
Proceedings of the Edinburgh Mathematical Society (1996) 39, 285-289 (

MINIMAL PERMUTATION REPRESENTATIONS OF THE TWO
DOUBLE COVERS OF Sn

by JOHN BRINKMAN

(Received 6th June 1994)

Let C be a finite group and denote by n(G) (see [2]) the least positive integer m such that G has a faithful
permutation representation in the symmetric group of degree m. This note considers the value of n(G) when G
is a double cover of the symmetric group.

1991 Mathematics subject classification: 20B99.

1. Introduction

We will adhere to the notation of [2] and denote by n(G) the least positive integer m
such that a finite group G can be embedded in Sm, the symmetric group of degree m. It
will also be convenient to distinguish a permutation in Sm by the number of non-trivial
disjoint cycles it contains.

For n ^ 4 , Sn has two proper double covers, non-isomorphic if n / 6 , see [1]. These
have the following standard presentations.

The double cover of Sn which lifts a transposition of Sn to an element of order 4, will
be denoted by Sn, so that §„ is the group with generators z,rur2,...,rn^l and relations

zri=rlz, rf =z for l^i^n— 1,
1)3 = z for l ^ n - 2 ,

for \h — k\ > 1 and 1 ^h,k^n— 1.

Denote by Sn the double cover of Sn which lifts a transposition of Sn to an element of
order 2. Thus Sn is the group with generators z,sl,s2,-.-,sn_l and relations

z 2 = l ,
zSi = stz, sf = 1 for l^i^n— 1,

(SjSj+ , ) 3 = 1 for 1 gy g n - 2,
sksn = zshsk for \h — k\ > 1 and l£h,k£n — l.

Note. Factoring out the central subgroup Z = <l,z> recovers Sn in both cases.
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2.

For computations in Sn we will use the method outlined in a paper by David B.
Wales [3]. In this elements are of the form ±[ffi]...[<xr], where the a, are disjoint
cycles in Sn and + [ff,] are the corresponding lifts in §„.

Definition 2.1. For 1 ^a, _m we define

[a1a2...om]=a1a2...ama1.

W e cal l ± \_aya2...afc] signed cycles in §„. E a c h is a lift of t h e cycles (,ala2...ak) in Sn.

In fact each at corresponds to an element of a subgroup of a Clifford algebra which is
isomorphic to Sn. But the following rules are sufficient to enable the calculation of
products of disjoint signed cycles, which we refer to as signed permutations, in Sn (these
appear as 2.3 and 2.4 in [3]).

l.C [a1a2...am_1]am = (-l)mam[a1a2...am_1].

Example.

[12]( - [234]) = - [12][234] = [21][234] = 2122342
= 21[2]34= -21342= -[2134] = [1342].

As a further example, note that by identifying r, with the positive signed cycle
[j, i + 1], and z with — 1, we recover our presentation for §„.

Hence if we consider the elements of Sn as products of signed cycles, with — 1
replacing the central element z, the following lemma is easily proved by induction.

Lemma 2.2. A positive signed cycle of length k in Sn has either
1. order k if k = 5, 6,7 or 0 modulo 8, or
2. order 2k if k= 1, 2, 3 or 4 modulo 8.

While a negative signed cycle of length k in Sn has either
1. order k ifk = 0, 1, 3 or 6 modulo 8, or
2. order 2k if k = 2, 4, 5 or 1 modulo 8.

Example.
( + [123])3 = [123][123][123] = 123112311231

= 123[1]23[1]231 = 12323231
= 1[23][32]1 = -1[23][23]1
= -12322321 = -123[2]321
= 123321 = 12[3]21 = -1221
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( + [ 1 2 3 ] ) 6 = ( - l ) 2 = l.
While

Proposition 2.3. Let H be a subgroup of §„. If H contains a positive signed cycle of
length k with k = 1, 2, 3 or 4 modulo 8, or a negative signed cycle of length k with k~2, 4,
5 or 7 modulo 8, then — 1 e H.

Proof. Clear by the previous lemma, for if H contains a singed cycle T of length k
satisfying the above conditions, then T* = — 1 e H. D

Proposition 2.4. Let H be a subgroup of §„, n ^ 2. A permutation representation, p say,
from SJH to Sn is not a faithful representation ofSn if — 1 eH.

Proof. First note that p is faithful only if for all g e Sn,

So if — leH, since - 1 is central, then CoreSn(H) ^ {1} and p is not a faithful
representation. •

Ths proposition is sometimes of help in determining the value of p.(Sn).

Example. We consider the value of p.(S4). First note that S4 has permutations whose
cycle types are 1, 2, 22, 3 and 4, thus it follows that S4 has signed permutations of cycle
type 1, 2, 22, 3 and 4.

By the previous proposition we require subgroups of S4 not having positive signed
cycles of length 2, 3 or 4, or negative signed cycles of length 2 or 4. So the only possible
non-trivial subgroups we may consider can contain only positive or negative signed
cycles type 22 and negative signed cycles of type 3. But any signed cycle of the form
±[ab~\[cd~]e§4 squares to give — 1 as

( ± [ab][crf])2 = [ofc][cd ~\[ab][_cd ]

= - 1 .

Hence the only possible non-trivial subgroups which do not contain — 1 are isomorphic
to

H = {1, - [ 1 2 3 ] , - [132]} which has core = {l}.
Thus
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fi(S4)=\St.H | =48/3 = 16.

e.g. S4 is minimally embedded in S16.

Following the notation of D.L. Johnson [2], let p along with {G1,G2,---,Gm} be a
permutation representation of Sn, where each G, is a subgroup of Sn and the degree of p
equals the sum of \§n: G, |. Also p is faithful if CoreSri(p)G,) = {l}. Note that by
Proposition 2.3, if p is a faithful representation of Sm then {G1,G2,...,Gm} must contain
at least one subgroup which does not contain — 1.

Lemma 2.5. Let N be a normal non-trivial subgroup of Sn, n _ 5 . Then either
N = Z = {1, — 1}, or N = An, the double cover of the alternating group.

Proof. Clearly Z and An are normal in Sn. So let N be any other normal subgroup
of Sn. Then NZ/Z is a normal subgroup of SJZ, which is isomorphic to Sn. It follows
that NZ is either Sn, An or Z, so that N is Sn. •

Theorem 2.6. For n ^ 4 , and / / a subgroup of Sn that does not contain — 1,

\Sn.H\

Proof. Clear for n = 4 by the previous example, so consider when n _ 5.
Let Q = {G1,G2,...,Gm} and p be a minimal permutation representation of Sn. Now

suppose that, without any loss of generality, that Gt does not contain - 1 and let M be
a maximal subgroup of Sn which does not contain —1 but does contain G(. Recall by
Proposition 2.4 that we require — 1 £ M for a faithful representation of Sn.

The core of M is the largest normal subgroup of Sn contained in M, thus by the
previous lemma this is {1} as An and Z both contain —1. Hence Sn is isomorphic to a
subgroup of Sj, where y = \§n: M\. Thus the degree of p is equal to

so we have

|Sn: G, | - |S n :M | + £ | S n : G , | = 0
i=2

which as
\Sn: Gi\ = \Sn:M\\M:Gl\

gives

implying that m= 1 and M = Gl. Hence the degree of p is equal to
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|Sn: G t | = |Sn: Af |,

where M is a maximal subgroup of Sn not containing — 1. •

3. jx(§j

By identifying — 1 with z in the presentation for §„ it is again possible to consider
elements of Sn as signed cycles, although different rules are required when considering
the products of these signed cycles. However the following theorem follows readily from
the previous section.

Theorem 3.1. For n^.5, and H a subgroup ofSn that does not contain — 1,

/ i (S n )=min \Sn:H\

Proof. This follows by replacing Sn by §„ in Proposition 2.4, Lemma 2.5 and
Theorem 2.6. •

Although Theorem 2.6, along with Lemma 2.2, can go some way towards finding the
value of n, it would be of interest to find a formula for /i(Sn) (respectively n(Sn)) in terms
of n.
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