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ABSTRACT Recent investigations on the evolution of the inhomogeneities
in the inflationary universe are reviewed. 1) Strict cosmological no
hair theorem does not hold, but the class of inhomogeneous universe
which evolve to homogeneous de Sitter universe is finite, i.e, "weak
cosmic no hair theorem" holds. 2) High density regions in the
inhomogeneous universe evolve to wormholes provided that i) the size of
the regions is greater than the horizon length, but smaller than a
critical length which is the function of the density contrast, and ii)
the density is three times higher than that of surrounding region. 3) If
wormholes are formed copiously in the period of inflation, they evolve
to causally disconnected "child- universes". In this scenario, the
universe we are now observing is one of the locally flat regions.

1. Introduction

About 7 years ago, exponentially expanding universe model was proposed
as a consequence of grand unified theories by Guth(1981), Sato, (198la,
1981b) and Kazanas (1980). Independently of GUTs, Starobinski (1980,
pointed out the universe expand exponentially as a consequence of R
gravity. This model is now well known as Inflationary Universe Model
(Guth, 1981) and almost became a standard model of the very early
universe. The important consequence of the inflationary universe model
is that the flatness and horizon problems which were essential
difficulties in the "Standard Big Bang Model" are solved.

The horizon problem is to question why our universe is so homogeneous
over the horizon. Paradoxically, however, inflation is usually analyzed
in the context of Robertson- Walker metric which is homogeneous and
isotropic metric. Many people criticized that the above consequence is
nothing but the assumption. In order to answer this criticism,
inflationary model should be analyzed for more general universe models
and it must be shown that the universe becomes isotropic and homogeneous
by inflation independently of the initial conditions. The conjecture
that all the inhomogeneous and anisotropic universes with cosmological
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constants( the vacuum energy density) evolve towards the de Sitter
universe is now called cosmic no hair theorem. Until now, many
investigations have been done in order to make clear whether this
theorem is true or not.

2. Cosmic no hair theorem

First investigation of no hair theorem was done for the anisotropic
but homogeneous universe model, because this is the most simple case.
Wald (1983) showed that all the Bianchi types except IX evolve
exponentially towards the de Sitter solution. Extension of the Wald’s
work was carried out by many peoples, Moss and Sahni (1986), Turner and
Widrow (1986), Jensen and Stein-Schabes (1986), Ellis and Rothman
(1986), Martines- Gonzares and Jones (1986), Belinski et al (1986).

For the case of inhomogeneous universes, it is generally very hard to
investigate the evolution, but Starobinski (1983), first found the
solution of the inhomogeneous universe which evolve towards the de
Sitter solution. Recently Barrow and Gron (1986) and Stein-Schabes
(1987) also found solutions which evolve to homogeneous and isotropic
universe.

Recently Jensen and Stein-Schabes (1987) showed that any inhomogeneous
universe will tend towards the de Sitter solution if the following
three conditions are satisfied, i.e., 1) the dominant energy condition,
p> P, 2) the strong energy condition, p+ 3p > 0, and 3) the scalar
spatial curvature is not positive in all the spacetime. The first and
second conditions are very general, but the third condition cannot be
accepted generally because usually density fluctuations contain positive
curvature regions, The justification given by them is, therefore,
limited in very narrow class of cosmological models.

In spite of these efforts, we can show a simple counter example
against the cosmological no hair theorem. That is the existence of the
Schwarzschild - de Sitter solution, which describes a black holes in the
de Sitter universe. The metric is given by

ds? = —=( 1-2M/r —(r/)?2) dt2 + (1-2M/r ~(r/0)2)"1 dar? + 24 20

(1)
where & is the horizon length of the de Sitter universe, which is given
by

% = (81Gp,/3)"1/2 = (n/3)71/2 (2)

where p, is the vacuum energy density and Ais the cosmological constant.
If a black hole exists from the initial of the universe, it never
disappears in the classical level. Furthermore even if no black hole
exists from the initial, we can set an inhomogeneity which evolves
towards a black hole. It is obvious that once black holes were formed,
the universe cannot evolve to homogeneous state in the classical physics
level. We may, therefore, conclude that no hair theorem does not hold
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in general cases. (Another counter example against no hair theorem was
shown by Barrows (1987).)

3. Evolution of inhomogeneous inflationary universe

If no hair theorem does not hold, how can we investigate the evolution
of inhomogeneities in the inflationary universe ? Recently Piran and
Williams (1983) carried out the numerical simulation of the evolution of
inhomogeneous universe by using [3+1] Regge calculus formalism. In their
model, the universe is composed of 5 vertex and 10 edges. They showed
that anisotropies and inhomogeneities are considerably decreased by
inflation, but they have frozen during the inflation. In spite that
this is a pioneering work, the result is not clear and it is obvious
that our universe cannot be described by only 5 vertexes. At present we
may conclude that it is difficult to get reliable result by numerical
simulation.

Then how the fate of the very inhomogeneous universe can be
investigated ? In order to investigate this problem, daring
simplification or idealization is necessary. In the present talk, we
discuss assuming that high density regions are spherical symmetric and
the densities in them are spatially constant.

The evolution of the spacetime structure of the bumpy universe was
investigated in the original inflationary universe model (the first
order phase transition model, Sato, 1981, Guth, 1981) in detail in a
series of papers, Sato et al (1981, 1982), Sato (1981c), Maeda et al,
(1982), Kodama et al (1982). When the amplitude of the density
fluctuations is very large, the evolution of the spacetime structure in
the inflationary universe is essentially same even if the origin of the
fluctuations is classical or quantum, Therefore the result obtained in
the phase transition model essentially describes the evolution of the
spacetime structure in the new inflation model (Linde, 1982, Albrecht
and Steinhardt, 1982) and chaotic inflation model (Linde, 1982) also.
Here let’s discuss the evolution by using phase transition model.

Vo)

Fig.l. A model of the potential of scalar (inflaton) field. The vacuum
energy density of low density state is assumed to be po.
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1) Spacetime structure in a bubble or a low density hollow

As is well known, phase transition proceeds by nucleation of bubbles and
subsequent expansion of bubbles. If we take a phase transition model
shown in Fig. 1, a bubble also contains the vacuum energy density, p 5.
We can consider that these bubbles correspond to low density regions in
the new inflation model and chaotic inflation model.

By virtue of generalized Birkoff theorem, the metric in a spherical
symmetric bubble (a hollow) must be the Schwarzschild- de Sitter
solution (Eq. 1), but with M= 0, i. e., the metric is the de Sitter
metric with the cosmological constant A, = 8mGpy, which is smaller than
that of the outer high density region.

2) Spacetime structure of a high density region surrounded by bubbles

In the phase transition model, there exist infinite size networks of the
false vacuum (the high energy state) in the early stage of the phase
transition. However, in the cause of the phase transition, the high
density vacuum regions (py) are eventually divided into pieces and
surrounded by bubbles. This also occurs in the new inflationary universe
model and the chaotic inflation model with inhomogeneities in the cause
of rolling down of the scalar field.

In order to make clear the metric, let’s consider a following
simplified model: At t= t;, infinite number of bubbles are created on
the sphere of radius r= ry. Then the universe is divided into three
regions as shown in Fig. 2. region A is the inner high density (pz)
vacuum region., The metric in this region is given by usual de Sitter
metric, . The region B is the shell like low density vacuum region
(bubble region), and the inner surface W_ and outer surface W, of this
region are expanding at light velocity. The metric is the
Schwarzschild- de Sitter metric (Eq. 1) with the mass M= 4ﬂr03 01/3 and
the cosmological constant A, = 8mGpy. The region C is the outer high
density vacuum region, and the metric is described by usual de Sitter
metric.

Fig. 2. A simplified model for high density vacuum region A, which is
surrounded by low density vacuum region (bubble region) B.
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Table I.
]
1<01/02<3 3<01/02
rg < & BLACK HOLE
Case I Case I
« WORMHOLE
2<rg<r
Case Ila Case IIb
* DE SITTER LIKE SPACE
r < ro
Case III Case ITI
r-0
Fig. 3. The conformal diagrgm for the Schwarzschi;d—de Sitter geometry.

(g): Case °§gr0 <r, (b): Caseof rn=r , (c): Case of ry >
r , where r is the critical radius defined by Eq. (4). The path
of the walls, W_ and W, are also shown (see Fig. 1 and Table I).
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The final spacetime structure depends on two parameters, the initial

radius ry and the density contrast 91/92° The result is summarized in
Table I.

As shown in Table I, black holes are formed when the initial radius rg
is smaller than the horizon length of the de Sitter universe,

% = (81Gp;/3)71/2, (3

irrespective to the density contrast p;/p,.

The most interesting case is that wormhoie structure is formed. As
shown in Table I, wormholes are produced when the density contrast pl/pz
is greater than three and also the initial radius rpy is greater than the
horizon length % but smaller than the critical radius which is defined
as

r* = 3712 (2x2/(x2-1))1/3 (4)

where x= pl/pz.

In Fig. 4, a space like hypersurface with constant conformal time is
shown schematically. As shown in this figure, the inner region A
remains as an ever expanding de Sitter like sub- universe connected
with the outer universe C by an Einstein Rosen (wormhole) bridge B.
Because the region A is causally disconnected from the original
universe, we can call the region A as "a child universe" and the
original universe C as " mother universe" (Sato et al, 1981, 1982).

Fig. 4 A schematic picture of wormhole created from the large amplitude
inhomogeneities. Because the region A is causally disconnected from the
original universe, we can call the region A as "a child universe" and
the original universe C as " mother universe".
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5. Fate of inhomogeneous inflationary universe

In the preceding section, we showed that trapped high density regions
evolve to wormholes by assuming the spatial structures are spherical
symmetric. In reality, the high density regions are highly asymmetric
and new bubbles are nucleated (in the phase transition scenario) or
low density regions are formed (in the new or chaotic inflation
scenarios) therein. However the essential feature of the above model is
still applicable to the actual situation. The very reason why black
holes and wormholes are created is that the high density regions are
trapped by low density vacuum. In case the relative size of the a
trapped domain to the surrounding low density region is small when it is
formed, the domain wall continues to contract at light velocity and the
energy released by the rolling over of the scalar field may well be
concentrated in a very small region. Hence a black hole is generally
created regardless of the initial shape of the high density domain. On
the other hand in case the domain size is larger than the horizon
length,?, the domain wall continues to expand to infinity and
consequently the universe attain to have two asymptotic (flat) regions.
This anomalous structure occurs independent of the domain shapg and
strongly indicates the general formation of wormhole-bridge structure.

Now we can speculate the evolution of the spacetime structure of the
very inhomogeneous universe:

i) If wormholes, which are produced from the inhomogeneities,
evapolate as black holes do, the Einstein- Rosen bridge disappears and
child universes will become entirely spatially disconnected. Here "
spatially disconnected" means that there is a connected spacelike slice %
of the universe such that it does not intersect with the causal boundary
of the universe and its causal future, J (z) is composed of
topologically disconnected components.

ii) The child- universes also expand exponentially, and phase
transition (in the phase transition scenario) or inhomogeneous rolling
over of scalar field (in the new and chaotic inflation scenarios)
proceeds also therein. As the results grand —child universe are formed.
This sequential production of universes may continue on and on.

Now we easy arrive at an idea of multi-production of the universe;
although the creator might have made a unitary universe, the universe
itself is capable of bearing child- universes, which are again capable
of bearing universes and so on (Sato, 1981, Sato et al. 1982)

Recently, Blau, Guendelman and Guth (1987) and Farhi and Guth (1987)
discussed the creation of wormholes, but essential scenario is the same
one of previous investigation (Sato et al, 1981, Kodama et al 1981,
Maeda et al, 1982, Sato et al 1982).

Recently Linde (1986) proposed a interesting scenario about the
spacetime structure of chaotic inflationary universe; the eternally
existing self-reproducing chaotic inflationary universe. He claims that
the scalar field not only roll down but also roll up due to the quantum
d?nfity fluctuations. Consider one domain with the vacuum energy density
D\), After a Hubble expansion time, the domain is divided into many
domains by quantum density fluctuations. Then the density of a high
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density domain would be given by p(i+D) _ p(i) + §, which is higher than
that of the original domain, By repeating this process, the scalar field
not only roll down but also roll up. He claims by applying the creation
mechanism of child universes which were shown by Sato et al, 1981 and
1982) that child universes are produced from the high density regions
and child universes also have the same generic code as their mother
universe.

6. Summary

i) In the present talk, we showed that strict no hair theorem does not
hold because there is a simple counter example against this theorem, the
existence of the Schwarzschild-de Sitter solution. On the other hand,
however, there are some inhomogeneous solutions which evolve to
homogeneous isotropic universe. This suggestes that the class of these
solutions is not measure zero. In order to make clear the condition for
this "weak no hair theorem" to hold, more careful investigation is
necessary.

ii) The high density regions in the homogeneous universe evolve to
wormholes if 1) the size of the regions is greater than the horizon
length but smaller than a critical radius r (Eq. 4), and 2) the
density of the region is at least three times higher than that of
surrounding regions.

iji) If wormholes are formed copiously in the period of inflation, we
can arrive ideas of multi-production of universes (Sato et al 1981,1982)
or eternally existing self- reproducing universe (Linde, 1986). In these
scenario, the universe we are now observing is one of the locally flat
regions.
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