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On the Chow Groups of Supersingular
Varieties
Najmuddin Fakhruddin

Abstract. We compute the rational Chow groups of supersingular abelian varieties and some other
related varieties, such as supersingular Fermat varieties and supersingular K3 surfaces. These compu-
tations are concordant with the conjectural relationship, for a smooth projective variety, between the
structure of Chow groups and the coniveau filtration on the cohomology.

0 Introduction

It is well known that the structure of the Chow groups of a smooth projective va-
riety X over an algebraically closed field is intimately related to the coniveau filtra-
tion on its cohomology [8]; for example, the Mumford-Roitman theorem says that
if N1Hi(X) 6= Hi(X) for some i > 1 then the group of zero cycles modulo ratio-
nal equivalence is infinite dimensional (over a univeral domain). Over the complex
numbers the coniveau filtration is reflected in the Hodge structure on the singular
cohomology of X, and many results have been obtained which show that if the Chow
groups of a variety are “simple”, for example finite dimensional or representable, then
the Hodge structure must also be “simple”, (op. cit. and the references therein). How-
ever, whether or not the converse is true is still unknown, the prototypical question
being Bloch’s conjecture for surfaces: pg = 0⇒ CH0(X)deg 0 is representable.

In positive characteristics, if one thinks of the slopes of the crystalline cohomology
as providing a (partial) substitute for the Hodge numbers, then the cohomology is
simplest when X is a supersingular variety (i.e., all the Newton polygons have con-
stant slope). In this case the Tate conjecture implies that all the even dimension co-
homology groups are generated by the classes of algebraic cycles; as a generalisation
of Bloch’s conjecture for surfaces it is reasonable to expect that all the Chow groups
are finite dimensional.

In this note we (almost) determine the structure of the Chow groups of super-
singular abelian varieties and some other related varieties, over algebraically closed
fields k of characteristic p > 0. For such varieties we show that for each d there exists
an abelian variety Abd(X) which is an algebraic representative for Ad(X) (see [11]),
where Ad(X) ⊂ CHd(X) is the subgroup of cycles which are algebraically equivalent
to zero. Moreover, we show that dim Abd(X) = dim H2d−1

et (X,Q l)/2, l 6= p, and the
kernel of the (surjective) map Ad(X)→ Abd(X)(k) is finite. As a consequence of our
results it follows that the conjecture of Beauville [2] on the eigenvalues occurring in
the decomposition of the Chow groups are true for supersingular abelian varieties.
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Our method is essentially the Bloch-Srinvas method [5] in reverse—for a super-
singular abelian variety X we obtain an explicit decomposition of the diagonal in
X × X and then use it to obtain information about the Chow groups. In fact, our
method applies to any generalised cohomology theory which is functorial for the
action of correspondences. Roughly speaking, we reduce the computation of the
generalised cohomology groups of X to those of a supersingular elliptic curve. For
example, we show that if k is the algebraic closure of a finite field then the higher K
groups of X are torsion. Using correspondences we extend our results to varieties
which are products of supersingular curves of any genus and supersingular Fermat
varieties. The results for zero cycles were obtained earlier by Maruyama and Suwa
[10].

In the last section we prove Bloch’s conjecture for supersingular K3 surfaces by an
extension of the method of Bloch, Kas and Lieberman [4].
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the 1995–96 academic year. I would like to thank P. Deligne, M. Nori, V. Srinivas and
B. Totaro for useful comments and the referee for the present statement of Proposi-
tion 1.

1

Let X be an abelian variety of dimension g. Beauville [2] has constructed a canonical
decomposition

(1) CHd(X)Q =
s=d⊕

s=d−g

CHd
s (X)

where CHd
s (X) is the subspace of CHd(X)Q on which m∗ (resp. m∗) acts by multipli-

cation by m2d−s (resp. m2g−2d+s).
Let Bd(X) be the subspace of CHd

0 (X) generated by the classes of abelian subvari-
eties of X of codimension d.

Lemma 1
⊕

d Bd(X) is a subring of CH·(X)Q .

Proof This follows from the fact that if two abelian subvarieties of an abelian variety
do not meet properly then their intersection is 0 in the Chow ring. Note that since
we are working with Q-coefficients, the class of a translate of an abelian subvariety
by a torsion point also lies in

⊕
d Bd(X).

Now suppose X is a supersingular abelian variety over an algebraically closed field
of characteristic p. By a theorem of Oort [14], X is isogenous to a product of super-
singular elliptic curves. Since all our results will be invariant under isogeny, without
loss of generality we may assume that X = Eg where E is a supersingular elliptic
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curve. Since End(E) is of rank 4, it follows that B1(X) = CH1
0 (X) and the map

φd : B1(X)⊗d → Bd(X) induced by the intersection product is surjective.
Let l 6= p be a prime. We fix an isomorphism Q l(1) ∼= Q l and from now on

ignore Tate twists.

Lemma 2 The cycle class map CHd(X) → H2d
et (X,Q l) induces an isomorphism

Bd(X)⊗Q l
∼=−→ H2d

et (X,Q l).

Proof The proof is by induction on d. For d = 1 we have

(2) B1(X)⊗Q l = CH1
0 (X)⊗Q l

∼=−→ H2
et (X,Q l)

because E is supersingular.
Let G be the group of units of norm 1 of End(X)Q , regarded as an algebraic group

over Q . It is a form of SL2g and acts on
⊕

d Bd(X) as follows: Given γ ∈ G(Q)
there exists n ∈ Z such that n · γ−1 is an isogeny. We let γ act on Bd(X) by 1/n2d ·
(n·γ−1)∗. It is easy to see that this gives a well defined action and that the intersection
product

⊕
d Bd(X) ⊗

⊕
d Bd(X) →

⊕
d Bd(X) is G equivariant. By using the well

known description of the Neron-Severi group in terms of the endomorphism ring
and the remark preceding the lemma, it follows that the representation is algebraic.
Consideration of the action of GQ l

on H1
et (X,Q l) and the isomorphism (2) show that

Bd(X) is an irreducible G module with highest weight λ2g−2 (in the usual notation
for representations of SLn).

Now consider the map ψ2 : Sym2 B1(X) → B2(X) induced by the intersection
product. Sym2 B1(X) is the sum of two absolutely irreducible representations of G
with highest weights λ2g−4 and 2λ2g−2. ψ2 is not injective because [Y ] · [Y ] = 0,
where Y is any abelian subvariety of codimension one of X. It follows that the map
B2(X)⊗Q l → H4(X,Q l) is an isomorphism.

Now suppose d ≥ 2. The map φd+1 can be factored as

B1(X)⊗d+1 Id⊗φd−−−→ B1(X)⊗ Bd(X) −→ Bd+1(X)

and also as

B1(X)⊗d+1 φd⊗Id−−−→ Bd(X)⊗ B1(X) −→ Bd+1(X).

By induction, Bd(X) is an absolutely irreducible representation of G with highest
weight λ2g−2d, so there exists a canonical G equivariant section σd of φd. By Pieri’s
formula (see for example [6]), Bd(X) ⊗ B1(X) and B1(X) ⊗ Bd(X) are sums of three
absolutely irreducible representations of G. It is then easy to see that (Id⊗φd) ◦
(σd ⊗ Id)

(
Bd(X)⊗ B1(X)

)
consists of a single absolutely irreducible representation.

This shows that Bd+1(X) is also absolutely irreducible, and hence Bd+1(X) ⊗ Q l
∼=−→

H2(d+1)(X,Q l).

The next lemma gives a decomposition of the diagonal in X × X which is the key
to the proof of Proposition 1.
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Lemma 3 Let g > 1. For each α ∈ Bg(X × X) there exist g-dimensional abelian
subvarieties Yk of X × X such that α =

∑
k ck[Yk] for some ck ∈ Q , and for each k at

least one of the projections from X × X to X restricted to Yk is not dominant.

Proof Consider the class β of α in H2g(X × X,Q l). By the Künneth formula we
may write β as a sum of βi ’s, with each βi =

⊗2g
j=1 δi, j , where δi, j is of pure degree

in H·(E,Q l) with
∑2g

j=1 deg(δi, j) = 2g. Note that for a given i there must be an even
number of j’s with δi, j = 1.

Fix i. Since we must have
∑g

j=1 deg(δi, j) ≥ g or
∑2g

j=g+1 deg(δi, j) ≥ g, up to
switching the factors of X × X and permutation of the factors of X = Eg , we may
assume that there exist non-negative integers l0, l1, l2 with

(a) l0 + l1 + l2 = g,
(b) l1 + 2l2 ≥ g,

and such that the first l0 δ’s are of degree 0, the next l1 δ’s are of degree 1 and the last
l2 δ’s are of degree 2. Now H2(E × E,Q l) is generated by classes of codimension 1
abelian subvarieties, so by pairing the j’s in {1, 2, . . . , 2g} with δi, j = 1 in such a way
that there is at most one pair { j1, j2}with j1 ≤ g < j2, we see that we may write each
βi as a linear combination of classes of abelian subvarieties of X × X, such that the
image under the projection to the first factor of each such subvariety is of dimension
at most l0 + (l1 + 1)/2. This is less than g because of conditions (a) and (b).

By taking the sum over all i’s we obtain a similar expression for β, and by applying
the previous lemma, for α as well. Note that in the expressions for the βi ’s we may
need to use Q l coefficients, but we may choose the coefficients ck in the expression for
α to be in Q . This is because a system of linear equations over a field has a solution
over an extension field if and only if it has a solution over the base field.

The following proposition implies that the conjectures of Beauville [2] and Murre
[12, Conjectures B and D] are true for supersingular abelian varieties.

Proposition 1 CH·(X)Q is generated as a module over B·(X) by 1 and Pic0(X). Con-
sequently CHd

s (X) = 0 if s 6= 0, 1 and CHd
0 (X) = Bd(X).

For Y any abelian variety, let C ·(Y ) be the B·(Y ) submodule of CH·(Y )Q generated
by 1 and Pic0(Y ). If f : Z → Y is a homomorphism of abelian varieties then it follows
from the definitions that f ∗

(
C ·(Y )

)
⊂ C ·(Z). If f is also a finite morphism, then

using Poincaré’s complete reducibility theorem one easily sees that f∗
(

C ·(Z)
)
⊂

C ·(Y ).
We now proceed by induction on g, the case g = 1 being trivial. Assume g > 1

and apply the previous lemma with α = [∆], the class of the diagonal. An abelian
subvariety of a supersingular abelian variety is also supersingular, so by the condition
on the Yk’s we see that CH·(X) is generated by the images of the following two types
of maps

(a) ι∗ : CH·(Z)Q → CH·(X)Q , where ι is the inclusion of a proper abelian subvari-
ety Z of X and
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(b) g∗ ◦ f ∗ : CH·(Z)Q → CH·(X)Q where Z is a supersingular abelian variety with
dim(Z) < g, Y is a supersingular abelian variety with dim(Y ) = g, f : Y → Z is
a homomorphism and g : Y → X is an isogeny.

The main claim of the proposition follows by induction and the remarks of the previ-
ous paragraph. The second statement follows from the multiplicativity of Beauville’s
decomposition and the fact that CH1

1 (X) = Pic0(X)Q .

Remark 1 If we work with CHd(X) instead of CHd(X)Q then Lemma 3 gives us
a decomposition of n · [∆] for some positive integer n. The proof of Proposition 1
then shows that for each d, 1 ≤ d ≤ g, there exist finitely many abelian subvari-
eties Xi of X of dimension g − d + 1, such that the cokernel of the pushforward map⊕

i CH1(Xi)→ CHd(X) is killed by some positive integer. Since the cokernels of the
restriction maps CH1(X) → CH1(Xi) are also killed by some positive integer, it fol-
lows that the quotient of the Chow ring modulo the subring generated by divisors, a
fortiori the Griffiths group of any codimension, is also killed by some positive integer.

Recall (cf. [11, p. 223]) that if X is a smooth projective variety over an algebraically
closed field k, a homomorphism ρ : Ad(X) → Y (k), where Y is an abelian variety
over k, is said to be regular if for any smooth pointed variety (T, t0) over k and η ∈
CHd(T × X) the map T(k) → Y (k), given by t 7→ ρ(ηt − ηt0 ) for all t ∈ T(k), is
induced by a morphism of varieties T → Y .

Theorem 1 Let X be a supersingular abelian variety over an algebraically closed field
k of characteristic p. For each d, 1 ≤ d ≤ dim X there exists an abelian variety Abd(X)
and a surjective homomorphism νd : Ad(X)→ Abd(X)(k) which is universal for regular
maps from Ad(X) to abelian varieties. Furthermore dim Abd(X) = dim H2d−1

et (X,Q l),
l 6= p, and the kernel of νd is finite.

Proof To show that Abd(X) exists we use the following result of H. Saito (see [16]
or [11]): Abd(X) exists if there exists a constant c such that for every surjective reg-
ular homomorphism ρ : Ad(X) → Y (k), Y an abelian variety, we have dim Y ≤ c.
Remark 1 immediately shows that this is true in our case. For, if ρ : Ad(X)→ Y (k) is
any surjective regular homomophism, then by composition of the pushforward maps
with ρwe get a surjective homomorphism

⊕
i Pic0(Xi)(k)→ Y (k). Since ρ is regular,

this must be induced from a morphism
∏

i Pic0(Xi) → Y . Thus we may take c to be
ni · (g − d + 1).

Let S1(X) be the subgroup of CH1(X) consisting of the symmetric divisors and let
Sd(X) be the image of Symd S1(X) in CHd(X) under the intersection product. Note
that Sd(X) is a finitely generated abelian group of rank equal to dim CHd

0 (X). Let

Sd(X) be Sd(X) modulo torsion. Since k is algebraically closed Pic0(X)(k) is divisible,

hence the intersection product induces a well defined homomorphism πd : Sd−1(X)⊗
Pic0(X)(k) → Ad(X) which is surjective by Proposition 1 and the remark following

it (recall that Ad(X) is divisible). Note that Cd(X) := Sd−1(X) ⊗ Pic0(X) has a nat-
ural structure of an abelian variety and πd induces a surjective morphism Cd(X) →
Abd(X). Any isogeny γ of X induces an isogeny γ∗ of Cd(X) by applying γ∗ to both
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factors, and this is compatible via πd with γ∗ on Ad(X). Then this also induces an
action of GQ l

on Wd := H1
et

(
Cd(X),Q l

)
.

Let β be the class of E × E × · · · × E × 0 × · · · × 0 ⊂ X in Sd−1(X), where
we have g − d + 1 nonzero factors. Let F ⊂ Pic0(X) be the elliptic curve obtained
by pullback via the projection from X to the last factor. Then β ⊗ F is an abelian
subvariety of Cd(X) and it is clear that πd

(
β ⊗ F(k)

)
= 0. Since πd is compatible

with the action of isogenies of X, it follows that if Z is the abelian subvariety of Cd(X)
generated by γ∗(F), where γ runs over all isogenies of X, then πd

(
Z(k)

)
= 0. Z is

clearly preserved by all isogenies as above, hence Vd, the kernel of the restriction map
Wd → H1

et (Z,Q l), is invariant under the action of GQ l
. By the universal property

of Abd(X), isogenies of X also induce isogenies of Abd(X), so we also get an action
of GQ l

on H1
et

(
Abd(X),Q l

)
such that (νd ◦ πd)∗ : H1

et

(
Abd(X),Q l

)
→ Wd(X) is a

map of GQ l
modules. As a GQ l

module Wd is the tensor product ot two irreducible
modules with highest weights λ1 and λ2d−2. Using Pieri’s formula again, one sees
that Wd is the direct sum of two absolutely irreducible representations with highest
weights λ2d−1 and λ1 + λ2d−2. This implies that Vd absolutely irreducible. Clearly
(νd ◦ πd)∗ is an injection on H1 and so it follows that H1

et

(
Abd(X),Q l

)
→ Vd is an

isomorphism (it is obvious that Abd(X) 6= 0, 1 ≤ d ≤ g). Thus we see that the
induced map Cd(X)/Z → Abd(X) is an isogeny and hence the kernel of νd must be
finite.

Since Abg(X) is equal to X, we see that Vg is isomorphic to the representation with
highest weight λ2g−1. This implies that for all d, Vd is isomorphic to the representa-
tion with highest weight λ2d−1, the reason being that the representation with highest
weight λ2g−1 does not occur as a component of the tensor product of the representa-
tions with highest weights λ1 + λ2d−2 and λ2g−2d.

Remark 2 It seems likely that the kernel of νd is always 0. Our proof does show that
it has no p-torsion.

2

It will be convenient to use the language of motives in order to formulate a generali-
sation of the results of the previous section. We shall use the paper of Manin [9] as a
reference; the intersection theory that we use is the Chow theory with Q-coefficients.

Definition 1 A smooth projective variety X over an algebraically closed field k is
called strongly supersingular if the motive of X, X̃ is a direct summand of the motive
of a supersingular abelian variety.

Of course, strongly supersingular varieties are supersingular. It would be interest-
ing to know if the converse is true. Examples of such varieties include products of
supersingular curves of arbitrary genus [9] and supersingular Fermat varieties ([17],
along with the results in [9]). Theorem 1 can be extended to all strongly supersingu-
lar varieties, i.e., we have:

https://doi.org/10.4153/CMB-2002-023-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2002-023-5


210 Najmuddin Fakhruddin

Theorem 2 Let X be a strongly supersingular variety over an algebraically closed field
k of characteristic p. For each d, 1 ≤ d ≤ dim X, there exists an abelian variety Abd(X)
and a surjective homomorphism νd : Ad(X)→ Abd(X)(k) which is universal for regular
maps from Ad(X) to abelian varieties. Furthermore dim Abd(X) = dim H2d−1

et (X,Q l),
l 6= p, and the kernel of νd is finite.

Proof The existence of Abd(X) can be seen as follows: If M is a supersingular abelian
variety such that X̃ is a direct summand of M̃ then we get a surjective map from
Cd(M)(k) (cf. proof of Theorem 1) to Ad(X). We then apply the theorem of H. Saito
[16].

If we had used motives with integral coefficients in our definition of strongly su-
persingular, it would be immediate from Theorem 1 that the kernel of νd was finite.
However, by “clearing denominators” we may assume in any case that we have inte-
gral correspondences from X to M and M to X which “almost” give a splitting. Since
Ad(X) is divisible, this does not cause any problems. We leave the details to the reader.

To show that dim Abd(X) = dim H2d−1
et (X,Q l), l 6= p, we shall need to use the

Bloch map λd : CHd(X)(l)→ H2d−1
et (X,Ql/Zl) ([3]; we are ignoring twists). N. Suwa

[19] has shown that if X is a supersingular abelian variety then λd is surjective for all
d, l 6= p, and from the results of Section 1 it follows that the kernel of λd is killed
by some power of l. Since λd is functorial for the action of correspondences [3], it
follows that the same is true for any strongly supersingular variety. The fact that the
kernel of νd is finite completes the proof.

Let K j(X) denote the j-th Quillen K-theory of X and K j the associated Zariski
sheaf. The following theorem improves some of the results of Soulé [18] in the special
case of strongly supersingular varieties.

Theorem 3 Let X be a strongly supersingular variety over the algebraic closure of a
finite field. Then K j(X) and Hr(X,Ks) are torsion for all j > 0 and r 6= s.

Proof The Brown-Gersten-Quillen spectral sequence shows that it is enough to
prove the result for Hr(X,Ks). It has been proved by Gillet [7, Appendix] that the
Hr(X,Ks)’s form part of a generalised cohomology theory and are functorial for the
action of correspondences. By the definition of strongly supersingular, it follows that
it is enough to prove the result for supersingular abelian varieties. We then proceed
as in the proof of Proposition 1; so by descending induction on the dimension of X
we are reduced to the case of a supersingular elliptic curve. Since the theorem is in
fact known to hold for all curves (cf. [18]), we are done.

3

Let X be a K3 surface with rank NS(X) = 22, over an algebraically closed field k of
characteristic p and let σ0(X) denote the Artin invariant of X [1]. It is known that X
has an elliptic pencil and if σ0(X) < 10 then X has an elliptic pencil with a section.
We shall use a bootstrapped version of the method of Bloch, Kas and Lieberman [4]
to prove that CH0(X) = Z if p ≥ 5. Since Rudakov and Shafarevich have proved
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that if p = 2 then X is unirational, the result is also true for p = 2. The reader may
consult the article [15] for a nice survey of the known results concerning K3 surfaces
in characteristic p > 0.

For an elliptic fibration π : X → P1 we denote by J(X) → P1 the corresponding
Jacobian fibration.

Lemma 4 Let π : X → P1 be an elliptic fibration with X a supersingular K3 surface
which has a section σ. Then there exists a scheme X and a smooth proper morphism
X → Spec k[[t]] such that the special fibre is isomorphic to X, the elliptic pencil lifts to
X, J(Xk((t)))

∼= Xk((t)) and σ0( J(Xk((t))) = σ0(X) + 1.

Proof Let k1 be an algbraically closed field of transcendence degree one over k. It
follows from Artin’s computation in [1] of the Brauer group of an elliptic supersingu-
lar K3 surface that the natural map Br(X) → Br(Xk1 ) is not surjective. Since Br(X)
is canonically isomorphic to the Shafarevich-Tate group of the generic fibre of π it
follows that there exists a supersingular K3 surface Y over k1 and an elliptic pencil
Y → P1

k1
such that J(Y ) ∼= Xk1 and Y is not isomorphic to the base change of a sur-

face defined over k. By choosing a suitable subfield of k1, finitely generated over k, we
obtain a family of elliptic surfaces Y→ C ×P1 → C , where C is a smooth connected
curve over k, with geometric generic fibre isomorphic to Y and J(Yc) ∼= J(X) for
all closed points c of C . By twisting the family with the negative of the class in the
Shafarevich-Tate group represented by some closed fibre if necessary, we may assume
that there exists a closed point o in C such that Yo

∼= X has an elliptic fibration. Let

X be the restriction of the family to Spec ÔC,o
∼= Spec k[[t]].

It remains to show that σ0

(
J(Xk((t)))

)
= σ0(X) + 1. By construction, Xk((t)) corre-

sponds to a nontrivial element of Br(Xk((t))) and hence the section σ does not lift to

Xk((t)). Thus σ0

(
J(Xk((t)))

)
≥ σ0(X) + 1. To show equality it suffices to show that all

D in Pic(X), such that p divides D·E, lift to Pic(Xk((t))), where E is the class of a closed
fibre of π. It is known that p · D lifts for all D in Pic(X) (see [1]), hence in particular
p · [σ(P1)] lifts. Using the fact that J(Xk((t)))

∼= Xk((t)), it follows from Tsen’s theorem

that for all D in Pic(X) such that p divides D ·E there exists D̃ in Pic(Xk((t))) such that

the specialization of D̃ and D are rationally equivalent when restricted to the generic
fibre of π. This completes the proof since it is clear by construction that all vertical
divisors lift.

Theorem 4 Let X be a K3 surface with ρ = 22 over an algebraically closed field k of
characteristic p ≥ 5. Then CH0(X) = Z.

Proof Before proving the theorem we first recall a result of Ogus [13]: Let N be a
K3-lattice with discriminant−p20. Let SN be the moduli space of N-marked K3 sur-
faces and let MN be the corresponding period space. Ogus has proved that the period
map SN → MN is étale and surjective and all N-marked K3 surfaces corresponding
to points in a geometric fibre are isomorphic as (unmarked) surfaces.

Let X1 be the Kummer surface associated to a product of supersingular elliptic
curves over k. It is known that σ0(X1) = 1. Applying the lemma inductively to X1 we
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obtain surfaces Xi , 1 < i ≤ 10, each of which carries an elliptic pencil with the prop-
erty that J(Xi) ∼= Xi−1, all these surfaces being defined over some algebraically closed
extension field K of k. By construction, Xi can be specialized to Xi−1, hence under
the period map the moduli point of X10 (with any N-marking) maps to the generic
point of MN (over k). Shioda has proved that X1 is unirational, hence CH0(X1L) = Z
for any algebraically closed extension field L of k. By repeated application of Proposi-
tion 4 of [4], it follows that CH0(X10) = Z. Using the theorem of Ogus, we conclude
the proof by specialization.

References
[1] M. Artin, Supersingular K3 surfaces. Ann. Sci. École Norm. Sup. 7(1974), 543–568.
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