THE QUOTIENT SEMIGROUP OF A SEMIGROUP
THAT IS A SEMILATTICE OF GROUPSt

by F. R. MCcMORRIS
(Received 13 October, 1969)

1. Introduction. Let Q(S) denote the maximal right quotient semigroup of the semi-
group S as defined in [4]. In this paper, we initiate a study of Q(S) when S is a semilattice of
groups. A structure theorem for such semigroups is given by Theorem 4.11 of [2].

We prove that if S is a semilattice of groups, then so is Q(S). In the process of showing
this, we look at how right S-homomorphisms act on the groups making up S. In particular, a
right S-homomorphism takes a group into a group with a lower index, and then maps this
group one-to-one and onto itself.

If the set of idempotents of S forms a chain, then Q(S) and S have exactly the same
idempotents, and @(S) is just S union the group of units of @(S). If S is itself a chain, then
5 =0Q(S).

2. Preliminaries. Terminology throughout this note will be as found in [2] and [4].

DErFINITION 2.1. Let S be a subsemigroup of T. Then T is a right quotient semigroup of
S if and only if, for any three elements ¢, ¢,, t€ T with ¢, # ¢,, there exists an element s€ S
such that ¢;s # t,5 and ts€S.

DermiTION 2.2, If D is a right ideal of S, then D is said to be dense if and only if Sis a
right quotient semigroup of D. The set of all dense right ideals of S will be denoted by S2.

Let us recall that Q(S) = Hy/ =, where Hs =| J{Homg(D, S): De S*} and = is the con-
gruence defined by f; = f, if and only if f; agrees with f, on some dense right ideal contained
in the intersection of their domains. We denote the domain of f€ Hs by D, and the equivalence
class containing /by [f]). Thus [f] = [g] if and only if f = g on some De S* with D€ D,nD,.
S is considered as a subsemigroup of Q(S) under the identification x — [x,], where x, is the left
multiplication by x.

From now on, we shall let S be a semigroup with 0 and I that is a semilattice ¥ of groups
G (xeY), where Y is a semilattice order isomorphic to E(S), the set of idempotents of S. Let
e, be the identity of the group G,. The zero and identity of Y will also be denoted by 0 and 1.
We recall that S =| J{G,:ae Y} with G,nG,; =0 if a # B, and G,G,<=G,,.

By [2, exercise 2, p. 129], every one-sided ideal of S is two-sided. Thus De S* if and only
if, for any two elements x,, x,eS with x, 5 x,, there exists an element de D such that
x,d # x,d.

3. In this section we show that Q(S) is also a semilattice of groups. We recall that a
semigroup T is regular if and only if, for every element xe T, there exists an element yeT
such that xyx = x.

t This is a portion of the author’s doctoral dissertation written at the University of Wisconsin-Milwaukee
under the direction of Professor R. L. Gantos.
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ProPoSITION 3.1 ([2], pp. 128-129). A semigroup T is regular with idempotents in the centre
of T if and only if T is a semilattice of groups.

We shall show that Q(S) is regular and has central idempotents, but first we need the
following lemmas.

LeMMA 3.2. If D is an ideal of S, then D is a semilattice of groups.

Proof. We assert that D is a semilattice X, of groups G, (Be X)), where X}, is an ideal of
Y. LetdeD; then de Gy for some Be Y, and thus there exists an element d -1 €Gj such that
dd~'=d 'd=e; Since D is an ideal, we have e;eD, and it follows that G, D. Set
Xp={BeY:e4eD} and let feX), acY. Since egeD, we have e,epeD. Thus ee; = e,
implies that «fe X, Hence X, is an ideal of Y and D is a semilattice X, of groups G, (f€ X)p).

We shall let E(D) = {e;e E(S):e,e D}. Thus E(D) is order isomorphic to Xp under the
correspondence f —e,. If fe Hy, let E, = {e,€ E(S):e,€D,}.

Lemma 3.3. Let fe Hg. If Jis an ideal of S such that JS D, then f(J)<J. In particular,
f(Dy)eD,.
Proof. Let xeJ; then xeG, for some ae X;, and f(x) = f(xe,) = f(x)e € J.

REMARK 3.4. If e, < ¢4 (o £ ), then egx = x for all xe G, (for egx = eye,x) = (ege)x =
e, X = X).

LemMma 3.5, Let fe Hg; then for all ege E,, there exists a unique e, € E,, with e, £ ey, such
that f(Gg)<G,. Also, f restricted to G, is a one-to-one mapping of G, onto G,.

Proof. Let egeE,, and consider the element f(eg). From 3.2 and 3.3, we have that
Sfleg)€G, for some e,e E,. Now f(e) = f(eges) = fleg)eg€ G,Gy, = G,5. Hence fleg) € G,pnG,
and thus G,; = G,, which implies that y8 = y. Thereforey < f (e, < e5). Now let xe G,; then
Sf(x) = flegx) = fleg)xe G,Gy =G5 = G,. Thus we have f(G;)=G,. Itis clear that e, is unique
since S is the disjoint union of the groups G, (x€Y).

If yeG,, then we have ey =y, by 3.4. Thus we have f() = fle;y) = fleg)y € G,G,<G,.
Hence f(G,)=G,. Finally it remains to show that ftakes G, one-to-one and onto itself. Assume
that y, z&G,, with f(y) = f(z); then f(¥) = f(e,») =f(e,)y =f(e,)z =fle,2) =f(z). Cancelling
fle,), we have that y =2z Now let weG,; then there exists an element ueG, such
that f(e,)u = w. But f(e,)u = f(u), and this completes the proof.

REMARK 3.6. Suppose that fe Hg and ege E,. Let e, be as given in 3.5. Then ffis also
a one-to-one mapping of G, onto G,.

THeOREM 3.7. Q(S) is a regular semigroup.

Proof. Let [f1eQ(S). We shall define a mapping ge Hy such that [f][g][f] = [f]. Let
xe Dy, so that xe G, for some ege E,. Let e, be as in 3.5. Then from 3.6, we see that there
exists a unique y€ G, such that ff(y) = f(x). Define the mapping g: D, — S by g(x) = y. We
assert that g is a right S-homomorphism. Assume that xe D, with xe Gy, and seS with
seG,. LetyeG,beaschosenabove. Setz = g(xs). Sincef(xs)=f(x)seG,G,SGC,,itfollows
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that ze G, with ff(z) = f(xs). Now f(z) = flxs) = f(x)s = ((¥))s = f(ys). Since z, yseG,,
and fis one-to-one on G,,, we have z = ys; that is, g(xs) = g(x)s.

We show that [f][g][f] = [f] by proving that fgf agrees with fon D,. Again let xe D,
with xe Gy, and G, be as above. Now fgf(x) = f(u), where u = g(f(x)) € G,, and f(u) = f(f(x)).
Since f'is one-to-one on G and f(u), f(x) € G,, we have f(u) = f(x); that is, fgf(x) = f(x).

We recall from 3.1 that every idempotent of S is in the center of S. This fact will be used
throughout the proofs of the following lemmas.

Lemma 3.8. Let feHs. If ff=f on some ideal J with J= Dy, then f(e)e E(J) for all
ee E(J).

Proof. Let ecE(J); then fle) = ff(e) = ff(ee) = f(f(e)e) = flef(€)) = fle)f(e).

LemMA 3.9. Let fe Hs; then ff = f on an ideal J with J< D, if and only if f(xy) = f(x)f(y)
for all x,yeJ.

Proof. Assume that ff=/fon J=D,, and let x, yeJ with xeG, and yeG,. Applying
3.8, we have

S(xy) = Jf (xy) = ff (eaxeq y) = ff (ea €5 Xy)
= (ff(eae))xy = (f(f(e)eg))xy = (f(e.f(ep)))xy
= f(e)f(eg)xy = f(eJxf (eg)y = f(x)f (¥).
For the converse, let zeJ with ze G,. Then
f(@) =f(e,2) = f(e)1(2) = [(e,/(2)) = f(f(2)e,) = f(J(2)) = [ (2).

ProposiTioN 3.10 (2.33 of [4]). If Tis a right quotient semigroup of S, then an element of T
commutes with every element of S if and only if it is in the centre of T.

PRroPOSITION 3.11.  The idempotents of Q(S) are in the center of Q(S).

Proof. We need only show that if [f] is an idempotent of Q(S), then [f]x = x[f] for all
xeS. That is we must show that the mappings x,f and fx, agree on some dense ideal of S.
Assume that ff=f on DeS*, with DD, Set D* =DnD,, and let de D* with deG,.
Applying 3.8 and 3.9, we have

(fx)(d) = f(xd) = f(xe,d) = f(xe,) f(d) = f(e)xf(d)
= xf(e)f(d) = xf (e, d) = xf(d) = (x,f)(d).
Hence x,f = fx, on D*e S
THEOREM 3.12, Q(S) is a semilattice of groups.

Proof. From 3.7 and 3.11, Q(S) is a regular semigroup with central idempotents. Hence,
by 3.1, O(S) is a semilattice of groups.
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From 3.1, a commutative semigroup is regular if and only if it is a semilattice of groups.
The following example is a commutative example in which Q(T) is regular but T is not.
Hence the converse to 3.12 is not necessarily true.

ExampLE 3.13. Let T be the infinite cyclic semigroup generated by the element a, with
Oand I adjoined; thatis, T = {a, a*, a*, ...}u0ul. Thus T is a commutative semigroup
that is not regular. Every ideal of T is of the form {a*, a***, ...}U0 where k 2 1. It can be
shown that every ideal of T is dense, and every fe Hy is one-to-one. Let f' be the inverse
mapping of /. Hence f” is a right S-homomorphism from f(D;)e T into T such that ff'f = f
on D;. Therefore [f1[f'1(f] = [f], which implies that Q(T) is a regular semigroup. Q(T)is
commutative, by 2.35 of [4].

4. Throughout this section, we shall assume that E(S) is a chain.

PROPOSITION 4.1. Let G, denote the group of units of S. If DeS%, then D= S or
D = S-G,, where S—G, = {xeS:x¢G,}.

Proof. Assume that DeS? with D& S. From 3.2, D is a semilattice X, of groups,
where X, is isomorphic to E(D). Thus we need only show that E(D)= E(S)—{1}.
Let ege E(S)—E(D). It is easy to verify that e, < e, for all e,€ E(D). Hence, from 3.4,
1d =d = epd for all de D. Since De S, this implies that 1 = ej.

LemMMA 4.2. Let [f1€Q(S) and D = S—~G,. If ff=f on D and e,, ey E(D)—f(D), then
J(e) = flep).

Proof. By 4.1, we have D= D,. Also f(e,), f(e;) € E(D), from 3.8. Assume that e, < e;.
We assert that f(e;) < e,. If e, < f(ep), then e, = flep)e, = flege,) = fle,), which contradicts
the fact that e,¢ /(D). Hence f(eg) = f(eg)e, = flege,) =f(e,).

THEOREM 4.3. The idempotents of S and Q(S) are identical.

Proof. Let E(Q) denote the set of idempotents of Q(S). There are two cases: S—G,eS%
or S~G,¢S%

Assume that S—G,¢S% and let [f]eQ(S). Then feHomg(S, S) and hence [f]=
[(fA) ] =f(1)eS. Therefore S = O(S).

Now let D = S—G, and suppose that De S4. If [f]e E(Q), then ff=fon D. From 3.3,
f(D)eD. Assume that f(D) = D. We claim that = 1,, where 1, is the identity map on D.
If de D, then there exists an element xe D such that f(x) = d. Thus f(d) = f(x) =f(x) =d.
In [4] it was shown that [1,] = 1. Therefore [f] = [1,] = 1€ E(S).

Let f(D)ED. Since f(D) is an ideal of S, 3.2 implies that there exists an element
e, € E(D)—f(D). Sete=fle,); then ec E(S). LetdeD with deGy. If e5 < e, then f(d) =
Sfle,d) = fle)d = ed. If e, < e, then ege E(D)—f(D) and we have f(d) = f(eyd) = fleg)d =
fle,)d = ed, by 4.2. Hence [f] = [e,] = ec E(S).

Theorem 16 of [1] states that, if S is a semilattice (G, = {e,} for all yeY), then so is
0(S). The following corollary then follows.
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COROLLARY 4.4. If S is a chain, then S = Q(S).

On page 45 of [3], it is shown that if R is a Boolean ring (aa = a for all ae R), then its
Dedekind-MacNeille completion is isomorphic over R to the maximal right quotient ring of
R. An analogous theorem is not true for semilattices: that is, if S is a non-complete chain,
then S = Q(S), which is properly contained in its completion.

If T is a semigroup, then E(T) is dually well-ordered if every non-empty subset of E(T)
has a greatest element in the set.

THeOREM 4.5. If T is a regular semigroup such that E(T) is dually well-ordered, then
T= Q).

Proof. We first show that every right ideal is generated by an idempotent. Let R be a
right ideal of 7. Since T is regular, we have RNE(T) # 0. Let e be the greatest idempotent
of T contained in R. Clearly eT< R. If xeR, then there exists an element x’ € T such that
xx’'x = xand xx' € E(T). Now xx'e€ RnE(T),so that xx’ £ e. Thus x = (xx')x = e(xx')xeeT.
Hence eT = R.

Now let fe Hr; then D, =T, where icE(T). We have f(iy) = f(iiy) = f(i)iy for all
iyeiT. By 2.31 of [4], T = Q(T).

We shall now write Q(S) as the semilattice I of groups H(xel), where I is isomorphic to
E(Q). Note that we may assume that Y7 and G,= H, for all aeY.

LEMMA 4.6. IfaecY witha # 1, then G, = H,.

Proof. Let [f]leH,, where acY with a« # 1. Thuse, # 1. Sete =e,; then [f]e = [f],
which implies that fe, = f on some De S*, with DED,. Since D = Sor D = S—G,, we have
eeD. Hence (fe)(d) = f(ed) = fle)d. Therefore [f]= [fle = [(f(e)),]€ S, and thus [f]eG,.

THeoreM 4.7. O(S) = (| JG,)VH,.

a¥l

Proof. By 4.3, Y =1 and hence the result follows from 4.6.

5. For the remainder of this paper, let T be a semigroup with 0 and 1. A right ideal R of
T is said to be minimal if R # 0 and if K is a right ideal of T with 0 # K< R, then K=R. T
is said to satisfy the minimum condition on right ideals if every non-empty set of right ideals of
T has a minimal member.

PrOPOSITION 5.1. If T has a minimal dense right ideal, then it is unique.

Proof. This follows from the fact that the intersection of two dense ideals is a dense ideal.

Assume that T has a minimal dense right ideal D, and let f, ge Homy(D, T). Let fg be the
composition map with domain g~ 'D = {xe D: g(x)e D}. By 2.14 of [4], g"'DeT*, which
implies that g~'D = D since D is minimal. Thus Hom{(D, T) is a semigroup under this
operation.

THEOREM 5.2. If T has a minimal dense right ideal D, then Q(T) is isomorphic to
Hom(D, T).
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Proof. Define the mapping pu: Q(T) — Hom(D, T) by u([f]) =f|p, where f|p is the
restriction of fto D. p is an isomorphism.

COROLLARY 5.3. Let T satisfy the minimum condition on right ideals, and let D be the
unique minimal dense right ideal of T. Then Q(T) is isomorphic to Hom(D, T).

COROLLARY 5.4. Assume that S is a semilattice of groups and E(S) is a finite set. Let D*
be the intersection of all the dense ideals of S. Then Q(S) is isomorphic to Homg(D*, S).
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