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1. Introduction. Let Q(S) denote the maximal right quotient semigroup of the semi-
group S as defined in [4]. In this paper, we initiate a study of Q(S) when S is a semilattice of
groups. A structure theorem for such semigroups is given by Theorem 4.11 of [2].

We prove that if S is a semilattice of groups, then so is Q(S). In the process of showing
this, we look at how right S-homomorphisms act on the groups making up S. In particular, a
right S-homomorphism takes a group into a group with a lower index, and then maps this
group one-to-one and onto itself.

If the set of idempotents of 5 forms a chain, then Q(S) and S have exactly the same
idempotents, and Q(S) is just S union the group of units of Q(S). If 5 is itself a chain, then
S = Q(S).

2. Preliminaries. Terminology throughout this note will be as found in [2] and [4].

DEFINITION 2.1. Let S be a subsemigroup of T. Then 2" is a right quotient semigroup of
S if and only if, for any three elements tu t2, teT with ty ^ t2, there exists an element seS
such that tts # t2s and tseS.

DEFINITION 2.2. If D is a right ideal of S, then D is said to be dense if and only if S is a
right quotient semigroup of D. The set of all dense right ideals of S will be denoted by SA.

Let us recall that Q(S) = Hs/=, where Hs =(J{Homs(A S):DeSA} and = is the con-
gruence defined by/ t = / 2 if and only if/x agrees with/2 on some dense right ideal contained
in the intersection of their domains. We denote the domain of/e Hs by Df, and the equivalence
class containing/by [/]. Thus [/] = [g] if and only i f /= g on some DeSA with D^DfnDg.
S is considered as a subsemigroup of Q(S) under the identification x -> [*,], where x, is the left
multiplication by x.

From now on, we shall let S be a semigroup with 0 and 1 that is a semilattice Y of groups
C?a(a e Y), where Y is a semilattice order isomorphic to £(5), the set of idempotents of 5. Let
ea be the identity of the group Ga. The zero and identity of Y will also be denoted by 0 and 1.
We recall that S = [) {Gx: a e 7} with GanGp = 0 if a ^ j3, and Gfif e Gaf.

By [2, exercise 2, p. 129], every one-sided ideal of S is two-sided. Thus D e 5A if and only
if, for any two elements xux2eS with x± # x2, there exists an element deD such that

x2d.

3. In this section we show that Q(S) is also a semilattice of groups. We recall that a
semigroup T is regular if and only if, for every element xeT, there exists an element yeT
such that xyx = x.

t This is a portion of the author's doctoral dissertation written at the University of Wisconsin-Milwaukee
under the direction of Professor R. L. Gantos.
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PROPOSITION 3.1 ([2], pp. 128-129). A semigroup Tis regular with idempotentsin thecentre
of T if and only if T is a semilattice of groups.

We shall show that Q(S) is regular and has central idempotents, but first we need the
following lemmas.

LEMMA 3.2. If D is an ideal of S, then D is a semilattice of groups.

Proof. We assert that D is a semilattice XD of groups Gp (PeXD), where XD is an ideal of
Y. Let deD; then deGp for some /?e Y, and thus there exists an element d~leGp such that
dd~l = d~x d = ep. Since D is an ideal, we have efieD, and it follows that GP£D. Set
XD= {PeY:efisD} and let f}eXD, <xeY. Since e^eD, we have exefeD. Thus exep = ea0
implies that a/? e XD. Hence XD is an ideal of Y and D is a semilattice XD of groups Gfi (/? e XD).

We shall let £(£») = {epeE(S):efeD}. Thus E(D) is order isomorphic to XD under the
correspondence ft -> ep. Iffe Hs, let £y = {exeE(S): eaeZ>y}.

LEMMA 3.3. LetfeHs. JfJ is an ideal of S such that JzDf, thenf(J)^J. In particular,
f(Df)<=Df.

Proof. LetxeJ; then xeGx for some xeXj, and/(x) = / ( x O =f(x)eaeJ.

REMARK 3.4. If ex £ ef (a ^ /?), then ê x = JC for all xe Ga (for ê x = efi(exx) = (efie<,)x =
exx = x).

LEMMA 3.5. Letfe Hs; then for all ep e Ef, there exists a unique ey e Ef, with ey ^ ef, such
'ZGy. Also, f restricted to Gy is a one-to-one mapping ofGy onto Gy.

Proof. Let efieEf, and consider the element/(e^). From 3.2 and 3.3, we have that
f(efi) e Gy for some ey e Ef. Now f{ef) = f(e^efi) = f(ep)ep e GyGp £ Gy?. Hence f(efi) e GyPr\Gy

and thus GyP = Gy, which implies that yfi = y. Therefore y ^ fi (ey ^ e )̂. Now let xe Ge; then
/ W =f(efx) =f(ep)xeGyGpCGyfi = Gy. Thus we have/(G^)cGr It is clear that ey is unique
since S is the disjoint union of the groups Gx (<xe Y).

If yeGy, then we have efy = y, by 3.4. Thus we have/(y) =f(efiy) = f(efi)yeGyGy^Gr

Hence/(Gy) c (7y. Finally it remains to show that/takes Gy one-to-one and onto itself. Assume
that y, zeGv with Ay) =A*); then/Cy) =/(eyJ>) = M ) j = M ) z = / M =/W- Cancelling
f(ey), we have that y = z. Now let weGy; then there exists an element ueGy such
that/(ey)M = vv. But f(ey)u =/(«), and this completes the proof.

REMARK 3.6. Suppose that feHs and e^eEj-. Let ey be as given in 3.5. Then ff is also
a one-to-one mapping of Gy onto Gr

THEOREM 3.7. Q{S) is a regular semigroup.

Proof. Let [/] e g(5). We shall define a mapping geHs such that [/][#][/] = [/]. Let
xeDf, so that xeG^ for some epeE^. Let ey be as in 3.5. Then from 3.6, we see that there
exists a unique y e Gy such that ff(y) =f(x). Define the mapping g: Df -»5 by ^(^) = ^. We
assert that ^ is a right S-homomorphism. Assume that xeDf with xeGp, and j e 5 with
5 e Ga. Let yeGy be as chosen above. Set z = #(xy). Since/(xy) = f(x)s e GyGa s <7ya, it follows
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that zeGyx with#(z) =f(xs). Now#(z) =f(xs) =f(x)s = (ff(y))s =ff{ys). Since z,yseGyx

and ff is one-to-one on Gyx, we have z = ys; that is, g(xs) = g(x)s.
We show that [/][#][/] = [/] by proving that fgf agrees with/on Df. Again let x e i ) ;

with x 6 G ,̂ and Gy be as above. Now/g/"(x) = /(«), where u = g(f(x)) e Gy) and ̂ "(w) = f(f(x)).
Since/is one-to-one on G andf(u),f(x)eGy, we have/(w) =/(*); that is,ya/i(x) =f(x).

We recall from 3.1 that every idempotent of S is in the center of S. This fact will be used
throughout the proofs of the following lemmas.

LEMMA 3.8. Let feHs. Ifff=fon some ideal J with J^Df, then f(e)eE(J) for all
eeE(J).

Proof. Let eeE{J); then/(e) =ff{e) =jf(ee) =f(f(e)e) =/(e/(e)) =f(e)f{e).

LEMMA 3.9. LetfeHs; thenff=fon an ideal Jwith JcDf if and only iff(xy) =f(x)f(y)
for all x, ye J.

Proof. Assume tha t#= /on JzDf, and let x,yeJ with xeGa and yeGfi. Applying
3.8, we have

f(xy) =ff(xy) =ff{eaxefiy) = fRe^xy)

= (ff(eaep))xy = (f(f(ejef))xy = (f(.ej(e,)))xy

For the converse, let z e / with z e Gy. Then

/(z) =/(eyz) =/(e,)/(z) =/(ey/(z)) =/(/(z)ey) =

PROPOSITION 3.10 (2.33 of [4]). If T is a right quotient semigroup ofS, then an element of T
commutes with every element of S if and only if it is in the centre of T.

PROPOSITION 3.11. The idempotents of Q(S) are in the center of Q(S).

Proof. We need only show that if [/] is an idempotent of Q(S), then [f]x = x[f] for all
xeS. That is we must show that the mappings x,fandfxt agree on some dense ideal of S.
Assume that ff=f on DeS*, with D^Df. Set D* = Dr\Dfxi and let deD* with deGa.
Applying 3.8 and 3.9, we have

(fx,){d) =f(xd) =/(xe.d) =Rx

= x/(O/(d) = x/(e.d) = xf(d) =

Hence xj=fxt on D*eSA.

THEOREM 3.12. g(S) w a semilattice of groups.

Proof. From 3.7 and 3.11, Q(S) is a regular semigroup with central idempotents. Hence,
by 3.1, Q(S) is a semilattice of groups.
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From 3.1, a commutative semigroup is regular if and only if it is a semilattice of groups.
The following example is a commutative example in which Q(T) is regular but T is not.
Hence the converse to 3.12 is not necessarily true.

EXAMPLE 3.13. Let T be the infinite cyclic semigroup generated by the element a, with
0and 1 adjoined; that is, T={a, a2, a3, ...}uOul. Thus Tis a commutative semigroup
that is not regular. Every ideal of T is of the form {ak, ak+l, .. .}uO where k ^ 1. It can be
shown that every ideal of T is dense, and every feHT is one-to-one. Let/ ' be the inverse
mapping of/. Hence/' is a right S-homomorphism from/(Z>y)e TA into T such that ff'f—f
on Df. Therefore [/][/'][/] = [/], which implies that Q(T) is a regular semigroup. Q(T) is
commutative, by 2.35 of [4].

4. Throughout this section, we shall assume that £(S) is a chain.

PROPOSITION 4.1. Let Gt denote the group of units of S. If DeS*, then D = S or
D = S-GU where S-Gl =

Proof. Assume that DeSA with D£S. From 3.2, D is a semilattice XD of groups,
where XD is isomorphic to E(D). Thus we need only show that E(D) = E(S)—{1}.
Let efieE(S)-E(D). It is easy to verify that ea g ef for all exeE(D). Hence, from 3.4,
\d — d = epd for all deD. Since DeS"\ this implies that 1 = ef.

LEMMA 4.2. Let [f]eQ(S) and D = S-G^. lfff=fon D and ea, epeE(D)-f(D), then
/ (O =f(eP).

Proof. By 4.1, we have D^Df. Ahof(ea),f(efi)eE(D), from 3.8. Assume that ea ̂  efi.
We assert that/(<?,) < ex. If ea ̂ f(e0), then ea =f{ef)ea =f(efiea) =/(<?„)> which contradicts
the fact that eJf(D). Hence/**?,) =/(^)ea = / ( ^ O =/(O-

THEOREM 4.3. The idempotents of S and g(S) are identical.

Proof. Let E(Q) denote the set of idempotents of Q(S). There are two cases: S- Gt e 5A

or S-G,£SA.
Assume that 5 - G ^ 5 A and let [/]6g(5). Then/e Homs(S, 5) and hence [f] =

[(/(I)).] = / 0 ) e 5. Therefore 5 = Q(S).
Now let D = 5-Gi and suppose that Z)eSA. If [f]eE(Q), t h e n / = / o n Z>. From 3.3,

/(£>)££). Assume that/(Z>) = D. We claim tha t /= 1D, where lD is the identity map on D.
If rfeA then there exists an element xeD such that f(x) = d. Thus f(d) =ff{x) =f(x) = d.
In [4] it was shown that [1D] = 1. Therefore [f] = [1D] = 1 eE(S).

Let/(Z))$Z). Since/(Z)) is an ideal of S, 3.2 implies that there exists an element
eaeE{D)-f(D). Set e =f(ea); then eeE(S). Let </eZ) with deGp. If e, ^ ea, then f(d) =

f(ead)=f(ea)d=ed. If <?a < e ,̂ then epeE(D)-f(D) and we hawe f(d) = f(e0d) = f(efi)d =
f(ett)d = ed, by 4.2. Hence [/] = [e,] = eeE(S).

Theorem 16 of [1] states that, if S is a semilattice (Gv = {ey} for all ye Y), then so is
Q(S). The following corollary then follows.
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COROLLARY 4.4. If S is a chain, then S = Q(S).

On page 45 of [3], it is shown that if R is a Boolean ring (aa = a for all aeR), then its
Dedekind-MacNeille completion is isomorphic over R to the maximal right quotient ring of
R. An analogous theorem is not true for semilattices: that is, if S is a non-complete chain,
then S = 2(5), which is properly contained in its completion.

If T is a semigroup, then E(T) is dually well-ordered if every non-empty subset of E(T)
has a greatest element in the set.

THEOREM 4.5. If T is a regular semigroup such that E(T) is dually well-ordered, then

r=e(r>.
Proof. We first show that every right ideal is generated by an idempotent. Let R be a

right ideal of T. Since T is regular, we have Rr\E(T) # 0. Let e be the greatest idempotent
of T contained in R. Clearly eT^R. If xeR, then there exists an element x'eTsuch that
xx' x = x and xx' eE{T). Now xx' eRriE(T), so that xx' ^ e. Thus x = (xx')x = e(xx')xe eT.
Hence eT = R.

Now let feHT; then Df = iT, where isE{T). We have / ( /» =f(iiy) -f(i)iy for all
iyeiT. By 2.31 of [4], T= Q(T).

We shall now write Q(S) as the semilattice / of groups Ha(ael), where / is isomorphic to
£ ( 0 . Note that we may assume that YQI and Ga£ Ha for all a e Y.

LEMMA 4.6. IfaeY with a ^ l, //(en (?„ = Ha.

Proof. Let [/]e#s, where ueY with a ^ 1. T h u s e ^ l . Set e = ea; then [/> = [/],
which implies that/e, = / o n some DeSA, with D^Df. Since D = S or D = S—Gi, we have
eei). HenceO,)(<0 =/ («0 =f(e)d. Therefore [/] = [/> = [(f(e)),]eS, and thus (/]eC..

THEOREM 4.7. 6(5) = ((J G«)u^.

Proo/. By 4.3, Y= I and hence the result follows from 4.6.

5. For the remainder of this paper, let T be a semigroup with 0 and 1. A right ideal R of
T is said to be minimal if R jt 0 and if K is a right ideal of J with O^K^R, then tf = /?. T
is said to satisfy the minimum condition on right ideals if every non-empty set of right ideals of
T has a minimal member.

PROPOSITION 5.1. If T has a minimal dense right ideal, then it is unique.

Proof. This follows from the fact that the intersection of two dense ideals is a dense ideal.
Assume that Thas a minimal dense right ideal D, and let/, g e Homr(Z), T). Lttfg be the

composition map with domain g~lD = {xeD: g(x)eD}. By 2.14 of [4], g~lDsTA, which
implies that g~lD = D since D is minimal. Thus Homr(£>, T) is a semigroup under this
operation.

THEOREM 5.2. If T has a minimal dense right ideal D, then Q(T) is isomorphic to
, T).
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Proof. Define the mapping /x: Q(T) -• Homr(Z), T) by /*([/]) = / | D. where / | D is the
restriction of/ to D. /i is an isomorphism.

COROLLARY 5.3. Lef T satisfy the minimum condition on right ideals, and let D be the
unique minimal dense right ideal of T. Then Q(T) is isomorphic to Homr(£>, T).

COROLLARY 5.4. Assume that S is a semilattice of groups and E(S) is a finite set. Let D*
be the intersection of all the dense ideals of S. Then Q(S) is isomorphic to Homs(D*, S).
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