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An Explicit Formula for the Generalized
Cyclic Shuffle Map
Jiao Zhang and Qing-Wen Wang

Abstract. We provide an explicit formula for the generalized cyclic shuffle map for cylindrical modules.
Using this formula we give a combinatorial proof of the generalized cyclic Eilenberg–Zilber theorem.

1 Introduction

The cyclic shuffle map on a tensor product of cyclic modules associated with algebras
is defined by many authors, including Rinehart [8], Getzler-Jones [2], and Loday [6].
Later Kustermans–Rognes–Tuset [5] described the cyclic shuffle map for the case of
a tensor product of cocyclic modules. It is the key map that used to define prod-
ucts and coproducts in cyclic (co)homology, to obtain Künneth type formula, and
furthermore to prove the Eilenberg–Zilber theorem for cyclic (co)homology. This
theorem has also been proved by several authors with various methods. For a com-
parison of these methods one can refer to Bauval’s article [1].

The Eilenberg–Zilber theorem is further generalized by Getzler–Jones [3] with a
topological proof to any cylindrical module. This extension is important because in
many examples the cylindrical module may not be decomposable as a tensor product
of two cyclic modules (e.g., the cylindrical module defined in [9] and many concrete
examples therein). This Eilenberg–Zilber theorem for cylindrical modules is called
the generalized cyclic Eilenberg–Zilber theorem by Khalkhali–Rangipour [4]. They
reprove the theorem using the homological perturbation lemma. In this paper we
extend the cyclic shuffle map defined in [2, 5, 6, 8] to the case of cylindrical modules.
An explicit formula for the generalized cyclic shuffle map for cylindrical modules is
provided. Using this formula we give a combinatorial proof of the generalized cyclic
Eilenberg–Zilber theorem.

In Section 2, we provide a reasonable and natural extension of the cyclic shuffle
map to any cylindrical module that may not even be decomposable into a tensor
product of cyclic modules. Using this generalized cyclic shuffle map we can construct
a morphism of mixed complexes and prove the generalized cyclic Eilenberg–Zilber
theorem directly. In Section 3, some combinatorial properties of shuffles are proved.
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In Section 4, using these properties, we prove the generalized cyclic Eilenberg–Zilber
theorem.

Since the notions of cylindrical module, its total complex and diagonal module,
and shuffle and shuffle map have been given numerous times (cf. [3, 4, 6, 7]), we
collect these preliminaries in Appendix A at the end of this paper for the reader’s
convenience.

Notation

Let K be a commutative unital ring. We take K as our ground ring.
Let (X.,., di , si , t, δ j , σ j , τ ) be a cylindrical K-module. The total complex of X

is denoted by (Tot(X),b,B), and its normalized mixed complex is denoted by
(Tot(X),b,B). The diagonal cyclic module of X is ({∆n(X)}n≥0, diδi , s jσ j , tnτn).
Denote its associated mixed complex by (∆(X), b,B) and the corresponding nor-
malized mixed complex by (∆(X), b,B). One can refer to Appendix A.1–A.3 for
definitions.

There are two equivalent definitions of shuffles. One uses the language of parti-
tions (cf. [7]), and the other uses the language of permutations in a symmetric group
(cf. [4]); both are widely used. In this paper we mainly use the first one (see e.g.,
Definition A.3), since it clarifies our discussion of the combinatorial properties of
shuffles. Denote the set of (p, q)-shuffles by Sp,q and set S0,q = Sp,0 = {id}. The
(p, q)-shuffle map from Xp,q to Xp+q,p+q is denoted by ζp,q, and the shuffle map is
denoted by ζ .

In order to construct the generalized cyclic shuffle map, we define a subset Sp,q
i, j of

Sp,q by
S

p,q
i, j = {(µ, ν) ∈ Sp,q | µi < ν j}.

Moreover, fixing µi and ν j in S
p,q
i, j we define a subset Tp,q

i, j,k of Sp,q
i, j by

T
p,q
i, j,k = {(µ, ν) ∈ Sp,q | µi = k− 1, ν j = k}.

2 The Generalized Cyclic Shuffle Map

The cyclic shuffle is first described by Rinehart [8, p. 220, condition (10.14)]. The
multiple version is stated by Getzler–Jones [2] using a lexicographical order. Inde-
pendently, Loday [6, p. 128] also provided its explicit definition. However, there is
some confusion in Loday’s definition. Indeed, if a permutation

{ω(1), . . . , ω(p + q)}

of {1, . . . , p + q} is a (p, q)-cyclic shuffle, then it should satisfy the condition ω(1) <
ω(p + 1), not the condition that “1 appears before p + 1” as in [6], which means
ω−1(1) < ω−1(p + 1). Note that for an algebra A the permutation ω acting on an
element (1, a1, . . . , ap+1) belonging to A⊗p+2 yields

ω.(1, a1, . . . , ap+1) = (1, aω−1(1), . . . , aω−1(p+q)).
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If ω(1) < ω(p + 1), then a1 appears before ap+1 after the action of ω. That is exactly
what we need for a cyclic shuffle. For this reason the cyclic shuffles defined in [8] and
in [2] coincide with each other. We will use cyclic operators and simplicial maps to
express the action of any cyclic shuffle. The conclusion is that there exists a natural
extension of cyclic shuffle map to the case of any cylindrical module which may not
be decomposable to a tensor product.

Definition 2.1 Let (X.,., di , si , t, δ j , σ j , τ ) be a cylindrical module. For any p, q ∈ N,
define a map

ξp,q : Xp,q → Xp+q+2,p+q+2

by

ξp,q =
∑

0≤i≤p
0≤ j≤q

∑
(µ,ν)∈
S

p+1,q+1
i+1, j+1

(−1)pi+q j+p sgn(µ, ν)sνq+1 · · · sν1 s−1t i
pσµp+1 · · ·σµ1σ−1τ

j
q .

We call ξp,q the generalized (p, q)-cyclic shuffle map. The generalized cyclic shuffle map
ξ : Totn(X)→ ∆n+2(X) is defined by setting ξ =

∑
p+q=n ξp,q.

The generalized (p, q)-cyclic shuffle map is a natural extension of the (p, q)-cyclic
shuffle map defined in [6], since the actions of cyclic operators can be regarded as
cyclic permutations.

We will show that the generalized cyclic shuffle map plays the same role as the orig-
inal one while constructing a morphism of mixed complexes from Tot(X) to ∆(X).
Hence the generalized cyclic Eilenberg–Zilber theorem follows immediately. The key
formula we should check is

bξ − ξb + Bζ − ζB = 0.

Note that since X could be any cylindrical module, the operator B contains Tv in its
expression (cf. Appendix A.2). The combinatorial method is used to prove the above
formula directly.

3 Combinatorial Properties of Shuffles

In this section we provide some combinatorial properties of shuffles that will be
needed in the proof of the generalized cyclic Eilenberg–Zilber theorem.

Lemma 3.1 Let (µ, ν) be a (p, q)-shuffle.

(i) For all 1 ≤ r ≤ p and 1 ≤ l ≤ q, we have r − 1 ≤ µr ≤ q + r − 1 and
l− 1 ≤ νl ≤ p + l− 1.

(ii) For 1 ≤ r1 < r2 ≤ p and 1 ≤ l1 < l2 ≤ q, we have µr1 + (r2 − r1) ≤ µr2 ≤
µr1 + (r2 − r1) + q and νl1 + (l2 − l1) ≤ νl2 ≤ νl1 + (l2 − l1) + p.

Lemma 3.1 follows directly from the definition of (p, q)-shuffles.
Recall Tp,q

i, j,k is the set {(µ, ν) ∈ Sp,q | µi = k − 1, ν j = k}, by the definition of
shuffles, the set Tp,q

i, j,k is not empty if and only if k = i + j − 1. First we explore some
combinatorial properties of Tp,q

i, j,k.
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Proposition 3.2 There is an isomorphism of sets Tp+1,q+1
p+1,q+1,p+q+1

∼= Sp,q.

Proof Define a map
Ψ : Tp+1,q+1

p+1,q+1,p+q+1 → Sp,q

by setting Ψ(u, v) = (u ′, v ′) for any (u, v) ∈ T
p+1,q+1
p+1,q+1,p+q+1 with u ′r = ur and v ′l = vl

for 1 ≤ r ≤ p and 1 ≤ l ≤ q. Since Ψ is a bijection, we get the isomorphism.

Proposition 3.3 For 1 ≤ k ≤ p + q + 1, we have the following isomorphism of sets⋃
0≤i≤p
0≤ j≤q

T
p+1,q+1
i+1, j+1,k

∼= T
p+1,q+1
p+1,q+1,p+q+1.

Proof Since Tp+1,q+1
i+1, j+1,k 6= ∅ only when k = (i + 1) + ( j + 1) − 1, and 0 ≤ j ≤ q, we

get

(3.1)
⋃

0≤i≤p
0≤ j≤q

T
p+1,q+1
i+1, j+1,k =

min{p,k−1}⋃
i=max{0,k−q−1}

T
p+1,q+1
i+1,k−i,k.

Note that if the fixed k equals p + q + 1, then the right hand side of (3.1) is just
T

p+1,q+1
p+1,q+1,p+q+1.

First we will construct an injective map from T
p+1,q+1
i+1,k−i,k to T

p+1,q+1
p+1,q+1,p+q+1. Define a

permutation

χm,n =

(
1 2 · · · m m + 1 m + 2 · · · m + n

n + 1 n + 2 · · · n + m 1 2 · · · n

)
.

For any (µ, ν) ∈ T
p+1,q+1
i+1,k−i,k, let

(3.2)

{
µ ′r = χk+1,p+q+1−k(µχp−i,i+1(r) + 1)− 1 for 1 ≤ r ≤ p + 1,

ν ′l = χk+1,p+q+1−k(νχq+i+1−k,k−i (l) + 1)− 1 for 1 ≤ l ≤ q + 1.

Then it is easy to check that (µ ′, ν ′) is a (p + 1, q + 1)-shuffle and µ ′p+1 = p + q,

ν ′q+1 = p + q + 1, i.e., (µ ′, ν ′) ∈ T
p+1,q+1
p+1,q+1,p+q+1. Hence the map

Φi,k : Tp+1,q+1
i+1,k−i,k → T

p+1,q+1
p+1,q+1,p+q+1

with Φi,k(µ, ν) = (µ ′, ν ′) defined by (3.2) is well defined. Since the permutation χ
is invertible, the map Φi,k is an injection.

It is clear that if i1 6= i2, then

T
p+1,q+1
i1+1,k−i1,k

∩ T
p+1,q+1
i2+1,k−i2,k

= ∅.

https://doi.org/10.4153/CMB-2013-002-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2013-002-7


214 J. Zhang and Q.-W. Wang

Moreover, we can derive that for a fixed k, if 0 ≤ i1 < i2 ≤ p, then

Φi1,k(Tp+1,q+1
i1+1,k−i1,k

) ∩ Φi2,k(Tp+1,q+1
i2+1,k−i2,k

) = ∅.

Indeed, if there exist (µ, ν) ∈ T
p+1,q+1
i1+1,k−i1,k

and (u, v) ∈ T
p+1,q+1
i2+1,k−i2,k

, such that Φi1,k(µ, ν)
= Φi2,k(u, v), then for any 1 ≤ r ≤ p + 1, µχp−i1 ,i1+1(r) = uχp−i2 ,i2+1(r). Especially for r
equalling p − i2 + 1 and p − i1 + 1, we get

u1 = uχp−i2 ,i2+1(p−i2+1) = µχp−i1 ,i1+1(p−i2+1) = µp+2+i1−i2

and

ui2−i1+1 = uχp−i2 ,i2+1(p−i1+1) = µχp−i1 ,i1+1(p−i1+1) = µ1.

Since i2− i1 + 1 > 1, p + 2 + i1− i2 > 1, and (µ, ν), (u, v) are (p + 1, q + 1)-shuffles,
we deduce a contradiction from

u1 < ui2−i1+1 = µ1 < µp+2+i1−i2 = u1.

Therefore we can define an injection

Φ :

min{p,k−1}⋃
i=max{0,k−q−1}

T
p+1,q+1
i+1,k−i,k → T

p+1,q+1
p+1,q+1,p+q+1

such that Φ|
T

p+1,q+1
i+1,k−i,k

= Φi,k.

Next, we will compare the cardinalities of the above two sets.
Denote the cardinality of the set Tp+1,q+1

i+1,k−i,k by #Tp+1,q+1
i+1,k−i,k. It is clear that

#Tp+1,q+1
p+1,q+1,p+q+1 =

(
p + q

p

)
,

and for 1 ≤ k ≤ p + q + 1, 0 ≤ i ≤ p,

#Tp+1,q+1
i+1,k−i,k =

(
k− 1

i

)(
p + q + 1− k

p − i

)
.

So

#
min{p,k−1}⋃

i=max{0,k−q−1}

T
p+1,q+1
i+1,k−i,k =

p∑
i=0

(
k− 1

i

)(
p + q + 1− k

p − i

)
.

Indeed if i > k− 1 or i < k− q− 1, then(
k− 1

i

)(
p + q + 1− k

p − i

)
= 0.

https://doi.org/10.4153/CMB-2013-002-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2013-002-7


An Explicit Formula for the Generalized Cyclic Shuffle Map 215

Using the Chu–Vandermonde identity, which states that(
x + y

z

)
=

z∑
w=0

(
x
w

)(
y

z − w

)

for all x, y, z ∈ N, we get that

p∑
i=0

(
k− 1

i

)(
p + q + 1− k

p − i

)
=

(
p + q

p

)
.

Therefore,

#
min{p,k−1}⋃

i=max{0,k−q−1}

T
p+1,q+1
i+1,k−i,k = #Tp+1,q+1

p+1,q+1,p+q+1,

the map Φ is a bijection, and the isomorphism holds.

We can discuss in detail the change of the signature of a shuffle in T
p+1,q+1
i+1,k−i,k after

the actions of Ψ and Φ.

Corollary 3.4 Let Ψ and Φ be the two bijections defined in the proofs of the Propo-
sitions 3.2 and 3.3. For any (µ, ν) ∈ T

p+1,q+1
i+1,k−i,k, where max{0, k − q − 1} ≤ i ≤

min{p, k− 1}, we have

(3.3) sgn(µ, ν) = (−1)pi+q(k−i−1)+(k−1)(p+q)+p+k+1 sgn
(

ΨΦ(µ, ν)
)
.

Proof As sgn(χm,n) = (−1)mn, we have

sgn
(

Φ(µ, ν)
)

= sgn(χp−i,i+1) sgn(χq+i+1−k,k−i) sgn(χk+1,p+q+1−k) sgn(µ, ν)

= (−1)pi+q(k−i−1)+(k−1)(p+q)+p+q+k+1 sgn(µ, ν).

It is clear that sgn(Ψ(u, v)) = (−1)q sgn(u, v) for any (u, v) ∈ T
p+1,q+1
p+1,q+1,p+q+1. So the

relation (3.3) holds.

Next we study some combinatorial properties of Sp+1,q+1
i+1, j+1 .

Lemma 3.5

(i) For 1 ≤ i ≤ p and 0 ≤ j ≤ q, we have the isomorphism of sets{
(µ, ν) ∈ S

p+1,q+1
i+1, j+1 | µ1 = 0

} ∼= S
p,q+1
i, j+1 .

(ii) For 0 ≤ j ≤ q, we have{
(µ, ν) ∈ S

p+1,q+1
1, j+1 | µ1 = 0

} ∼= Sp,q+1.
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(iii) For 0 ≤ i ≤ p and 1 ≤ j ≤ q, we have

{
(µ, ν) ∈ S

p+1,q+1
i+1, j+1 | ν1 = 0

} ∼= S
p+1,q
i+1, j .

(iv) For 0 ≤ i ≤ p, we have{
(µ, ν) ∈ S

p+1,q+1
i+1,1 | ν1 = 0

}
= ∅.

Proof For (i) and (ii), define ur = µr+1 − 1 and vl = νl − 1 for 1 ≤ r ≤ p and
1 ≤ l ≤ q + 1. Let φ1(µ, ν) = (u, v). We can easily check that φ1 is bijective and
sgn(µ, ν) = sgnφ1(µ, ν).

For (iii), define u ′r = µr − 1 and v ′l = νl+1 − 1 for 1 ≤ r ≤ p + 1 and 1 ≤ l ≤ q.
Let φ2(µ, ν) = (u ′, v ′). We can easily check that φ2 is bijective and sgn(µ, ν) =
(−1)p+1 sgnφ2(µ, ν). Case (iv) is clear.

Similarly we have the following lemma.

Lemma 3.6

(i) For 0 ≤ i ≤ p and 0 ≤ j ≤ q− 1, we have

{
(µ, ν) ∈ S

p+1,q+1
i+1, j+1 | νq+1 = p + q + 1

} ∼= S
p+1,q
i+1, j+1.

(ii) For 0 ≤ i ≤ p, we have{
(µ, ν) ∈ S

p+1,q+1
i+1,q+1 | νq+1 = p + q + 1

} ∼= Sp+1,q.

(iii) For 0 ≤ i ≤ p − 1 and 0 ≤ j ≤ q, we have

{
(µ, ν) ∈ S

p+1,q+1
i+1, j+1 | µp+1 = p + q + 1

} ∼= S
p,q+1
i+1, j+1.

(iv) For 0 ≤ j ≤ q, we have

{
(µ, ν) ∈ S

p+1,q+1
p+1, j+1 | µp+1 = p + q + 1

}
= ∅.

Lemma 3.7 For fixed i and j with 0 ≤ i ≤ p and 0 ≤ j ≤ q,

(i) if 2 ≤ l ≤ j + 1, then we have

{
(µ, ν) ∈ S

p+1,q+1
i+1, j+1 | νl = νl−1 + 1

} ∼= S
p+1,q
i+1, j ;

(ii) if j + 2 ≤ l ≤ q + 1, then we have

{
(µ, ν) ∈ S

p+1,q+1
i+1, j+1 | νl = νl−1 + 1

} ∼= S
p+1,q
i+1, j+1.
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Proof For case (i), we can define a bijection

ϕ :
{

(µ, ν) ∈ S
p+1,q+1
i+1, j+1 | νl = νl−1 + 1

}
→ S

p+1,q
i+1, j .

Set ϕ(µ, ν) = (u, v) with (u, v) defined by

ur =

{
µr for µr < νl−1,

µr − 1 for µr > νl,
and vr ′ =

{
νr ′ for 1 ≤ r ′ ≤ l− 1,

νr ′+1 − 1 for l ≤ r ′ ≤ q.

It is clear that (u, v) ∈ S
p+1,q
i+1, j and ϕ is a bijection. Also the signatures obey

(3.4) sgn(µ, ν) = (−1)p+1+l+νl−1 sgn(u, v) = (−1)p+1+l+vl−1 sgn(u, v)

with ϕ(µ, ν) = (u, v). Case (ii) is proven similarly.

We denote by Al the set {(µ, ν) ∈ S
p+1,q+1
i+1, j+1 | νl = νl−1 + 1} and let

Bk =
{

(µ, ν) ∈ S
p+1,q+1
i+1, j+1 | k− 1, k ∈ {ν1, . . . , νq+1}

}
.

We consider their disjoint unions. Recall the formal definition of a disjoint union of
sets Si , i ∈ I, is

⊔
i∈I Si =

⋃
i∈I{(x, i) | x ∈ Si}. Note that Al1

⋂
Al2 and Bk1

⋂
Bk2

may not be empty for 2 ≤ l1 6= l2 ≤ q + 1 and 1 ≤ k1 6= k2 ≤ p + q + 1; we can
obtain the following lemma immediately by setting νl = k.

Lemma 3.8 ⊔
2≤l≤q+1

Al =
⊔

1≤k≤p+q+1

Bk.

4 Proof of the Generalized Cyclic Eilenberg–Zilber Theorem

We restate the generalized cyclic Eilenberg–Zilber theorem for the normalized com-
plexes.

Theorem 4.1 ([3, 4]) Let X be a cylindrical module, ζ the shuffle map, and ξ the
generalized cyclic shuffle map. Then (ζ, ξ) : Tot(X)→ ∆(X) is a quasi-isomorphism of
mixed complexes satisfying

(4.1) bξ − ξb + Bζ − ζB = 0.

Hence (ζ, ξ) induces an isomorphism of cyclic homologies

HC∗
(

Tot(X)
) ∼= HC∗

(
∆(X)

)
.

Proof Explicitly, acting on Xp,q, the formula (4.1) yields the formula

(4.2) bξp,q = ξp−1,qbh + (−1)pξp,q−1bv + ζp+1,qTvBh + (−1)pζp,q+1Bv −Bζp,q.
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One can refer to Appendix A for explicit definitions of the operators in the above
formula. It is clear that ζb = bζ . And, using the relation (A.5), we easily get ξB =
Bξ = 0 in the normalized complexes. Therefore, if formula (4.2) holds, then the
proof follows by using the classic Eilenberg–Zilber theorem for Hochschild homology
and the Five Lemma.

In order to prove formula (4.2), we will often use the defining relations (A.1)–
(A.5) of a paracyclic module. Also the following relations derived from relations
(A.1)–(A.5) will be used frequently later:

s−1sk = sk+1s−1 for k ≥ −1,(4.3)

dit
j
n =

{
t j−1

n−1dn+i+1− j for i < j,

t j
n−1di− j for j ≤ i ≤ n,

(4.4)

sit
j
n =

{
t j

n+1si− j for i ≥ j > 0,

t j+1
n+1sn+i+1− j for−1 ≤ i < j ≤ n,

(4.5)

dis−1 =


idMn for i = 0,

s−1di−1 for 0 < i < n + 1,

tn for i = n + 1.

(4.6)

Note that b ξp,q is a sum of elements of the form

dksνq+1 · · · sν1 s−1t i
pδkσµp+1 · · ·σµ1σ−1τ

j
q ,

where (µ, ν) ∈ S
p+1,q+1
i+1, j+1 . We can divide these elements into four parts:

(a) k = 0, or k = p + q + 2;
(b) 1 ≤ k ≤ p + q + 1, and k− 1, k ∈ {ν1, . . . , νq+1};
(c) 1 ≤ k ≤ p + q + 1, and k− 1, k ∈ {µ1, . . . , µp+1};
(d) 1 ≤ k ≤ p + q + 1, and either k − 1 ∈ {µ1, . . . , µp+1}, k ∈ {ν1, . . . , νq+1}, or

k− 1 ∈ {ν1, . . . , νq+1}, k ∈ {µ1, . . . , µp+1}.
We will show that the sum of elements in part (a) is ζp+1,qTvBh + (−1)pζp,q+1Bv;

the sum of elements in part (b) is (−1)pξp,q−1bv; the sum of elements in part (c) is

ξp−1,qbh, and the sum of elements in part (d) is−Bζp,q.
We further divide part (a) into six parts:

(a.1) k = 0, i = 0, and µ1 = 0;
(a.2) k = 0, 1 ≤ i ≤ p, and µ1 = 0;
(a.3) k = 0, and ν1 = 0;
(a.4) k = p + q + 2, j = q, and νq+1 = p + q + 1;
(a.5) k = p + q + 2, 0 ≤ j ≤ q− 1, and νp+1 = p + q + 1;
(a.6) k = p + q + 2, and µp+1 = p + q + 1.

For part (a.1), moving d0 and δ0 to the right until they meet s−1 and σ0 respec-
tively, by Lemma 3.5(ii) and relations (A.3), we obtain the sum of elements in part
(a.1) is (−1)pζp,q+1Bv. Similarly, by Lemma 3.6(ii) and the relations (A.3), we can
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get that the sum of elements in part (a.4) is ζp+1,qTvBh. For parts (a.2) and (a.6),
using Lemma 3.5(i), Lemma 3.6(iii), and the discussion about the signatures in their
proofs, we get that the sum of elements in part (a.2) cancels with the sum of elements
in part (a.6). Similarly, we can show that the sum of elements in part (a.3) cancels
with the sum of elements in part (a.5).

For part (b), using relations (4.6) and (A.3) to move dk and δk to the right, by
Lemma 3.8 we obtain that the sum of elements in part (b) equals

(4.7)
∑

0≤i≤p
0≤ j≤q

2≤l≤q+1

∑
(µ,ν)∈Al

(−1)pi+q j+p+νl sgn(µ, ν)

(
sνq+1−1 · · · sνl+1−1sνl−1 · · · sν1 s−1t i

pσµp+1−1 · · ·σµx+1−1σµx · · ·σµ1σ−1δl−2τ
j

q

)
,

where x = νl − l + 1, since µr < νl−1 for 1 ≤ r ≤ x and µr ′ > νl for x < r ′ ≤ p + 1.
Divide the sum (4.7) into two parts, one is summing over 2 ≤ l ≤ j + 1, the other

is summing over j + 2 ≤ l ≤ q + 1. Then using Lemma 3.7, the bijection ϕ defined
in its proof, and relations (3.4) and (4.5), we get that (4.7) equals (−1)pξp,q−1bv.

Similarly, one can obtain the sum of elements in part (c) equals ξp−1,qbh.

For part (d), if (µ, ν) ∈ S
p+1,q+1
i+1, j+1 , and k− 1 ∈ {ν1, . . . , νq+1}, k ∈ {µ1, . . . , µp+1},

then permuting k− 1 and k, we get an other (p + 1, q + 1)-shuffle (µ ′, ν ′). It is easy
to see that

(µ ′, ν ′) ∈ S
p+1,q+1
i+1, j+1 and sgn(µ ′, ν ′) = − sgn(µ, ν).

Since µi+1 < ν j+1, we have (µ ′i+1, ν
′
j+1) 6= (k − 1, k). On the other case, if

(u, v) ∈ S
p+1,q+1
i+1, j+1 , and k − 1 ∈ {u1, . . . , up+1}, k ∈ {v1, . . . , vq+1}, and moreover

if (ui+1, v j+1) 6= (k − 1, k), then permuting k − 1 and k, we get (u ′, v ′) ∈ S
p+1,q+1
i+1, j+1 ,

and k − 1 ∈ {ν1, . . . , νq+1}, k ∈ {µ1, . . . , µp+1} with sgn(u ′, v ′) = − sgn(u, v).
Hence many elements in part (d) have disappeared; the rest is summing over (µ, ν) ∈
S

p+1,q+1
i+1, j+1 with µi+1 = k − 1 and ν j+1 = k, i.e., (µ, ν) ∈ T

p+1,q+1
i+1, j+1,k. Note again that

T
p+1,q+1
i+1, j+1,k 6= ∅ only when j = k− i − 1.

Consider the elements of the form dksνq+1 · · · sν1 s−1t i
pδkσµp+1 · · ·σµ1σ−1τ

j
q , where

(µ, ν) ∈ T
p+1,q+1
i+1, j+1,k. First moving dk and δk to the right until they cancel with sk−1 and

σk, then moving s−1 and σ−1 leftwards by the relation (4.3), we obtain

s−1sνq+1−2 · · · sν j+2−2sν j−1 · · · sν1−1t i
pσ−1σµp+1−2 · · ·σµi+2−2σµi−1 · · ·σµ1−1τ

j
q .

Next we would like to use the relation (4.5) to move tp and τq leftwards, so we should
compare the indexes. For a (p + 1, q + 1)-shuffle (µ, ν), by Lemma 3.1(ii) we have
νl + j + 1− l ≤ ν j+1 for 1 ≤ l ≤ j, and ν j+1 + r− j− 1 ≤ νr for j + 2 ≤ r ≤ q + 1. As
ν j+1 = k = i + j + 1, we get that νl ≤ i + l and νr ≥ r + i ≥ j + 2 + i. In fact we have
νl < i + l for 1 ≤ l ≤ j. If there exists an l ≤ j such that νl = i + l, then ν j should be
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equal to i + j. This contradicts µi+1 = i + j. Then using relation (4.5) we get

(4.8) s−1sνq+1−2 · · · sν j+2−2sν j−1 · · · sν1−1t i
p =

s−1t i+ j
p+q(sνq+1−2−i− j · · · sν j+2−2−i− j)(sν j +p−i · · · sν2+p−isν1+p−i).

For any (µ, ν) ∈ Sp+1,q+1, by Lemma 3.1(ii) we have νl ≤ ν1 + l − 1 + p + 1, for all
1 ≤ l ≤ q + 1. Then

ν j+2+n − 2− i − j ≤ ν1 + p − i + n ≤ · · · ≤ ν j + p − i + n, for 0 ≤ n ≤ q− j − 1.

Using relation (A.2), we can move the left bracket in (4.8) to the right. Then (4.8)
equals

s−1t i+ j
p+q(sν j +p+q−i− j · · · sν2+p+q−i− jsν1+p+q−i− j)(sνq+1−2−i− j · · · sν j+2−2−i− j).

Let

ν ′1 = ν j+2 − 2− i − j, . . . , ν ′q− j = νq+1 − 2− i − j,

ν ′q− j+1 = ν1 + p + q− i − j, . . . , ν ′q = ν j + p + q− i − j,

i.e.,

ν ′l = χi+ j+2,p+q−i− j(νχq− j, j+1(l) + 1)− 1,∀ 1 ≤ l ≤ q.

Then we obtain

s−1sνq+1−2 · · · sν j+2−2sν j−1 · · · sν1−1t i
p = s−1tk−1

p+q (sν ′q · · · sν ′1 ).

Play the same game again. We get

σ−1σµp+1−2 · · ·σµi+2−2σµi−1 · · ·σµ1−1τ
j

q = σ−1τ
k−1
p+q (σµ ′p · · ·σµ ′1 ),

where
µ ′r = χi+ j+2,p+q−i− j(µχp−i,i+1(r) + 1)− 1,∀ 1 ≤ r ≤ p.

So using the maps Ψ and Φi,k defined in the proofs of Propositions 3.2 and 3.3, we
get

(µ ′, ν ′) = ΨΦi,k(µ, ν) ∈ Sp,q.

By Propositions 3.2 and 3.3, when (µ, ν) runs over⋃
0≤i≤p
0≤ j≤q

T
p+1,q+1
i+1, j+1,k

for a fixed k, the corresponding (µ ′, ν ′) runs over all (p, q)-shuffles, with

(−1)pi+q j+p+k sgn(µ, ν) = (−1)(k−1)(p+q)+1 sgn(µ ′, ν ′).
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Hence we have

p+q+1∑
k=1

∑
0≤i≤p
0≤ j≤q

(µ,ν)∈Tp+1,q+1
i+1, j+1,k

(−1)pi+q j+p+k sgn(µ, ν)dksνq+1 · · · sν1 s−1t i
pδkσµp+1 · · ·σµ1σ−1τ

j
q

=

p+q+1∑
k=1

∑
(µ ′,ν ′)∈Sp,q

(−1)(k−1)(p+q)+1 sgn(µ ′, ν ′)s−1tk−1
p+q (sν ′q · · · sν ′1 )σ−1τ

k−1
p+q (σµ ′p · · ·σµ ′1 )

= −s−1σ−1

p+q∑
k=0

(−1)k(p+q)tk
p+qτ

k
p+q

∑
(µ ′,ν ′)∈Sp,q

sgn(µ ′, ν ′)(sν ′q · · · sν ′1 )(σµ ′p · · ·σµ ′1 )

= −Bζp,q.

This completes the proof.

A Appendix

The references for the notions introduced here are [3, 4, 6, 7].

A.1 Cylindrical Modules

We first recall the ingredient of a cylindrical module, which is a paracyclic module.

Definition A.1 A paracyclic K-module M is a family of K-modules {Mn}n≥0 en-
dowed, for each n ≥ 0, with K-homomorphisms di : Mn+1 → Mn for all 0 ≤ i ≤
n + 1, K-homomorphisms s j : Mn → Mn+1 for all 0 ≤ j ≤ n, and K-automorphisms
tn : Mn → Mn, satisfying the following relations

did j = d j−1di for i < j,(A.1)

sis j = s j+1si for i ≤ j,(A.2)

dis j =


s j−1di for i < j,

id for i = j, i = j + 1,

s jdi−1 for i > j + 1,

(A.3)

ditn =

{
tn−1di−1 for 1 ≤ i ≤ n,

dn for i = 0,
(A.4)

sitn =

{
tn+1si−1 for 1 ≤ i ≤ n,

t2
n+1sn for i = 0.

(A.5)

Here di , s j , and tn are called face maps, degeneracy maps, and paracyclic operators
respectively.
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Let s−1 = tn+1sn : Mn → Mn+1, for all n ≥ 0, be its extra degeneracy map. Define
the following operators

b =

n+1∑
i=0

(−1)idi : Mn+1 → Mn,(A.6)

T = tn+1
n : Mn → Mn,(A.7)

N =

n∑
i=0

(−1)int i
n : Mn → Mn,(A.8)

B =
(

1 + (−1)ntn+1

)
s−1N : Mn → Mn+1.(A.9)

These operators satisfy the relations b2 = B2 = 0 and Bb + Bb = 1− T.

Definition A.2 A bi-paracyclic module is a sequence of K-modules ({Xm,n}m,n≥0,
di , si , tm, δ j , σ j , τn), where

di : Xm,n → Xm−1,n, si : Xm,n → Xm+1,n, tm : Xm,n → Xm,n, ∀ 0 ≤ i ≤ m,

δ j : Xm,n → Xm,n−1, σ j : Xm,n → Xm,n+1, τn : Xm,n → Xm,n, ∀ 0 ≤ j ≤ n,

such that, for each m0, n0 ≥ 0, ({Xm,n0}m≥0, di , si , tm) and ({Xm0,n}n≥0, δ j , σ j , τn)
are two paracyclic modules and the operators di , si , tm commute with the operators
δ j , σ j , τn. Moreover, if in addition, tm+1

m τ n+1
n = idXm,n for all m, n ≥ 0, then this

bi-paracyclic module is called a cylindrical module.

Let bh,Th,Nh,Bh and bv,Tv,Nv,Bv be the operators defined as in (A.6)–(A.9) with
respect to the paracyclic modules ({Xm,n}m≥0, di , si , tm) and ({Xm,n}n≥0, δ j , σ j , τn).

A.2 The Total Complex and the Diagonal Module

Let (X.,., di , si , t, δ j , σ j , τ ) be a cylindrical module. The total complex (Tot(X),b,B)
of X that is defined by Totn(X) =

⊕
p+q=n Xp,q with b = bh + (−1)pbv and

B = TvBh + (−1)pBv acting on Xp,q is a mixed complex. The diagonal complex
({∆n(X)}n≥0, diδi , s jσ j , tnτn) of X is a cyclic module. Define the operators of this
cyclic module ∆(X) as in (A.6)–(A.9), i.e., acting on Xn,n, b =

∑n
i=0(−1)idiδi ,

N =
∑n

i=0(−1)int i
nτ

i
n, and B = (1 + (−1)ntn+1τn+1)s−1σ−1N. Then we get a mixed

complex (∆(X), b,B).

A.3 Normalized Complexes

Let (X.,., di , si , t, δ j , σ j , τ ) be a cylindrical module. Let D(X) be the chain subcomplex
of X generated by the images of the degeneracies si and σ j , i.e.,

Dp,q(X) =

p−1∑
i=0

si(Xp−1,q) +

q−1∑
j=0

σ j(Xp,q−1).
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Define Xp,q = Xp,q/Dp,q(X) and Totn(X) =
⊕

p+q=n Xp,q. Thus (Tot(X),b,B) is the

normalized mixed complex of (Tot(X),b,B), where B is induced from B and defined
by B = TvBh + (−1)pBv with Bh = s−1Nh and Bv = σ−1Nv.

Let dn(X) =
∑n−1

i=0 siσi(Xn−1,n−1) and ∆n(X) = Xn,n/dn(X). Then (∆(X), b,B)

is the normalized mixed complex of (∆(X), b,B) with B = s−1σ−1N.
The mixed complexes (Tot(X),b,B) and (∆(X), b,B) are quasi-isomorphic to

their normalized complexes respectively.

A.4 Shuffles and Shuffle Maps

Definition A.3 Let p and q be two positive integers. A (p, q)-shuffle (µ, ν) is a
partition of the set of integers {0, 1, . . . , p + q − 1} into two disjoint subsets such
that µ1 < · · · < µp and ν1 < · · · < νq. So {µ1, . . . , µp, ν1, . . . , νq} determines a
permutation of {0, . . . , p + q−1}. Let sgn(µ, ν) be the signature of the permutation.

Definition A.4 Let (X.,., di , si , t, δ j , σ j , τ ) be a cylindrical module. For any
p, q ∈ N, define a map ζp,q : Xp,q → Xp+q,p+q by

ζp,q =
∑

(u,v)∈Sp,q

sgn(u, v)svq · · · sv1σup · · ·σu1 .

Call ζp,q the (p, q)-shuffle map. The shuffle map ζ : Totn(X) → ∆n(X) is defined by
ζ =

∑
p+q=n ζp,q.
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