g) = ¥(f)7L, vu(g) = (eu(f))~ .
Therefore, ¥(g) < ¢y (g). Thus, we may assume that ¥(f) < ¢y (f) without loss of gen-
erality. Similarly, we may obviously assume that || f|| < 1. By Lemma 2.14, we know that
f is not invertible.

Let A = ¢y (f) and let € € ]0, A[. By Proposition 2.19, there exists w > 0 such that, for
every a € d(0,\ — ¢), there exists g, € A satisfying (f —a)g, —1 € M and ||ga| < w2
Now, 0(g,) = (0(f —a))~!. Thus, |(0(f —a)) 7!y < w2 for all a € d(0,\ — €). Now,
by applying Proposition 2.16 to the K-Banach algebra F', we can see that there exists
y € F such that ¢y (y) = 0, ¥(y) = 1, which is a contradiction to the hypothesis that
Ker(¢y) = Ker(t)). This finishes the proof, by showing that A is multbijective. d
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