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PRODUCTS OF POSITIVE REFLECTIONS 
IN THE ORTHOGONAL GROUP 

J. MALZAN 

Introduction. For G a group, S a subset of G which generates G, the 
length problem in G with respect to S is to find, for g G G, the least 
integer r such that g can be written as the product of r elements of S. For 
G an orthogonal group 0f(F) (here F is a field, and the elements of 0f(F) 
preserve the quadratic form / ) and S the set of reflections in 0f(F) the 
length problem has been studied by E. Cartan [2], J. Dieudonné [4, 5], 
E. Ellers [7], P. Scherk [8], and others. In all of these investigations, 
however, the problem posed by requiring that 5 be a single conjugacy 
class of reflections in Of(F) has been ignored. And it is generally the 
case that the reflections in Of(F) fall into several conjugacy classes. 

The case F = R, the reals, is the one that will concern us below. Here 
the reflections are in two conjugacy classes, the elements of which we 
(naturally) label positive and negative. The group 0/(R) is determined 
by the type (p, q) of the space Rp+e, and we write instead 0P(Z(R) or, 
more simply, 0PtQ. Such groups are of physical interest, 03ii being the 
Lorentz group. The positive reflections in this group are the reflections 
which preserve the direction of time. It seems natural to ask for a 
solution to the length problem with respect to such reflections. 

The restriction to the reals in this paper seems necessary: The tech
niques used below are wholly inappropriate in the case of a general field. 

1. Preliminaries and notation. Let F be a field, V a vector space 
over F having a symmetric, bilinear, nondegenerate inner product/. The 
orthogonal group, 0f(F), is the group of linear transformations of V 
preserving/. If a basis of V be chosen, and / is the nonsingular symmetric 
matrix representing/, then a matrix A belongs to 0f(F) if, and only if, 

A {JA = J. 

Clearly det (A) = ± 1 . In the case F = R, the reals, 0f(F) is determined 
up to isomorphism by the signature, (py q), of/ and we write 0PtQ(R) or 
0PjQ for 0 / (R) . In the sequel we shall assume that p, q > 0. When this 
is the case 0VA has four connected components, the identity component 
of which is simple modulo its centre. (See [5].) The problem of identifying 
the elements of these four components will be taken up in Section 3. 
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PRODUCTS OF POSITIVE REFLECTIONS 485 

Henceforth we will assume that Char F ^ 2. 

Reflections. A reflection in 0f(F) is an element R £ 0f(F) such that 
R2 = I and rank (I — R) — 1. Thus there are nonzero vectors a, b £ V 
such that 

7? = I + ablJ. 

Since R2 = I we obtain fr'/a = —2. As well, since RfJR = / we have 
b = \a, \ £ F. Thus 

i? = Ra = I + Aaa'/ 

with 

X = -2/a'Ja. 

The conjugacy classes in 0f(F) into which the i?a fall are labelled by the 
elements of F*/(F*)2\ the conjugacy class of Ra is determined by a*Ja 
mod (T7*)2. In particular, when T7 = R, the reflections in 0p>g fall into 
two conjugacy classes distinguished by the sign of the length of the 
vector a determining Ra. We shall say that a reflection Ra is positive if 
alJa > 0. The positive reflections in 0PtQ (p, q > 0) generate two of the 
four components of 0PiQ. We write GVA for the group so generated. 

Let u G GPtQ. We denote by l(u) the smallest number of positive 
reflections whose product is u. (Here we adopt the convention that 
1(1) = 0.) It is the main purpose of this paper to determine l(u) for all 
GPiQ with pf q > 0. (The cases p = 0 or q = 0 are trivial.) 

Finally, if u is any linear transformation from V to V, we will denote 
by r(u) the rank of 1 — u, and by E(u) the 1-eigenspace of u. 

LEMMA 1.1. Let u, ra G 0f(F) with ra a reflection and char (F) ^ 2. 
Then E(rau) 3 E(u) or E(rau) C E(u) and 

(1) dim E(rau) = dim E(u) ± 1. 

Pnw/. See [3], [5]. 

We have immediately: 

COROLLARY 1.2. Let u, ra G Of(F) with ra a reflection. Then 

dim E(rau) = dim E(w) + 1 

if, and only if, a Ç E(u)L. 

Types in 0VA. If w and u' are in the same conjugacy class of GPtQ then 
l(u) = Z(w'). In [1], Bourgoyne and Cushman classified the conjugacy 
classes of the unitary group Up>q(C), in the following terms: For 
u Ç UPfg(C) acting on Cp+q, we have 

Q>+a = Vi ± V2± ... ± Vk, 
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an orthogonal direct sum, in which each Vt is ^-invariant, and irre
ducible as a ^-module. Relative to some basis of Vt (i — 1, . . . , k) the 
action of u on Vt is that of a Jordan block, or a pair of Jordan blocks. 
Two elements u and u! are in the same conjugacy class if and only if 
they have the same decomposition into Jordan blocks. 

Given this, it is easy to restrict to the subgroup 0PtQ of UPtQ and 
classify, in similar terms, the conjugacy classes there. We now list and 
label these actions together with (sometimes) matrix presentations of 
them, which will be referred to subsequently as standard. See [6]. The 
subspace of V on which the action takes place will be called the carrier 
space of the action. In all cases presented, m ^ 0. The matrices A below 
yield a real irreducible action, and preserve the metric associated with 
the matrix / which accompanies, i.e., A XJA = J. 

Type 1. AW(X, X, X"1, X"1); |X| ^ 1, X g R. 
This type can be presented as 

"-(? (A')'M?o) 
where Q is a (2m + 2) X (2m + 2) real matrix with eigenvalues X and X 
having only two (complex) eigenvectors. 

Type 2. Am(X, X"1); |X| * 1, X £ R. 
This type can be presented as 

"-(?«£,.)•'-(;# 
where Q is an (m + 1) X (m + 1) Jordan block with eigenvalue X. 

Type 3. A^(X, X) ; |X| = 1, X ̂  ± 1 , e = ± . 
The action here is of (m X 1) X (m + 1) Jordan X and X blocks on a 

(complex) space of complex dimension 2m + 2 and signature 

(m + 1 + el, m + 1 — el) if m is even; 

(m + 1, m + 1) if m is odd. 

This action can be realized on a real space of dimension 2m + 2. In the 
special case m = 0 this can be presented as 

A=m /COB» -sinjA JSM x = e<9 

\sin 6 cos 6/ 

Type 4. A?TO+i(l) + A^ + 1 ( l ) . 
This can be presented as 

* - ( ? « £ , • ) ' - ( 5 0 
where Ç is a (2m + 2) X (2m + 2) Jordan block of Vs. 
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Type 5. AiL + 1 ( - l ) + A 2 m + i ( - l ) . 
This is similar to the preceding type. 

Type 6. Ajm(l); e = ± . 
The action is that of a (2m + 1) X (2m + 1) Jordan block of l's, on 

a space of signature (m + 1 + el, m + 1 — el). 

7 > ^ 7 . A U - i ) ; e = ±. 
This is similar to the preceding type. 

Every element u £ 0PtQ induces an orthogonal decomposition 

V = V, ± ... ± Vk 

of F into subspaces invariant under u, such that the action of u is one 
of the actions described in types 1-7. Accordingly, following [6], we shall 
say that a belongs to the type A = Ai + . . . + Ak associated with the 
conjugacy class in 0VtQ of u. If A0

+(l) appears m times in A, A0~(l) n 
times, then the effective part, eff (A), of A is 

A - wAo+(l) - «Ao-(l). 

eff (u) is defined similarly. 
When rn is a reflection such that E(rnu) D E(u) we will write 

u —» rau. 

If E(rau) C £(w) we will write 

z* <— ratt. 

2. The main theorem. In this section we state and prove the result 
concerning lengths of elements in GPtQ with respect to positive reflections. 
We require first 

Definition 2.1. u £ GPtQ is exceptional if either 
(i) E(u)L is negative semi-definite, or 

(ii) zi2 = 1 and Eiu)1- is not positive semidefinite. (w = 1 is non-
exceptional.) 

Note. Definition 2.1 could be restated as follows: 
u G GPt<l is exceptional if the type of eff (u) is either 

m 

(i) £ A»-(X„ X,) + n(Ai+(l) + A r ( D ) 

+ £A<f ( - l ) + <?A2-(1), m + n + p + q>Ot or 

( i i ) M o - ( - l ) + <zA0+(-l),£ > 0. 

LEMMA 2.2. Le/ u, ra £ GPfff wi/fe ra a reflection andf(a, a) = 1. Then 

trace (raw) = trace (u) — 2/(a, wa). 
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Furthermore, to show that u —» rau with rau having eigenvalues off the unit 
circle, it suffices to show that f(a, ua) can be made arbitrarily large subject 
to / (a , a) = 1 and a £ E{u)L. 

Proof. 

tr (raw) = tr (u — 2 — aalJa) if/(a, a) = 1 

= tr (w) — 2alJua 

= tr (w) — 2/(a, wa). 

The remaining assertion of the lemma is obvious in view of Lemma 2.1. 

We can now state the main theorem. The proof will proceed by a 
series of lemmas. 

THEOREM 2.3. For u Ç GPtQ, p, q > 0, /(w) = r(w) unless u is excep
tional, when l(u) = r(w) + 2. 

The following lemmas will establish this fact: If u is nonexceptional, 
then there is a positive reflection rn such that 

u —» raw and 

r„w is nonexceptional. 

The first assertion of the theorem will then follow by induction on r(u). 

LEMMA 2.4. If u £ GPtQ has type A = Am(X, X, X-1, X-1) with |X| ^ 1 
and X (? R, f̂ê w w —> u' with ur nonexceptional. 

Proof, u' = rau with a any vector of (say) length 1. Then u' has a 
single + 1 eigenvector by Lemma 1.2, and Riu!)1- contains positive 
vectors since the carrier space of A has a subspace of positive type of 
dimension at least 2. Thus we are done unless (u')2 = 1. In this last case 
the carrier space of u' admits a basis of ± 1 eigenvectors of u', with the 
— 1 eigenvectors spanning a space of dimension at least 3. But since 
r{ra) = 1, and u = rau', 

dim E( — u) ^ 2 

and this is impossible since u has no —1 eigenvectors. 

LEMMA 2.5. If u contains a type An(X, X-1) with X Ç R, |X| ^ 1, then 
u —• u' with u' nonexceptional. 

Proof. If m > 0 we may proceed as in the last lemma, choosing a 
vector a in the carrier space of Am(X, X-1) so that u' = rau and/(a, a) = 1. 
If m = 0 we let 

A0(X, X-1) -> Ao*(l) + A 0 - c ( - l ) , e = ± . 

If the type of eff (u) is A0(X, X-1) then, as will be seen in the next section, 

https://doi.org/10.4153/CJM-1982-032-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1982-032-9


PRODUCTS OF POSITIVE REFLECTIONS 489 

X > 0. In this case we must choose a in the carrier space of A0(X, X-1). 
We may present the 2-dimensional problem as follows: 

, . et(,., . (J x°.) j _ (J J) 
a = y J with 2fr = 1. 

Then 

Ra = I 

and 

RA = 

*G)« "(?i)-°0 0 

*--<x r) and elementary computation shows that the + 1 eigenvector of RaA is 
of negative type. Thus e = — 1, and since A0~(l) + A0

+( —1) corre
sponds to a positive reflection, we are done. Otherwise, EfV)1- is negative 
semidefinite, or else (V)2 = 1- I n either case, u must contain one of the 
types 

Aj = A0(X, X-1) + Ao € ( - l ) , e = ± ; 

A2 = A0(X, X-1) + Ao~(X, X), |X| = 1, X ^ ± 1 ; 

A3 = A0(X, X-1) + Ai+(1) + Ai-(l) , or; 

A4 = A0(X, X-1) + A2-(l). 

In the first case we can present eff (u) and a as 

ax = I 7] I with 2& + ef2 = 1. 

We choose aY so that 

a^AAm = fr(X + A"1) - t? = ^ - X - - e f 2 ( ^ ± ^ + l ) 

is arbitrarily large, which is possible since 

X + X - l 

+ 1 ^ 0 . 
2 

This shows, by Lemma 2.2, that we can choose ra so that u —> u' with u! 
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having eigenvalues off the unit circle. Hence uf is nonexceptional, and 
we are done. 

In the second case we can take 

A2 = 
A"1 

0 

0 

cos 6 
sin d 

-sin 6 
cos 6 I 

J2 = 

0 1 
1 0 

\ 

1/ 

a2 

V 

f 
8 I 

with 2£r? - f dz = 1. 

Then 

a2
lJ2A2a2 = gr?(X + X""1) - (f2 + Ô2) cos 6 

= (f2 + 6 2 ) ( ^ ^ - c o s ( + 
X + \~ 

Since cos (0) 9e ± 1 , this can be made arbitrarily large by choice of f 
and ô and we are again done by Lemma 2.2. 

In the third case we note that the contribution to the invariant (see 
Section 3) of A3 is + 1 if X > 0, —1 if X < 0. Hence, in order that 
u Ç GPtQ it is necessary either that X > 0, whence 

A -> Ao-(l) + A o + ( - l ) + Ai+(1) + Ai-(l) 

(which is nonexceptional) or that u contains types different from Ai+(1) 
+ Ai~(l). Accordingly, we proceed to type 4, which may be presented as 

x-
A,= 

1° ' 1 0 
1 
1 1 
O i l / 

J A = * 1 
-1 0 
0 0 / 

a4 = 
v 
0 | with 2 ^ - f2 = 1. 

r 

(Note that a4 £ E^u)1-.) We have 

a4 '/4,44a4 = &(X + X-1) - f2 = r 2 ( X +
2

X ' - l ) + 
X + X"1 

and since \ ^ 1, this can be made arbitrarily large. Again by Lemma 2.2 
we are done. 
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LEMMA 2.6. If u £ GPtQ contains any of the types 
(i) Am<(X, X), |X| = 1, X 5* ± 1 , m > 0 

(ii) A i + i ( - l ) + A i i + i ( - l ) , * è 0 
(iii) A 2 \ ( - l ) , fe ^ 1, e = ± 
(iv) AJM-I(I) + A2"*+i(l),fe è 1 
(v) A2fc+(l),fc è 1 

(vi) A 2 r ( l M ^ 2 
then u —> w' wi/ft u' nonexceptional. 

Proof, (i) The signature of the carrier space of AW(X, X) is (m + 2, w) 
or (w, m + 2) if m is even, and (m + 1, m + 1) if w is odd. Since m > 0, 
the claim follows as in the proof of Lemma 2.4. 

(ii) For & ^ 1 the claim follows as before (noting that the dimension 
of the —1 eigenspace corresponding to Aj+i( —1) + A^+i( —1) = A is 
only 2). For k = 0 (using ra so that a lies in the carrier space of A) we 
have 

(2) A = A i + ( - l ) + A r - ( - l ) -> Ao*(l) + A' 

or 

(3) A = A i + ( - l ) + A r ( - l ) -» A2«(l) + A 0 - e ( - l ) = A''. 

Here the restrictions on the right hand side are imposed by the fact 
that dim E(rau) = dim E(u) + 1; the choice of — e in A0~

e( —1) is 
forced by considerations in Section 3. 

Now (3) is impossible since E{ — A) contains a totally isotropic sub-
space of dimension 2 while E( — A") contains none. In the former case 
(2) it suffices, by the signature argument, that 

A' j* r A 0
+ ( - l ) + sAo- ( - l ) . 

But, letting u' = raii, we must choose the reflection vector a so that 
a $ E±( — A), since E±( — A) is totally isotropic. Hence, by Corollary 1.2, 

d i m E ( - A ' ) < d i m £ ( - A ) . 

This case therefore cannot arise. 
(iii) If a is any vector of unit length in the carrier space of A2A;

e( — 1) 
then u —•» raw. Choose a so that 

a <2 £J - ( -A 2 J t «( - l ) ) . 

Then if 

A 2 \ ( - 1 ) - > A ' 

then E ( - A ' ) = (0) by Corollary 1.2 and 

d i m £ ( - A 2 * ( - l ) ) = 1. 
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Thus, in order to show that rau is nonexceptional, we need only consider 
the case when £-L(A/) is negative semidefinite. Since the carrier space 
of àn( — 1) has signature (fe, k + 1) or (fe + 1, k), it suffices to consider 
the case k = 1. For A = A2

+( — 1) we have 

A' = A2+(l) or 

A' = A0
e(l) + A", e = db 

and in both cases JE(A/)"L contains positive vectors. For A = A2~( —1) 
we have the matrix presentation 

A-(~l-\ J ' - H = } ' } 
With coordinates £, 77, f for the reflection vector a we find that 

a*J04a = - £ 2 / 2 + fr + rj2 - 2£f 

subject to 

- & - i?2 + 2€f = 1. 

Hence 

a1 JAa = - £ 2 / 2 - 1 

and alJAa can be made arbitrarily large and so (Lemma 2.2) we have, 
by proper choice of a, 

A -> Ao-(l) + A0(X, X-1) ; X 6 R, |X| ^ 1. 

This is of the required form. 
Before proceeding we require the following 

LEMMATA. If V is a space of signature (p, q) and W is a sub space of V 
of dimension <p, then W1- is not negative semidefinite. 

Proof, dim (W^) = p + a - dim (W) > q. Let R be the radical of 
W-1. Then, assuming that W1- is negative semidefinite, WL = R © T 
where T is negative definite, and R C T1-. But 

dim (R) ^ min (p, q — dim T) 

and in particular 

dim (R) ^ q - dim (T) 

so that 

dim (W) = dim (T) + dim (R) ^ q 

a contradiction. 
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We now return to the proof of the lemma. 
(iv) The result is clear, as in Lemma 2.4, unless k 

A8+(l) + A3-(1)->A' 

1. We have 

with dim E(Ar) = 3 and, since the carrier space of A' has signature 
(4,4), the possibility that E(A')1- is negative semidefinite is excluded 
by the lemmata. The possibility 

p)Ao-(l) + g A 0 + ( - l ) A' = £Ao+(l) + (3 
+ ( 5 - 0 ) A o - ( - l ) 

is excluded by 

d i m E ( - A ' ) S 1 

in view of Lemma 1.1. 
(v) The result follows from the lemmata unless k 

A2+(l) -> A' 

1. We have 

and, since E(A') contains an isotropic vector and has dimension 2, and 
<o(A2

+(l)) = 1 (see Section 3) 

A7 = Ao+(l) + Ao-(l) + A 0 +( - l ) 

and u' is nonexceptional unless the types contained in u are A2+(l), 
Aoe( —1), A0

e(e = ± ) writh A0~( —1) present. We consider then 

A2+(l) + A o ~ ( - l ) - > A / 

which we claim we can do with A! having eigenvalues off the unit circle. 
We can represent A2

+(l) + A0~( —1) and the reflection vector a of ra 

in the form 

A = 

/ I 
1 
0 

\ 
1 

\ 

1/ 

J = 

0 1 
2 - 1 

1 
2 1 0 
1 0 0 

V 

f 
\àl 

We require a G E^)1- and this yields J = 0. For a1 J a = 1 we require 
V2 = 1 + d2. Finally, 

a'JAa = v2 + à2 = 1 + 2<52 

and this can be made arbitrarily large. The claim follows. 
(vi) The claim follows from the lemmata unless k = 2. We then have 

A4~(l) —» A', dim E(A') = 2, and £(A') contains isotropic vectors. If 

Ar D Ao+(l) + Ao-(l) 

then E(A')1- is not negative semidefinite (since JE(A') has signature 
(1, 2)) and (w')2 ^ 1 (since dim £(— A')1 ^ 1 in the carrier space of 
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A4~(l)). The only other possibility is 

A' = Ai+(1) + A r ( l ) + A o - ( - l ) 

(the term Ao~( —1) being dictated by the determinant, its sign by 
Section 3), when E(A') is totally isotropic. We seek to avoid this case 
by choice of a = (1 — u)x, x G E(rau)\E(u). It suffices to find such a 
vector x which is nonisotropic. Otherwise, 

/ ( ( l — u)x, (1 — u)x) > 0 => f(x, x) = 0 

or 

2/(x, x) > f(x, (u + u~l)x) => f(x, x) = 0 
or 

2/(x, x) g /(x, (w + w_1)x) whenever /(x, x) 7e 0. 

Continuity then gives 

2/(x, x) ^ /(x, (w + w"1)^) for all x. 

But this implies f(a, a) s; 0 for all choices of x, and this is false since 
E(A/)-L is not negative semidefinite. 

This completes the proof of the lemma. 

The remaining cases are now all of low dimension. 

LEMMA 2.7. If u 6 GPtQ1 with A0
+( —1) belonging to the type of u, as well 

as any of 
(i) AoÉ(A, X), |X| = 1, X ̂  ± 1 , e = ± 

(ii) Ai+(1) + A r ( l ) 
(iii) A2-(l) 

then u -* uf with uf nonexceptional. 

Proof. If A, the type of u, contains A0
+(—1) + A0

+(X, X) = Ai then 
we have, by choosing the reflection vector a in the carrier space of 
Ao+(X, X), 

Ai->Ao+(l) + 2Ao+(-l) 

and we are done unless the remaining types of u are A 0
€ (± l ) with 

Ao~( —1) occurring. In this case we take A = A0"( —1) + A0
+(X, X) and 

show that A —•» A' with A' having eigenvalues off the unit circle. We 
have matrices and reflection vector given by 

/ costf -s intf 0\ / l \ 
A = I -sintf cos 6 0 J / = I 1 1 

\ 0 0 - 1 / \ - 1 / 

("\ 
a = I 7] 1 with ? + v2 ~ f2 = 1. 
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Also, cos (9 ̂  dbl. Now 

a'JAa = cos<9(£2 + v2) + £2 

= (1 + cos^)a 2 + 7?
2) - 1 

which can be made arbitrarily large, proving the last assertion, and hence 
the claim of the lemma. 

The case u D A = A0
+( —1) + A0

-(X, X) is the same as above with — / 
in place of / . 

If u D A = A0
+( —1) + A2""(l), we can proceed as in the proof of (v), 

Lemma 2.6, using — / i n place of / , to show that A —» A' with A' non-
exceptional. 

Finally, suppose that u D A = A 0
+ ( - l ) + Ai+(1) + A r ( l ) . We 

claim that 

A-> A' = A2+(l) + Ao+(l) + A0-(l) 

via u! = rau, with a a unit vector in the carrier space of A. Again, we 
let A be a matrix representing A, preserving a symmetric form represented 
by a matrix / . We can take 

A =\ 1 - 1 | j = | / 2 0 I x = 

Here a = (1 — A)x. The condition a1 J a = 1 i s / 2 = 1. We choose x not 
orthogonal to E(u). Now E{u') = E(u) 0 (x) is not totally isotropic, 
and in fact has radical of dimension 1. Hence 

A' 7) Ai+(1) + Ai-(l) + Ao+(l) 

and so 

A7 = A2«(l) + Ao+(l) + A0-e(l), 6 = ± 

and co(A) = 1 forces (see Section 3) e = + . The conclusion follows. 

LEMMA 2.8. If u 6 GPtQ and u contains the type A0
+(X, X) with |X| = 1, 

X ̂  ± 1 and u contains as well one of the types 
0) A o - ( - l ) 

(ii) At+(1) + A r ( D 
(iii) A2-(l) 

then u —> u' with u' non-exceptional. 

Proof. We have 

Ao+(X, X) -»• Ao+(l) + Ao+(-l) 
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and the result follows from Lemma 2.7 unless we have the case (i) above, 
which was dealt with in the proof of Lemma 2.7. 

LEMMA 2.9. If u ^ GP>Q contains A = Ai+( —1) + A f ( - - l ) then 
u —-> u' with it' nonexceptional. 

Proof. For any reflection vector a chosen in the carrier space of A we 
have A —> A'. If A' D A0

€(l) then we are done unless 

A' = A0«(l) + Ao*(-l) + 2 A 0 - e ( - l ) . 

This can be avoided by choosing the reflection vector outside of E( — u)L. 
Otherwise we have 

A' = A2«(l) + Ao~É(- l ) , e = ± 

and again uf is nonexceptional. 

Proof, (of the theorem). By Lemmas 2.4-2.9 we have u —» u' with u' 
nonexceptional unless (by Lemmas 2.4, 2.5, 2.6, 2.9) the types contained 
i n ^ a r e Aoe(X, X), |X| = 1, X ̂  ± 1 ; A 0 « ( - l ) ; Ai+(1) + A f ( l ) ; A2"(l); 
AoÉ(l). The types A0

e(l) can be ignored. By Lemma 2.7, if A0
+(—1) 

belongs to the type of u, as well as one of the types above (other than 
Ao€(— 1)), then u —> u' with u' nonexceptional. Hence either u is excep
tional, or we have u2 = 1 with A0~( — 1) not in the type of u. But in this 
case clearly l(u) = r{u) since the type of eff (u) is ^A0

+( —1). Hence 
we can remove A0

+( —1) from the list above. By Lemma 2.8 we can 
remove A0

+(X, X) from the shortened list which now is 

Ao~(X, X), |X| = 1, X ̂  ± 1 ; 

A o - ( - l ) ; A!+(l) + Ai-( l ) ; A2~(l); A0
€(l). 

However, if these are the types in u, then u is exceptional. 
It only remains to show that if u is exceptional, then l(u) = r(u) + 2. 

If Eiu)1- is negative semidefinite then (Corollary 1.2) for any choice of 
a positive reflection we have 

u <— u' 

and since dim E(u') = dim E(u) — 1, we have 

l{u) ^ r(u) + 2. 

On the othei hand, we can choose a positive reflection ra so that tr (rau) 
is arbitrarily large (this is easily checked) so that rau has eigenvalues off 
the unit circle. The result follows in this case. 

If u2 = 1 with E{u)L not positive definite, and u —» u' then also 
(V)2 = i wjth E{u')^ not positive definite. (This follows from the 
observation that dim E(-u') = dim E( — u) — 1 and that the reflection 
vector a is a positive vector in E{ — u).) The result now follows by 
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induction, and the observation that if 

u —* u' —>...—» v 

then we must arrive at a transformation v for which E(v)L is negative 
definite. 

This completes the proof. 

3. The invariant. In another paper [6], with D. Z. Djokovic, concern
ing the length problem with respect to reflections in UPiQ(C)} it was 
necessary to introduce a construction called the invariant. This was 
defined as follows: For u Ç UPtQ(C), if det (I — u) 9e 0, then the 
invariant, co(zi), is given by 

v(u) = ( - l ) « d e t (1 - tt)/|det (1 - u)\. 

In the case det (1 — u) — 0, let d = dim E{u). Then there are d positive 
reflections n , . . . , rd so that û = rx . . . rau satisfies det (1 — u) ^ 0 
and we define œ(u) = co(û). œ(u) is well-defined and œ(u) = ± 1 , zbi 
when det (u) = ± 1 . œ(u) is called the invariant in [6] because if 

u —-> w' or u —̂ «' 

then co(w) = œ(u'). (There is in UPtQ(C) the further possibility that if 
uf = rau then E(u') = £(w). In this case œ(u) = dzicofV)-) 

The mapping u —>co(w) is not a homomorphism in f/Piff(C). How
ever, the construction is "inherited" by 0p>ff(R), with the same prop
erties. Since now œ(u) is real we have œ(u) = ± 1 . Furthermore, the 
mapping u —> œ(u) is a homomorphism. Also, as we shall see, together 
with the mapping u —> det (u) the four connected components of 
0PtQ(R) (p, q > 0) are distinguished. 

Notation. We label the identity component of 0PA {p} q > 0) by 
Av,q\ GPtQ\APtQ by BPiQ; the part generated by negative reflections and 
having determinant —1 we label by CPtQ, and; SOPtQ\APiQ by DPQ. 

LEMMA 3.1. The mapping u —> w(u) of 0PtQ to ± 1 is a homomorphism 
in which GPiq—> + 1 and CPtQ, DPtQ-+ — 1. Thus together with the mapping 
u —-> det (u), all of the connected components of 0P>q have been distinguished. 

Proof. If ra is a positive reflection then, if u' = raii, 

u —•» w' or u <— a' 

and so co(w) = wfV) and it follows that co(u) = co(fl) for any w, v £ GP(ff 

since 6 ^ is generated by positive reflections. Since, [6], œ(u) = co(eff u), 
and the type eff (ra) is A0

+( — 1) it is easy to check that co(ra) = 1. NOWT 

let rb be a negative reflection; i.e., f(b,b) = — 1 . Each element of 
0Piq\GPtQ is in the coset rbGPtQ. Again since Gp>q is generated by positive 
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reflections it follows that w(u) = œ(v) for any elements, v of 0PrQ\Gp<q. 
In particular, co(w) = w(r&), and since the type of eff (rb) is A0~( —1) we 
find that co(r&) = — 1. This completes the proof. 

If the type, A, of u Ç 0PtQ decomposes into irreducible types A = 
Ai + . . . + A* then 

«(A) = œ(u) = co(Ai) X . . . X co(A*). 

Thus co(w) can be computed from a knowledge of the irreducible types 
contained in u. The computation of co(A) for A irreducible is the subject 
of the next lemma. 

LEMMA 3.2. If A is an irreducible type, then w(A) is as given in the list 
below: 

«(A) 
1 

A 
Am(X, X, X-1, X-1) |X| 5* 1, X g R 

1 if X > 0 Am(X, X-1) |X| ^ 1, X 6 R 

( - l ) M + 1 i f X < 0 

Aro(X, X) |X| = 1,X 9^ ± 1 

A2
+m+l(-l) + Aïm+l(-l) 

A i + 1 ( - 1 ) + A7m+l(-l) 

A2m '(l) € = ± 

(-l)»*/e = + A*,«( - l ) e = ± 

( - l ) » + i , y e = -

Proof. We remark first that A?OT
€(1), for example, acts on a space of 

signature (m + 1, m) if e is + , and a space of signature (ra, m + 1) if 
e is —. The computation of co(A) is straightforward when A has no + 1 
eigenvalues. For example, 

co(Am(X, X-1)) = ( - 1 ) m+1 (1 - X)m+1(l - X~T + 1 

|(1 - X)m+1(l - X_ 1)m + 1r 

If X < 0 this is just (—1)'"+1, as claimed. If X > 0 then exactly one of 
(1 — X), (1 — X-1) is negative, and 

w(Aro(X, X-»)) = 1. 

If A is one of the types A^+iQ) + A^j+i(l) or A2m '(l) then we can 
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represent these using Jordan blocks of the form 

I a 1 

\ 0 ' « 1/ 
with 0 9^ a small. In this way we see that these blocks are in the connected 
component of the identity, and so a?(A) = 1 in these cases. 

We have immediately: 

COROLLARY 3.3. An element u Ç 0p>a belongs to GPiQ if and only if the 
types of u having negative eigenvalues act on a space of type (r, s) with s odd. 

Note. The connected components of 0f(F), F a field with Char F 9^ 2 
are usually distinguished by the spinor norm: If u £ 0f(F) is a product 
of reflections u = ra] . . . rafc then the mapping 

<j> : u ->/(ai , 01) . . ./(a*, ak) mod (F*)2 

of Of(F) into F*/(F*)2 is a homomorphism of 0f(F) which, together 
with u —» det (w), distinguishes the components of 0f(F). When F = R, 
0(w) = co(w). For a general field F we have 

«(«) = det \ ^ ~ ) mod (F*)2 

provided that det (1 + u) ^ 0. 

Added in proof. D. Z. Djokovic has recently proved this result using 
other methods, generalizing it to the case where the form / is possibly 
degenerate. 
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