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SOME DIFFERENTIAL EQUATIONS RELATED TO 
ITERATION THEORY 

JÂNOS ACZÉL AND DETLEF GRONAU 

0. Introduction. In connection with the translation equation 

(T) F(F(x, s), t) = F(x, s + t) 

three differential equations arise together with a differential initial 
condition. They are satisfied by the differentiable solutions of (T) and of 
the initial condition 

(I) F(x, 0) = x. 

These equations are attributed in [9] to E. Jabotinsky who seems to have 
been the first who treated these equations in connection with the theory of 
analytic iteration (see [6], cf. [7, 8], but see also [1, 2, 3] ). 

Gronau (see [9] ) asked whether, conversely, it is true that all solutions 
of each of these "Jabotinsky differential equations", possibly with some 
further initial conditions added, are also solutions of the translation 
equation. In this paper we give counter examples but also partial positive 
answers to these questions. First we show how one obtains the Jabotinsky 
equations from (T) and (I). 

We will do this for Banach space valued functions F(x, t) where the 
"time" variable t varies in an open or half open real interval or an open 
connected complex set containing the zero. This of course contains the 
classical one dimensional case. 

PROPOSITION 0. Let X be a real or complex Banach space and I be a real 
interval {open or half closed) or an open connected set of the complex plane 
such that 0 is contained in / , further U, U' Q X open neighborhoods of the 
zero O in X, U Q U and 

F: U X I-+X 

a function satisfying F(U\ I) Q U, 

(I) F(x, 0) = x 

and 

(T) F(F(x, s), t) = F(x, s + t) 
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696 J. ACZÉL AND D. GRONAU 

whenever both sides of the equation (T) are defined. If F is differ entiable with 
respect to both variables x and t, then it satisfies the three "Jabotinsky 
equations" 

dF(x, t) dF(x, t) 
0 ) ^ = — v G(x) 

ox 
dt 

dF{x, 0 
dt 

dF(x, 0 

(2) Y ' = G(F(x,t)) 

( 3 ) v » -G(x) = G(F(x,t)) 
OX 

at least for all x G [/' and t e J, where for each of the three equations the 
differential initial condition 

(4) G(x) = 
dt 

holds. 

t=o 

Here (dF(x, t)/dt) is (as usual) an element of the Banach space X for 
each (x, t) e U X I and (dF(x, t)/dx) is a linear map from X to X 
for each (x, t) e U X I. The • in (1) and (3) denotes the composition 
of the linear mapping (dF(x, t)/dx) with G. In the case where X is R" 
o r e 

F(x, t) = (Ft(xl9 ...,xn9t) )/ = !,...,„ 

is a column vector, (dF(x, t)/dx) is the Jacobian matrix 

dF(x, t) _ ldFt{x9 t)\ 
dx \ dx: )u=h...,n 

J 

and • in (1) and (3) means (matrix) multiplication. 

Proof. Differentiating equation (T) with respect to s, then putting s = 0 
and using (I) yields (1) with (4). The same procedure but interchanging 
s and t in (T) (without using (I) ) leads to (2) with (4). Equation (3) is a 
consequence of (1) and (2). 

1. Real solutions of the Jabotinsky equations when G is nowhere 0. We 
give a negative answer to the question raised in [9], whether all solutions of 
the equations (1), (2) or (3) together with the condition (or notation, 
depending on one's point of view) (4) are also solutions of the translation 
equation (T). This will be done by the following propositions which at 
the same time yield (under some restrictions on G, in particular that it is 
nowhere 0 o n [ / ) a general representation of the solutions of these equa
tions in the real one dimensional case. In this section U and / are real 
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ITERATION THEORY 697 

intervals containing zero, U is open and / may be closed on one side. 
The composition • in equations (1) and (3) in this case is simply the 
multiplication. 

1. Solutions of equation (1) (under the assumption that F is differ-
entiable, G is continuous and G(x) ¥* 0 on U). 

(a) General solution of 

dF(x, t) dFix^ 
(1) T- = 7 G(X). 

at ox 
Define / by 

(5) f(x) = Wfl = G(xyi 
ax 

and H by 

H(x, t) = f(x) + / 

for x G U and t e / . So one can see that equation (1) is equivalent to 

\dF dF\ 

dx dt 

dH dH 

dx dt 

0 

which means that the functions F and H are functionally dependent. Since 
F is differentiable, H is continuously differentiable and 

— = 1 # 0, 
dt 

furthermore U X / is a region (possibly with a boundary line added to 
which the result extends by continuity), there exists a differentiable 
function <p (see [5] ) such that 

(6) F(x, t) = <p(f(x) + 0 . 

Conversely, every function F of the form (6), where <p is an arbitrary 
differentiable function a n d / satisfies (5), is a solution of (1). 

(b) Solutions of (I) satisfying the differential initial condition 

dF(x, 0 | 
t=0 

(4) G(x) = 
dx 

(equivalently, solutions of (1) where G is defined by (4) ). 
From the representation (6) 

dF(x, t) 

dt 
<Pf(f(x) + 0 
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698 J. ACZÉL AND D. GRONAU 

follows. Therefore equation (4) implies 

G(x) = „'</(*) ) 
and, by (5), 

1 = v'(f(x))f'(x). 

So we get f(x) ¥= 0, / invertible on one hand, on the other 

<f(f(x) ) = x + b with b e R, 

hence <p(y) = f~l(y) 4- b and 

(7) F(x, t) = f-l(f(x) + t) + b. 

Conversely, every function F of the form (7), where / is given by (5) and b 
is an arbitrary constant, is a solution of (1) and (4). 

(c) Solutions of (I) with the initial condition 

(I) F(x, 0) = x. 

From (I) and (6) 

<PO0 =r\y) 

follows, hence 

(8) F(x, t) = f'\f(x) + t) 

which is a special case of (7). Conversely, every function (8), without any 
condition on /excep t differentiability and invertibility, is a solution of (1) 
and (I) with (4). 

(d) PROPOSITION l.IfG: U—>Ris continuous and G(x) ¥> 0 on U, then 
the general differentiable solution F: U X / —» R of (1) is given by (6), where 
<p: R —» R is an arbitrary differ entiable function and fis defined by (5). Under 
the same conditions the general solution of (1) and (4) is given by (7) and the 
general solution of (I) and (I) is given by (8); thus every solution of (I) and 
(1) also satisfies (4). 

(e) Conclusion. Since (7) does not satisfy (T) if b ¥= 0 (cf. also [1, 3] ), 
not every solution of (1), even with the relation (4), satisfies (T). However, 
every solution of (1) and (I) does satisfy (T) and (4). 

2. Solutions of (2) (under the assumption that (dF)/(dt) exists, G is 
continuous and G(x) ¥= 0 on U). 

(a) General solution of 

dF(x, t) 
(2) = G(F(x9 t) ). 
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Define / by (5) then equation (2) is equivalent to 

A F ( * , , ) ) ^ > - 1 
dt 

hence 

(9) f(F(x,t)) = t + h(x). 

Therefore 

(10) F{x, t) = f~\h(x) + t) 

where h is an arbitrary function. Conversely, every function (10) with an 
arbitrary h and with / satisfying (5) is a solution of (2). 

(b) Solution of (2) with (4). From (9) and (4) we get 

f(F(x,Q))G(x) = 1, 

therefore, by (5) and (9), 

G(x) = G(f-\h(x)). 

So, if we suppose G to be strictly monotonie, then h(x) = f(x) follows 
and 

(8) F(x9 t)=f~\f(x) 4 0 . 

Conversely, every F of the form (8), without any restriction except differ
entiability and invertibility of / and without the assumption that G is 
strictly monotonie, satisfies (2), (I) and (T) with (4). 

(c) Solution of (2) with the initial condition (I). The condition (I) implies 
h(x) = f(x) f ° r (10)- Therefore the solutions again are of the form (8). 
By substituting t = 0 into (2) one also sees directly that (2) and (I) 
imply (4). 

(d) PROPOSITION 2. Let G: U —> R be continuous and G(x) ¥* 0 on U. 
Then the general solution F: U X / —> U of (2), differentiable in its second 
variable\ is given by (10), where f is defined by (5) and h: U —» R is an 
arbitrary function. Under the same conditions the general solution of (2) and 
(I) is given by (8). The same solution (8) is also obtained if (2) and (4) are 
supposed with strictly monotonie G. Finally, (2) and (I) always imply (4). 

(e) Note. If G is not strictly monotonie (but still continuous and no
where 0 on U) then (T) (or (8) ) does not necessarily follow, as the follow
ing examples show. 

1. F(x9 t) = h(x) 4- t (x e U = R, t e I = R) does not satisfy (T) if 
h(h(x) 4- s) =£ h(x) + s (e.g. if h(x) = ex) but it satisfies (2) and (4) with 
G(x) = 1. 

2. F(x91) = arc tan(f - tan x) (x G U = \—mll9 ir/2[, t e I = R) does 
not satisfy (T) either, but it satisfies (2) and (4) with G(x) = cos x. 
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(f) Conclusion. In general the solutions of (2) also fulfill (T) if the initial 
condition (I) holds, or if (4) holds and G is strictly monotonie 
(alternatively, 'G in (4) is strictly monotonie') but in general not without 
these conditions. 

Z. Moszner has communicated to the authors the following result. 

(g) PROPOSITION 2 (a). The solutions of (2) fulfill also (T) if and only if the 
initial condition (I) holds for each x ^ f~ (h(U) + / ) . 

Proof Equation (T) for F of the form (10) is equivalent to 

h(f~\h(x) + s)) = h(x) 4- s 

which is equivalent to the condition 

Kf~\u) ) = u for u e h(U) + / 

hence h(z) = f(z) which means (I) for all z e f~\h(U) + / ) . 

3. Solutions of (3) (under the assumption that dF/dx exists, G is 
continuous and G(x) ¥= 0 on U). 

(a) General solution of 

( 3 )
 dF(S> ' > G ( x ) = G(F(x,t)). 

OX 

Using the definition (5), from (3) we get 

^-f{F{x, t) ) = f'(F(x, t) )¥<âdl = /'(*). 
OX OX 

Therefore we have 

f(F(x,t)) =f(x) + g(t). 

Hence 

(11) F(x, t) = f~\f(x) + g(t)) 

with an arbitrary g:I —» R. Conversely, each function F defined by 
(11) with an arbitrary g and with / given by (5) is a solution of (3). 

(b) Solutions of (3) and (I). From (11) and (I) we have 

(12) g(0) = 0. 

Conversely, every function F of the form (11) with g(0) = 0 satisfies (3) 
and (I). 

(c) Solutions of (3), (I) with (4). Because of (4), dF/dt must exist at t = 0 
and thus the function g in (11) has to be differentiable at t = 0. From 
(11) and (4) 
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f'(F(x,0))G(x)=g'(0) 

follows, hence by (I) and (5) 

(13) g'(O) = 1. 

As before, equations (11) and (I) imply 

(12) g(0) = 0. 

Conversely, every function of the form (11) which satisfies (12) and (13), is 
a solution of (3), (4) and (I). 

(d) PROPOSITION 3. Let G be continuous and different from 0 on U. Then 
the general solution F:U X I—> Uof(3), differentiate in its first variable, is 
given by (11), where fis defined by (5) and g.I —> R is an arbitrary function. 
This solution satisfies (I) / / and only if g(0) = 0. Furthermore, if F is 
partially differentiable at t = 0 also in its second variable, (3) with (4) and (I) 
are satisfied if and only if (11) holds with (12) and (13). 

(e) Conclusion. The solutions of (3) are in general far from being 
solutions of the translation equation (T), even when they satisfy the initial 
condition (I) and the differential initial condition (4) ÇG in (3) is given by 
(4)'). For instance, 

F(x, t) = ln(exp(jc/2) + t3 + tf 

satisfies (3), (4) and (I) on R with G(x) = 2 exp(—x/2) but not (T). 
With the representation (11) F i s a solution of the translation equation 

(T) if and only if g is an additive function, i.e., 

g(t + s) = git) + g(s). 

(f) Note. Not even all three Jabotinsky equations (1), (2), (3) and the 
differential initial condition (4) imply the translation equation (T). 
Indeed, 

F(x, J) = * + * + 1 

satisfies (1), (2), (3) and (4) with G(x) = 1, but not (T). In general, from 
(10) and (11) (the solutions of (2) and (3) ), with x = x0, c = h(x0) — 
f(x0), we get g(t) = t + c and this, combined with (7) (the solution of (1) 
and (4) ), gives 

r\Ax) + o + b = f-\Rx) +1 + c), 
that is, 

f(x 4- b) = f(x) + c. 

The general solution of this equation is given by 

fix) = -x + pix), 
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where p is an arbitrary periodic function with period b. So, if G is 
continuous and nowhere 0 and F differentiate, then the general common 
solution of (1), (2), (3) and (4) is given by 

F(x,t) =f-\f(x) + 0 + 6, 

where 

f(x) = ax + p(x)9 

a, b being arbitrary constants and p an arbitrary differentiable function of 
period b such that a + p\x) ¥* 0 (e.g. a = 2, p(x) = cos x). Indeed, 
functions of this form all satisfy (1), (2), (3), (4): 

aF(x, t) — ab + p(F(x, t) — b) = ax + p(x) + t, F(x, 0) = x + b 

dF _ a + p\x) d£ _ 1 

dx ~ a + / / (TO, 0 ) ' dt ~ a + />'CF(*, /) ) ' 

1 dF dF dF 
G(x) = — 

d/ 
/ = 0 A + p\x) dt dx 

2. The first two Jabotinsky equations. In this section we will show that 
for Banach space valued functions the initial condition (I) implies that 
every solution of (1) or (2) is also a solution of the translation equation (T) 
under the supposition that the Cauchy problem for (1) or (2), respectively, 
has a unique solution. 

Let I b e a real or complex Banach space. In what follows we suppose 
that U is an open neighborhood of 0 in X and / is a real interval, open or 
half closed, or an open connected set of complex numbers, where / 
contains the number 0. 

PROPOSITION 4. Let F:U X / —> X be a solution of 

dF(x9 t) dF(x, t) 
(1) T = — r G(x) 

dt dx 
with the initial condition 

(I) F(x, 0) = x. 

Suppose further that the Cauchy problem 

dH dH 
— - = — - • G with H(x, 0) = 0 
dt dx 

has only the trivial zero solution (uniqueness condition of the Cauchy prob
lem). Then F also satisfies the translation equation (T) and the differential 
initial condition 
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(4) G(x) = 
dt t=o 

whenever t, s, t -f s e / and x9 F(x, s) G U. 

Proof. Although this result is standard, we give here an elementary 
proof. Define 

H(x, t, s) = F(x, t + s) - F( (F(x, /) , s) 

whenever /, s, t + s e / and JC, JF(JC, t) G U. With the notation i7/ and i^' 
for the derivatives of H with respect to the first or second variable, 
respectively, taking into account equation (1) for F, we get 

dH(X: *' S) = F{{x, t + s)- F{(F(x, t), s) • F{(x, t) 
at 

= F{(x, t + s)- G(x) - F{(F(x, t), s) • F{(x, t) • G(x) 

= [F{(x, t + s)~ F{(F(x, t), s) • F{(x, t) ] • G(x) 

dH(x, t,s) 

= —^—-G(x)-

Therefore H is a solution of the Cauchy problem 

dH dH 
= G 

dt dx 
with the initial condition 

H(x, 0, s) = F(x, s) - F(F(x, 0), s) = 0 

due to (I). Hence, by supposition, H(x, s, t) = 0 whenever both terms of H 
are defined. So we get, as asserted, 

F(x, t + s) = F(F(x, t), s) 

whenever both sides of this equation are defined. 
Now we show that, as in Proposition 1, (4) is implied by (1) and (I): 

dF(x, t) 

dx 

_ dF(x, 0) _ 

<=° " dx " Ix' 

The first equality holds if F(x, 0) and dF/dx\t=0 exist and the second since 
F(x, 0) = JC, so the derivative of F(x, 0) is Ix, the identity operator on X. 
Therefore t = 0 in (1) indeed yields 

dF(x, t) 

dt '=° dx 
dF(x, 0) 

G(x) = G(x). 
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PROPOSITION 5. Let F(x, t) be a solution of 

dF(x, t) 
(2) = G(F(x, t) ) 

dt 
defined on U X / , with the initial condition 

(I) F(x, 0) = x. 

Then, if G fulfills the condition that the Cauchy problem 

y = G(y) with y(0) = b 

for each b e Uhas a unique solution {dependent on b), then F is a solution of 
the translation equation (T) too, and the equation (4) follows. 

Proof Also the proof that F satisfies (T) is standard (see [4] ) but we give 
here an elementary proof in a somewhat different vein than that of 
Proposition 4: Let us denote the (by supposition unique) solution of 

/ ( / ) = G(y(t)) and y(0) = b 

by y(t) = F(b, t) and introduce also the notation 

Z(t) = y(s + 0 = F(!>9 s + 0-

On the other hand, z is the unique solution of 

z'(t) = G(z(t)) and z(0) = y(s) 

because y\s + t) = G(y(s + /) ). So z(t) = F(F(b, s\ t) and (T) is 
satisfied: 

F(F(b, s), t) = F(b, s + t) for all b G U. 

We get (4) from (2) and (I) as follows: 

dF(x, t)\ 

dt 
/ = 0 = G(F(x,0)) = G(x). 

Remark 5 (a). In generalisation of 1.2. (b) one can easily see that the 
definition or condition (4) for the solutions of (2) implies the initial 
condition (I) under the assumption that G is injective: 

dF(x,t)\ 
G(x) t=0 = G(F(x,0)) 

dt 

hence x = F(x, 0). (But see also Note 1.2. (e).) 

3. The third Jabotinsky equation. As we have seen in 1.3, the equation 

(3) dF(*,{) G(x) = G(F(x,t)) 
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has not such a close relationship to the translation equation (T) as the two 
others. This will be more evident if one notices two other ways of deducing 
equation (3). 

Remark 6 (a) (Commuting maps). Let U and / be as in Proposition 0 
and the differentiable function 

F:U X 1^ U 

be commuting, that is, 

(C) F(F(x, s)9 t) = F(F(x9 0 , s) 

and let F satisfy the initial condition (I). Differentiating (C) with respect 
to the variable s we get 

(14) F{(F(x9 s)9 t) • F{(x9 s) = F{(F(x, /), s)9 

where as above F{ and F{ denote the derivatives of F with respect to 
the first or second variable, respectively. Putting s = 0 and using (I): 
F(x9 0) = x9 this leads to equation (3) with G(x) = F{{x9 0) (cf. (4) ). 

Remark 6 (b). In the one dimensional case, (3) can be deduced from (C) 
without using the initial condition (I) under the assumption that for at 
least one t0 the derivatives 

F{(F(x9 t)9 t0) and F{(x9t0) 

are different from 0 for all x and /. Without loss of generality, we can 
choose *o = 0 and suppose 

(15) F{(F(x9 t), 0) ¥= 0, F{(x9 0) ^ 0 for x G U9 t G / . 

From (14) with s = 0 it follows that also 

Fi(x9 0) * 0 

and 

(15') Wix, OX t) = ^ V * 0 
F{(x9 0) 

hold f o r i G U9 t e / . Taking the derivative of (C) with respect to x we 
get 

(16) F{(F(x9 s)9 t)F{(x9 s) = F{(F(x9 t)9 s)F{(x9 t). 

Putting s = 0 into (16) and taking (15') into consideration we obtain 

Fi(x, 0) 

or 
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Fj(F(x, t), 0) = Fj(x, 0) 

F{(F(x,t), 0) l l X ' V,'(x, 0)' 

With the definition 

F2'(x, 0) 
G(x) = — 

F{(x,0) 

we see that F satisfies the third Jabotinsky equation 

(3) d i ^ X ' ° G ( x ) = G ( % /) ) 
OX 

whose solutions are given in Proposition 3. 
Remark 6 (c). (Invariant transforms of differential equations, see [7] ). 

Consider the following differential equation on a Banach space X 

dy 
(17) f = G(y\ 

dt 

where G is defined on an open set U Q X with values in X and the 
solutions y have values in U dependent upon a real or complex variable t. 
By introducing a transformation y = T(z), i.e., a diffeomorphism Tfrom 
an open set W Q X onto U, equation (17) leads to 

(18) ^£>4 = G(r(z)). 
dz dt 

PROPOSITION 7. With y also z, defined by y = T(z), is a solution of (17) if 
and only if 

(19) ^ M - G ( z ) = G(T(z)). 
dz 

This means that T is a solution of the Jabotinsky equation (3) where the 
parameter / does not appear explicitly. 

Proof If z is a solution of (17), then dz/dt = G(z) together with (18) 
implies (19). Conversely, if (19) is fulfilled, then from (18) follows 

dT(z) dz dT(z) . — = . G(z). 
dz dt dz 

Since T is invertible, the derivative dT(z)/dz, which is a linear mapping 
from X to X, is an isomorphism for every z e W, therefore 

dz 

dt 
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As we have seen, the solutions of (3) are in general far from being 
solutions of the translation equation (T) (see 1.3), even when the initial 
condition (I) and the condition (4) are supposed. 

As a weaker statement, in view of Remarks 6 (a) and 6 (b), one could 
conjecture that every parameter dependent solution F of (3) is a com
muting map in the sense of Remark 6 (a). The results of 1.3 and [7] seem to 
confirm this conjecture. But the following representation of the general 
solution of (3) in the real one dimensional case shows that this conjecture 
does not hold when G is not different from zero at all points of its interval 
of definition (Examples 10, 12) even if G vanishes only at one point 
(Example 11 (c) ). 

THEOREM 8. Let G:U -^Kbe continuous on the open interval U Q R and 
let Ut he the at most countahly many open intervals where G(x) ¥= 0 and Nk 

the components of the set where G(x) = 0. Then all continuous solutions 
F:U X / —» U (differentiable in their first variable) of the equation 

dF(x, t) 

ox 

which satisfy dF(x, t)I bx ¥= 0 for x e UU-, t e I have the form 

(fj~\fi{x) + ft(0) forx^U, 

[hk(x, t) for x G Nk 

where f is a primitive function of1/G in Ui9 gt is such that 

Muj + &•(/)• ç fj(Uj) 

and hk is an arbitrary continuous function {differentiable with respect to x) 
which has its values in the zero set N = L)Nk of G. 

The functions gt and hk have to be chosen so that the function F defined in 
this way is continuous and differentiable with respect to x also at the 
boundary points of the intervals Nk. 

(Of course, the hk can be united into one function (x, t) i—» h(x, t) on 
N = ui\y 

Proof For the proof of this theorem we can use the method of 1.3. Let F 
be a solution of (3) in U X / and consider x e Ui9 hence G(x) ¥= 0 and, by 
the supposition 

àF(x, t) 

dx 

(3) implies G(F(x, t)) =£ 0. Therefore, due to the continuity of i% there is a 
j such that F(x, t) e IL for all x G JJi and t G /. So, from (3) and from the 
definition of the f's we get 

F{x, t) 
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f(F(x, t) ^ L Û . _ f;{xy 
J OX 

Therefore, 

fj(F(x,t)) = fa) + gi(t), 

where gt is a function with 

f,{x) + g,(0 e fj{Uj) for (x, r) e ^ X /, 

which delivers the desired representation for x G L̂ . If x G A^ for some fc 
then, by (3), G(F(x, t) ) = 0 follows but F(x, /) may take any value in the 
zero set N of G(x) for x G Nk as long as it stays continuous and partially 
differentiable also at the boundaries. 

On the other hand, every continuous function F partially differentiable 
in x which is defined in this way is a solution of (3). 

Remark. Theorem 8 gives a method to construct solutions of equation 
(3). The main difficulties are to find conditions on the choice of the index 
j which is a function of / in the representation 

F{x, t) = f-'if^x) + gi(t)) 

for x G Ui and the choice of the functions gt and hk so that the constructed 
F is continuous and differentiable with respect to x, also at the boundary 
points of the L '̂s and iV '̂s. Though the number of the intervals Ut for a 
given continuous G can at most be countable, the number of the Nk's 
(which are the components of the zero set N of G) in general can be 
uncountable. For instance, it is easy to construct a real function on the 
unit interval which is differentiable of any given order and takes the value 
zero on the Cantor discontinuum but is positive on the complement. 

COROLLARY 9. Under the same conditions as in Theorem 8, the continuous 
solutions F:U X / —» U (differentiable in the first variable) of equation (3) 
and the initial condition 

(I) F(x, 0) = x 

have the representation 

F(x, t) = { 
\hk{x, t) for x G Nk 

where the functions fi9 gt and hk satisfy the same conditions as in Theorem 8 
but, additionally, gz(0) = 0, hk(x, 0) = x and hk(x9 t) G Nkfor x G Nh 

t G / . 

Proof Only a slight modification of the proof of Theorem 8 is required. 
If x G Ut then by (I) F(x9 0) = x G Ui9 hence F(x, t) G Ut for all t, due to 
the continuity of F. Therefore, as in the proof of Theorem 8, 
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OX 

and 

MF(x,t)) =ft(x) + &(/). 

By (I)> £*(0) = 0. This yields the claimed representation of F for x e L£. 
For x ^ Nk the functions Â  have to satisfy A^JC, 0) = x and, due to the 
continuity of hh hk(x, t) ^ Nk for x ^ Nk, t ^ I. 

Note. If we want also (4) to hold then 

£{0) = 1 and - ^ ( J C , 0) = 0 for all / and k. 
at 

Next we will give examples which illustrate how one can construct 
solutions of equation (3) using the method of Theorem 8. Some of them 
are not commuting although they satisfy also (I) and (4). This is shown, for 
instance, by the following example which has been communicated to the 
authors by Z. Moszner: 

F(x9 t) = x + x2t2 

satisfies (3), (4) and (I) with G(x) = 0 but is not a commuting map. 
Another example, with a G not identically zero, is the following. 

Example 10. Define 

c2 for x > 0 
W - { o " for x ^ 0 

which is continuously differentiable everywhere on R. Then by Theorem 8 
we get a representation for the continuous solutions of (3) with this G 
by 

for x > 0 
F(x, t) = 11 + xg(t) 

[h(x, t) for x ^ 0 

where 1 4- xg(t) > 0 for x > 0 but g is an otherwise arbitrary continuous 
function, h(x, t) ^ 0 for x < 0 and h(0, t) = 0 but h is an otherwise 
arbitrary continuous function, differentiable with respect to x. 

If we choose 

g(t) = t + t2 and h(x, t) = x - x2t2 

we get 
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f or x > 0 
F(x, /) = { ! + * ( ' + tA) 

,x - x2t2 for x ^ 0 

as a solution of (3) (with the above G) which is defined on the set 

{ (x, t) e R X R \x ^ 0 or [x > 0 and 1 + x(t + t2) > 0] } 

and differentiable there (also at JC = 0). This function satisfies (I) and (4) 
0 we have F(x, s) ^ 0 and 

x2t2 + 2x3s2t2 - A V , 

but is not a solution of (C) because for x 

F(F(x, s), t) = x - x V 

which is not symmetric in s and t. 
Here the domain of definition of F is not necessarily of the form U X I. 

Examples 11 (b), (c), (e) will give non-commuting solutions with such 
rectangular domains. 

Example 11 (a). Take G(x) = x f o r x G R . According to Theorem 8 one 
gets 

f(x) = ln|jc| for x ¥* 0 

and 

f~~l(x) = ztexp x 

where the ± sign depends on the choice of the local inverse of ln|x|. The 
general solution of equation (3) with G(x) = x might be of the following 
form 

| ±zexp(gj(/) ) x x > 0 

F(x, t) = 0 

±exp(g2(0 ) x 

x = 0 

x < 0 

where the functions gx and g2 and the ± signs have to be chosen in such 
a way that F(x, t) is continuous and partially differentiable in x (also at 
x = 0). For this purpose it is sufficient to demand that the partial 
derivatives 

dF(x, i) 
= ±Qxp(gx(t) ) for x > 0 

and 

dF(x, t) 

dx 
±exp(g2(0 ) for x < 0 

have the same limit when x tends to 0. Hence in both cases the same sign 
has to prevail and gx = g2. So we get the general solution of the 
equation 
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àFQc, t) 
r x = F(x, t) 
ox 

in the form 

F(x, t) = c exp(g(7) ) x for x, t e R 

where c = + 1 or e = —1 and g is an arbitrary continuous real function. 
Each such solution is commuting. 

Example 11 (b). Take G(x) = -xm/(m - 1) for integer m ^ 2 (the 
factor — (m — 1)~ is there for sake of simplicity in the computation, 
afterwards we can omit it in equation (3) ). By the same method, using the 
notations of Theorem 8, 

Ux = {x G R | x > 0} 

[/2 = { X G R | X < 0 } , 

we get 

fh2(x) = x-C"- ' ) x * 0. 

If m — 1 is odd, then as inverse of/j and / 2
 w e 8 e t the unique (m — l)-st 

real root function 

In the case that m — 1 is even, we have / ; 2(x) > 0 for x ¥= 0, thus for 
y > 0 

/ f !(>o = >'-1/(m-1) 

where y~l/(m~l) denotes the unique positive (m — l)-st real root function 
for positive real y. 

Combining the cases m — \ odd and m — \ even, we get for x G UX i.e., 
x > 0, if gj is chosen so that 1 + * m - 1 g i ( 0 > 0 for x > 0, 

F(^o=^"1(*" ( w" , ) + *i(0) 

j- '(*-("-'>) 

(i +y"-'g l(0)1 / (m"1) 

= Pljc(i +x m - 1 g 1 wr 1 / < m - ' ) 

where pj is an (m — l)-st real root of unity, either + 1 or — 1 depending on 
the choice of j . 

Similarly, for x G U2, i.e., x < 0 we get 

F(x,t) = p2x(l + xm-lg2(t)) 
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(also p2 is an (m — 1) — st real root of unity, either + 1 or — 1, and g2 

satisfies 1 + * m _ 1 g2(0 > 0 for .x < 0). The function F i s differentiable in 
the variable x at x = 0 if and only if 

r dF(x,t) dF(x,t) 
lim —— = pj and lim = p2 

x-^o+ ox JC-*O- ox 

are equal so we have px = p2 = p. 
Therefore the general solution of the third Jabotinsky equation 

(20) dF(*' 0
x
m = F(x, t)m, m^2 

ox 

is given by 

\px{\ + x w - 1 g 1 ( 0 ) " 1 / ( m _ , ) 

( 2 1 ) F ( * ) 1 ! i „ n 

where p is an (m — l)-st real unit root either + 1 or — 1, gx and g2 are 
continuous functions with 

1 + xm~xgAt) > 0 x> 0 
(22) , 

1 + xm - 1g 2(r) > 0 x < 0 
but otherwise arbitrary. 

So, for example, for every continuous gx and g2 with g,(/) ^ 0, / G R 
and g2(t) ^ 0 if m — 1 is even or g2(t) ^ 0 if m — 1 is odd, respec
tively, and t e R, the representation (21) gives a solution of (20) which is 
defined on R X R and (m — 1) times differentiable with respect to x. 

None of these solutions is commuting if p can be chosen as — 1 (i.e., 
m — 1 is even) and gx ¥= g2. In detail this will be discussed in the following 
example. 

Example 11 (c). Now consider the solutions of (20) of Example 11 (b) in 
the representation (21) which satisfy the differential initial condition (4) 
with 

G(x) = -xm/(m - 1), 

that is, the solutions of (20) with 

dF 
, .o - - « " / ( » " - 1). 

Here gx and g2 have to be differentiable at t = 0. 
Then for F, given by (21), 

(23) g,(0) = 0 and £<0) •= p for / = 1, 2 

are necessary and sufficient conditions that this solution fulfills the 
equation 
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dF(x,t)\ = _ _ ^ _ 

dt M m - Y 

In this case the interval U, where x varies, must be bounded, for otherwise 
there exist no functions gx and g2 which satisfy (22) and (23). 

We give a detailed example of such a solution which is not commuting. 
Take m = 2k + I with natural k then p can be H-1 or — 1. We choose 
p = - 1 and gx(t) = - s i n t, g2(t) = - 1 / 2 sin 2/, so (23) is fulfilled. 

F(x, t) 

f-x(\ - x2k sin t)~x/2k for x > 0 

•2£ X-1/2A: 

sin 2n for x ^ 0 
2 / 

-x\\ — — 

is defined at least for — 1 < x < 1 and t e R. For 0 < x < 1/2 we have 
F(JC, /) < 0, F(F(x, t), s) is defined, hence 

/ X2k \-\/2k 
F(F(x, t), s) = x 1 - x2k sin / - — sin 2^ 

which is unequal F(F(x, s), t). So this is an example for a noncommuting 
solution of the third Jabotinsky equation which satisfies (4) with G(x) = 
—xm/(m — 1). In this case G(x) = 0 only at the point x = 0. 

The following is a significant example of a commuting solution of the 
third Jabotinsky equation of the form (20). 

Example 11 (d). Consider, as in Example 11 (b), a solution of equation 
(3) with G(x) = -xm/(m - 1) that is, of (20) on R + : 

F(X, t) = Px{\ + xm-lg(t)yl/(m-l\ 

We can use the Taylor expansion for the root function 

(24) F(X,t) = pX% ( - 1 / ( ™ - 1 ) W W " V ) / 

= px - — P —x m g( t ) + .... 
m — 1 

This series converges for all (x, /) E R X R with 

W"-lg(t)\<\. 

It represents a function analytic in x which is a solution of (20) for real 
positive x and, by the principle of permanence of functional relations, it 
remains a solution of (20) on the whole domain where this function has an 
analytic continuation (even for analytic continuation on the complex 
domain). This analytic solution is commuting and satisfies (I) if and 
only if p = 1 and g(0) = 0, it satisfies (4), in this case (4'), if and only if 
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g(0) = 0 and gf(0) = p. The function (24) is a solution of the translation 
equation (T) if and only if p = 1 and g is an additive function. 

The next example once more illustrates the method of Theorem 8 and 
gives an example of a solution of (3) where the zero set of G is infinite but 
nowhere dense and the solution is defined on the entire plane R X R but is 
not commuting. 

Example 12. Take G(x) = cos2 x for x e R. The intervals fy where 
G(x) ¥> 0 are 

Us = •- + fa,- + fa\ 
2 2 ' 

for integer i. 

The primitive function of 1/cos2 x is tan JC, therefore 

fs(x) = tan x for x G fy. 

For its inverse we may take 

ff~l(y) = Arc tan y + fa 

where Arc tan is the principal branch of arc tan, that is Arc tan R Q U0. 
As a solution of (3) we choose 

(fs+\<JAx) + gA<)) * e uf 

(25) F(x, t) = IT 
X + 77 X = — + K 

2 

where the g^ are arbitrary continuous functions and the /c's are integers. 
The function F defined in this way is continuous on R X R. It is partially 
differentiable in x for x e Ue 

dF(x, t) 1 
_ _̂  __ 

ox cos x + (sin x + cos xg^(t) ) 
and, since F is continuous also at the boundaries of fy and dF/ dx tends 
there to 1, the partial derivative exists on these boundaries too, and is 
equal to 1. 

The function F satisfies also (4): 

dF(x, t)\ 
t=0 dt 

= cos2 x for x E R 

if and only if g^(t) is differentiable at t = 0 and g/(0) = 0 and g/(0) = 1 
for all integers €. 

For x e U; we have F(x9 t) e L^+1 hence 

F(F(x, 0 , J) = fM(ft+x[fsVi(Mx) + SXO ) ] + g,+ i(*) ) 
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which is different from F(F(x, s), t) if ge(t) ¥* g^+l(t). Therefore it 
suffices to choose the functions g^ so that they are continuous, differen-
tiable at / = 0, g^(0) = 0, g^(0) = 1 for all integers t and gy ^ gj+x for at 
least one j . (For example, take g/jt) = (l/tf) • sin it for £ = z t l , :±2, . . . 
and g0(t) = /.) 

As one can see form the examples above, in all those cases where the 
solutions of the third Jabotinsky equation do not commute, the zero set of 
G either contains a proper interval or the initial condition (I) does not 
hold. 

We give now another positive result. 

PROPOSITION 13. Let G:U —> R be continuous, Ut the open intervals of U 
where G(x) ¥= 0, Nk be the components of the set N where G(x) = 0. If 
F:U X I —> Uis a solution of (3) and (I), as given in Corollary 9, and N is 
totally disconnected then F is commuting. 

Proof Using the notations of Corollary 9 and Theorem 8 we have to 
consider two cases for x e U. 

(i) x e Ui9 then 

F(x, 0 = f-'iftx) + gi(t)) ^ U„ 

hence 

F(F(x, 0 , s) = frl(fi(x) + ft(0 + &(*)) 

= ^(^(JC, s\ t) 

(ii) x e Nk for some A^. Then by Corollary 9 

F(x, t) G Nk for all t 

follows. Since N is totally disconnected, Nk contains only the one point x, 
therefore 

F(x, t) = x for all t. 

So (C) holds in this case too. 

Remark. As Z. Moszner has kindly informed us, he has proved a similar 
theorem for U = R, where the condition that N is totally disconnected is 
replaced by the assumption that the closure of R\N is R. Since the 
function G in (3) is supposed to be continuous, N is closed, hence closure 
(R\7V) = R implies that TV is totally disconnected. 

Finally we give an example of a noncommuting solution of (3) in higher 
dimensions where G(x) vanishes only at one point and the solution 
satisfies (4) and (I) too. 
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Example 14. Consider (3) in R", G(x) = x where 

x = \xl9...,xn) and F(x9t) = t(Fl(x9t)9...9Fn(x9t)) 

are column vectors of R". The derivative of F is the Jacobian 

dF(x9 t) _ ldFt(x9 t)\ 
OX \ dXj JiJ=h...,n' 

Let 

oo 

A(t) = ^Ar tl 

i=0 

be an analytic n by n matrix. Then F(x9 t) = A(t) • x is a solution of the 
third Jabotinsky equation (3) in R" with G(x) = x 

dF(x9 t) 
(26) x = F(x9 t). 

ox 
This F satisfies (I) if and only if A0 = E (the unit matrix), and it satisfies 
(4) if and only if A x = E. The function 

F(x9 t) = I 2 Ai; • A • x 
v=o / 

is commuting if and only if 

At • Aj = Aj - At for all / and j . 

So, for example, 

F(x9 t) = x + t • x + A2 • t2 • x + A3 - t3 • x 

is a solution of (26), (4) and (I). But iî A2 * A3 ¥= A3 - A2 then this F does 
not satisfy (C). 
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