MINIMAL PERMUTATION REPRESENTATIONS OF THE TWO DOUBLE COVERS OF S_n

by JOHN BRINKMAN

(Received 6th June 1994)

Let G be a finite group and denote by $\mu(G)$ (see [2]) the least positive integer m such that G has a faithful permutation representation in the symmetric group of degree m. This note considers the value of $\mu(G)$ when G is a double cover of the symmetric group.

1991 Mathematics subject classification: 20B99.

1. Introduction

We will adhere to the notation of [2] and denote by $\mu(G)$ the least positive integer m such that a finite group G can be embedded in S_m , the symmetric group of degree m. It will also be convenient to distinguish a permutation in S_m by the number of non-trivial disjoint cycles it contains.

For $n \ge 4$, S_n has two proper double covers, non-isomorphic if $n \ne 6$, see [1]. These have the following standard presentations.

The double cover of S_n which lifts a transposition of S_n to an element of order 4, will be denoted by \tilde{S}_n , so that \tilde{S}_n is the group with generators $z, r_1, r_2, \ldots, r_{n-1}$ and relations

$$z^{2} = 1$$
,
 $zr_{i} = r_{i}z$, $r_{i}^{2} = z$ for $1 \le i \le n - 1$,
 $(r_{j}r_{j+1})^{3} = z$ for $1 \le j \le n - 2$,
 $r_{k}r_{h} = zr_{h}r_{k}$ for $|h - k| > 1$ and $1 \le h, k \le n - 1$.

Denote by \hat{S}_n the double cover of S_n which lifts a transposition of S_n to an element of order 2. Thus \hat{S}_n is the group with generators $z, s_1, s_2, \ldots, s_{n-1}$ and relations

$$z^{2} = 1$$
,
 $zs_{i} = s_{i}z$, $s_{i}^{2} = 1$ for $1 \le i \le n - 1$,
 $(s_{j}s_{j+1})^{3} = 1$ for $1 \le j \le n - 2$,
 $s_{k}s_{h} = zs_{h}s_{k}$ for $|h - k| > 1$ and $1 \le h, k \le n - 1$.

Note. Factoring out the central subgroup $Z = \langle 1, z \rangle$ recovers S_n in both cases.

2. $\mu(\tilde{S}_n)$

For computations in \tilde{S}_n we will use the method outlined in a paper by David B. Wales [3]. In this elements are of the form $\pm [\sigma_1] \dots [\sigma_r]$, where the σ_i are disjoint cycles in S_n and $\pm [\sigma_i]$ are the corresponding lifts in \tilde{S}_n .

Definition 2.1. For $1 \le a_i \le m$ we define

$$[a_1a_2\ldots a_m]=a_1a_2\ldots a_ma_1.$$

We call $\pm [a_1 a_2 \dots a_k]$ signed cycles in \tilde{S}_n . Each is a lift of the cycles $(a_1 a_2 \dots a_k)$ in S_n .

In fact each a_i corresponds to an element of a subgroup of a Clifford algebra which is isomorphic to \tilde{S}_n . But the following rules are sufficient to enable the calculation of products of disjoint signed cycles, which we refer to as signed permutations, in \tilde{S}_n (these appear as 2.3 and 2.4 in [3]).

1.A
$$[a_i] = -1$$
.

1.B
$$[a_1 a_2 \dots a_m] = (-1)^{m+1} [a_2 a_3 \dots a_m a_1].$$

1.C
$$[a_1 a_2 \dots a_{m-1}] a_m = (-1)^m a_m [a_1 a_2 \dots a_{m-1}].$$

Example.

$$[12](-[234]) = -[12][234] = [21][234] = 2122342$$

= $21[2]34 = -21342 = -[2134] = [1342].$

As a further example, note that by identifying r_i with the positive signed cycle [i, i+1], and z with -1, we recover our presentation for \tilde{S}_n .

Hence if we consider the elements of \tilde{S}_n as products of signed cycles, with -1 replacing the central element z, the following lemma is easily proved by induction.

Lemma 2.2. A positive signed cycle of length k in \tilde{S}_n has either

- 1. order k if $k \equiv 5$, 6, 7 or 0 modulo 8, or
- 2. order 2k if $k \equiv 1, 2, 3$ or 4 modulo 8.

While a negative signed cycle of length k in \tilde{S}_n has either

- 1. order k if $k \equiv 0, 1, 3$ or 6 modulo 8, or
- 2. order 2k if $k \equiv 2, 4, 5$ or 7 modulo 8.

Example.

$$(+[123])^3 = [123][123][123] = 123112311231$$

= $123[1]23[1]231 = 12323231$
= $1[23][32]1 = -1[23][23]1$
= $-12322321 = -123[2]321$
= $123321 = 12[3]21 = -1221$
= $-1[2]1 = 11 = [1] = -1$.

Thus
$$(+[123])^6 = (-1)^2 = 1$$
.

While

$$(-[123])^3 = -(+[123])^3 = -(-1) = 1.$$

Proposition 2.3. Let H be a subgroup of \tilde{S}_n If H contains a positive signed cycle of length k with $k \equiv 1, 2, 3$ or 4 modulo 8, or a negative signed cycle of length k with $k \equiv 2, 4, 5$ or 7 modulo 8, then $-1 \in H$.

Proof. Clear by the previous lemma, for if H contains a singled cycle τ of length k satisfying the above conditions, then $\tau^k = -1 \in H$.

Proposition 2.4. Let H be a subgroup of \widetilde{S}_n , $n \ge 2$. A permutation representation, ρ say, from \widetilde{S}_n/H to S_n is not a faithful representation of \widetilde{S}_n if $-1 \in H$.

Proof. First note that ρ is faithful only if for all $g \in \tilde{S}_m$

$$Core_{S_n}(H) = \bigcap g^{-1}Hg = \{1\}.$$

So if $-1 \in H$, since -1 is central, then $Core_{S_n}(H) \neq \{1\}$ and ρ is not a faithful representation.

The proposition is sometimes of help in determining the value of $\mu(\tilde{S}_n)$.

Example. We consider the value of $\mu(\tilde{S}_4)$. First note that S_4 has permutations whose cycle types are 1, 2, 2^2 , 3 and 4, thus it follows that \tilde{S}_4 has signed permutations of cycle type 1, 2, 2^2 , 3 and 4.

By the previous proposition we require subgroups of \tilde{S}_4 not having positive signed cycles of length 2, 3 or 4, or negative signed cycles of length 2 or 4. So the only possible non-trivial subgroups we may consider can contain only positive or negative signed cycles type 2^2 and negative signed cycles of type 3. But any signed cycle of the form $\pm [ab][cd] \in \tilde{S}_4$ squares to give -1 as

$$(\pm [ab][cd])^2 = [ab][cd][ab][cd]$$

$$= [ab][cd]aba[cd]$$

$$= - [ab]aba[cd][cd]$$

$$= - [ab][ab][cd][cd]$$

$$= - (-1)(-1)$$

$$= -1.$$

Hence the only possible non-trivial subgroups which do not contain -1 are isomorphic to

$$H = \{1, -\lceil 123 \rceil, -\lceil 132 \rceil\}$$
 which has core = $\{1\}$.

Thus

$$\mu(\tilde{S}_4) = |\tilde{S}_4| + |H| = 48/3 = 16.$$

e.g. \tilde{S}_4 is minimally embedded in S_{16} .

Following the notation of D.L. Johnson [2], let ρ along with $\{G_1, G_2, \ldots, G_m\}$ be a permutation representation of \widetilde{S}_m where each G_i is a subgroup of \widetilde{S}_n and the degree of ρ equals the sum of $|\widetilde{S}_n|$. Also ρ is faithful if $\mathrm{Core}_{S_n}(\bigcap G_i) = \{1\}$. Note that by Proposition 2.3, if ρ is a faithful representation of \widetilde{S}_m then $\{G_1, G_2, \ldots, G_m\}$ must contain at least one subgroup which does not contain -1.

Lemma 2.5. Let N be a normal non-trivial subgroup of \tilde{S}_n , $n \ge 5$. Then either $N = Z = \{1, -1\}$, or $N = A_n$, the double cover of the alternating group.

Proof. Clearly Z and \tilde{A}_n are normal in \tilde{S}_n . So let N be any other normal subgroup of \tilde{S}_n . Then NZ/Z is a normal subgroup of \tilde{S}_n/Z , which is isomorphic to S_n . It follows that NZ is either \tilde{S}_n , \tilde{A}_n or Z, so that N is \tilde{S}_n .

Theorem 2.6. For $n \ge 4$, and H a subgroup of \tilde{S}_n that does not contain -1,

$$\mu(\widetilde{S}_n) = \min_{H \le \widetilde{S}_n} |\widetilde{S}_n: H|$$

Proof. Clear for n=4 by the previous example, so consider when $n \ge 5$.

Let $\Omega = \{G_1, G_2, \dots, G_m\}$ and ρ be a minimal permutation representation of \widetilde{S}_n . Now suppose that, without any loss of generality, that G_1 does not contain -1 and let M be a maximal subgroup of \widetilde{S}_n which does not contain -1 but does contain G_1 . Recall by Proposition 2.4 that we require $-1 \notin M$ for a faithful representation of \widetilde{S}_n .

The core of M is the largest normal subgroup of \tilde{S}_n contained in M, thus by the previous lemma this is $\{1\}$ as \tilde{A}_n and Z both contain -1. Hence \tilde{S}_n is isomorphic to a subgroup of S_n where $y = |\tilde{S}_n|$: M. Thus the degree of ρ is equal to

$$\sum_{i=1}^{m} \left| \widetilde{S}_{n} : G_{i} \right| \leq \left| \widetilde{S}_{n} : M \right|,$$

so we have

$$\left| \tilde{S}_{n} : G_{1} \right| - \left| \tilde{S}_{n} : M \right| + \sum_{i=2}^{m} \left| \tilde{S}_{n} : G_{i} \right| \leq 0$$

which as

$$|\tilde{S}_n: G_1| = |\tilde{S}_n: M||M: G_1|$$

gives

$$\left| \widetilde{S}_{n} : M \left| \left(\left| M : G_{1} \right| - 1 \right) + \sum_{i=1}^{m} \left| \widetilde{S}_{n} : G_{i} \right| \leq 0 \right|$$

implying that m=1 and $M=G_1$. Hence the degree of ρ is equal to

REPRESENTATIONS OF THE TWO DOUBLE COVERS OF S,

289

$$|\tilde{S}_n: G_1| = |\tilde{S}_n: M|,$$

where M is a maximal subgroup of \tilde{S}_n not containing -1.

3. $\mu(\hat{S}_n)$

By identifying -1 with z in the presentation for \tilde{S}_n it is again possible to consider elements of \tilde{S}_n as signed cycles, although different rules are required when considering the products of these signed cycles. However the following theorem follows readily from the previous section.

Theorem 3.1. For $n \ge 5$, and H a subgroup of \tilde{S}_n that does not contain -1,

$$\mu(\widehat{S}_n) = \min_{H \le S_n} |\widehat{S}_n : H|$$

Proof. This follows by replacing \tilde{S}_n by \hat{S}_n in Proposition 2.4, Lemma 2.5 and Theorem 2.6.

Although Theorem 2.6, along with Lemma 2.2, can go some way towards finding the value of μ , it would be of interest to find a formula for $\mu(\tilde{S}_n)$ (respectively $\mu(\tilde{S}_n)$) in terms of n.

REFERENCES

- 1. P. N. HOFFMAN and J. F. HUMPHREYS, Projective Representations of the Symmetric Groups (Oxford Mathematical Monographs, 1992).
- 2. D. L. Johnson, Minimal permutation representations of finite groups. Amer. J. Math. 93 (1971), 857-866.
 - 3. D. B. Wales, Some projective representations of S_n . J. Algebra 61 (1979), 37-57.

DEPARTMENT OF MATHEMATICS
LIVERPOOL INSTITUTE OF HIGHER EDUCATION
WOOLTON ROAD
LIVERPOOL L16 8ND