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ON THE NUMBER OF PARITY SETS IN A GRAPH
CHARLES H. C. LITTLE

1. Introduction. The graphs considered in this paper are finite and have
no loops or multiple edges. If G is such a graph, we denote its vertex set by
VG and its edge set by EG. If X and Y are disjoint subsets of VG, we define
§(X, Y) to be the set of edges of G that join a vertex in X to one in Y.

Let G be a graph, and let A and B be disjoint subsets of VG. Then in [1] a
subset W of VG is called a parity set relative to (A, B) if for every vertex
v € AU B, |6({v}, W — {v})|is even if v € 4 and odd if v € B. A necessary
and sufficient condition for the existence of a parity set relative to (4, B) is
given in [1], where this theorem is seen to be a generalisation of a theorem of
Kasteleyn. We now enumerate the parity sets relative to (4, B) and illustrate
the use of the resulting formula with some applications. In this paper, all con-
gruences are understood to be taken modulo 2.

Acknowledgement. 1 wish to thank Mr. K. McAvaney for his helpful criticisms
of an earlier version of this paper.

2. The number of parity sets relative to (A, B). We begin with a defini-
tion. Let Gbeagraph,andlet U = {u; ..., u,} and X = {x,, ...,x,}, where U,
X C VG. For each ¢ = m, let U, be the set of vertices of X adjacent to u;, and
associate with U; the vector A; = (@, a2, ..., ay) where, for all 7 < #,
a;;is 1if x; € U;and 0 otherwise. Then the rank of U in X is defined to be the
dimension of the vector space (over the field of residue classes modulo 2)
spanned by the vectors A1, ..., 4.

In [1], the following necessary and sufficient condition for the existence of a
parity set is proved.

TaeorREM 1. Let G be « graph and let A, B, X be subsets of VG such that
A N B = ¢. Then a necessary and sufficient condition for the existence of a subset
W of X such that W is a parity sei relative to (A, B) is that there does not exist a
subset S of A \J B such that (i) |S M B| 4s odd, and (ii) [6({v}, S — {v})]| is even
for every v € X.

The proof of Theorem 1 given in [1] is based on the following theorem of
linear algebra. Given scalars a,;¢c=1,..., m; j=1,..., n) and
z,(1 = 1,...,m), the equations

n
1) Z ay; =2, G=1,...,m)
p
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can be solved for y,, ..., y, if and only if, for every sequence of coefficients
N,y ..., Ny such that the vector > ity N;(ag, ag, ..., aq,) vanishes, we have
it Az = 0.

Suppose now that all the scalars above belong to a finite field /. If the system
of equations (1) has rank » then the homogeneous system corresponding to (1)
clearly has exactly | F|*~" distinct solutions. Since each of these solutions added
to a fixed particular solution of (1) yields a solution of (1), and all solutions of
(1) are of this form, we see that the number of solutions of (1) is [F|*~", pro-
vided a solution exists. Interpreting this fact in terms of parity sets by the
method indicated in the proof of Theorem 1 given in [1], we immediately obtain
the following theorem.

THEOREM 2. Let G be a graph and let A, B, X be subsets of VG such that
A M B = ¢. If there exists a subset of X that is a parity set relative to (4, B),
then there are exactly 2'X1=7 such sets, where r is the rank of A \J B in X.

3. Application. We now illustrate how Theorem 2 may be used in certain
types of enumeration problems.

If G is a graph, a principal forest of G is defined to be a spanning subgraph
whose components are spanning trees of components of G. The cycle rank of G
is defined to be the number of chords of any principal forest of G. If G has p,
components, then a formula for the cycle rank of G is |EG| — | VG| + po.
(See [2].) We define an odd factor of G to be a subset S of EG such that every
vertex of G is incident on an odd number of edges of S. As our first example of
an application of Theorem 2, we show that if G has an odd factor, then the
number of them is the number of subsets of the chords of a fixed principal forest
of G. This result is a corollary of the next theorem.

THEOREM 3. Let G be a graph, and let A and B be disjoint subsets of VG. Then
a necessary and sufficient condition for the existence of « subgraph W of G such
that A \J B & VW and every vertex of A hus even valency in W while every vertex
of B has odd valency in W is that for every component C of G such that |1C M B| =
1, some vertex of C belongs to VG — (A \J B). Furthermore, if W exists, then
there exist exactly 21E¢1=14 Y Bl+m chojces for W, where m is the number of compo-
nents C of G for which VC C A4 \J B.

Proof. The first statement of the theorem is Corollary 1 of Theorem 5 in [1].

To establish the second statement, we define a bipartite graph H and a subset
X of VH as in the proof of Corollary 1 in [1], and use the fact that if W exists
the number of possible choices for W is exactly 2/#¢=" where r is the rank of
A \J Bin X. This fact is deduced from Theorem 2 by noticing that £V is a
parity set of H relative to (4, B). It remains only to calculate . We note that
a necessary and sufficient condition for a subset .S of VG to have the property
that every vertex of X is adjacent in H to an even number of vertices of S is
that S be the union of the vertex sets of some collection of components of G.
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If follows that in the graph H the rank of 4 \U Bin X is |4 \U B| — m. llence
the number of possible choices for W is 21E¢I=I4 U Bl+m,

COROLLARY. G has an odd factor if and only if every component of G has an even
number of vertices. Furthermore, if G has an odd factor, then the number of odd
Jactors of G is exactly 2Pt where p; is the cycle rank of G.

Proof. Apply Theorem 3 with 4 = ¢ and B = VG, using the fact that
p1 = |EG| — | VG| + po where py is the number of components of G.

This corollary suggests a 1 : 1 correspondence between odd factors of G, if
they exist, and subsets of the set of chords of a given principal forest of G. We
now establish such a correspondence directly, thereby providing an alternative
proof of this corollary.

Let T be a principal forest of a graph G, and let C be a set of chords of 7. We
will show that there exists at most one odd factor F of G such that FF/M
(EG — ET) = C.

Letting | VG| = n, we define a sequence 1%, T, ..., T,—,, of forests of G
and a sequence Cy, C, ..., C,—p, of subsets of LG as follows. Set Ty = 1" and

Cy = C. Now let i < n — py, and suppose that 7'; and C; have been defined,
that C; M E1; = ¢ and that if F is any odd factor of G for which
FN (EG — ET) = C, then FN (EG — ET';) = C;. Let e be an edge of T
incident on a vertex v of valency 1 in 7. let 7., = 1;— {v}. Let
Cip1= Cyor C;\U {e} according to whether the number of edges of C;incident
on v is odd or even. Then the number of edges of C,; incident on v is odd, and
clearly if F is an odd factor of G for which F N\ (EG — ET;) = C4, then F N
(EG - ETi+1) = Ci+1~

Since |ET| = n — po, we have ET,_,, = ¢. Furthermore, 7',_,, has exactly
Do vertices, one in each component of G. Let u# be a vertex of 7,,_,,, and let J
be the component of G containing #. By construction, every vertex of VJ — {u}
is incident on an odd number of edges of C,—,,. Since every edge of C,—,, M EJ
is incident on exactly two vertices of J, we conclude that # is incident on an
odd number of edges of C,_,, if and only if |VJ — {u}| = 1. Therefore C,_,, M
EJ is an odd factor of J if and only if |17J| = 0. Thus C,_,, is an odd factor of
G if and only if every component of G has an even number of vertices.

Furthermore, by construction, if F is an odd factor of G for which FM
(EG — ET) = C, then FN (EG — ET, ,,) = C,p,. In other words, F =
C,—po. Hence G has at most one odd factor F satisfying FF M (EG — ET) = (.
By the previous paragraph, such an I exists if and only if every component of
G has an even number of vertices. Furthermore, if G satisfies this condition,
then for each subset C of EG — ET, there exists a unique odd factor I' of G
satisfying F M\ (EG — ET) = C. Hence the number of odd factors of G is
271 as asserted in the corollary.

Our next application of Theorem 2 is concerned with the circuits of a graph.
If Cis a circuit of a graph G, we designate one of the two senses of C as clock-
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wise. If G is a directed graph, then C is said to be clockwise odd if the number of
edges of C that are directed in agreement with the clockwise sense is odd.
Otherwise C is said to be clockwise even.

THEOREM 4. Let G be a directed graph. Let Sy be the set of clockwise even circuits
of G, and let Sy be the set of clockwise edd circuits of G. Then there exist exactly
21VEI=20 orjentations of G in which every circuit of Sy is clockwise even and every
circutt of Sy s clockwise odd, where pg is the number of components of G.

Proof. Let S be the set of circuits of G. Let H be the bipartite graph defined
as follows. Let VH = S\U EG, and let vertices v, w € VH be adjacent if and
onlyifv € S,w € EGand w € Evin G. Let X = EG.

Let Q be the given orientation of G. We must show that there are exactly
217¢=?0 grientations R of G with the property that, for every circuit C of G,
there are an even number of edges of EC whose orientations under Q and R
differ. For any orientation R of G with this property, let W be the set of edges
whose orientations under Q and R differ. Then Wy is clearly a parity set of H
relative to (S, ¢). Thus we require the number of parity sets of H relative to
(S, ¢) that are subsets of EG. Such parity sets exist since ¢ is one of them.
Hence by Theorem 2, the number of them is 2/Z¢=7 where 7 is the rank of .S.
But it is well known that 7 = |EG| — | VG| + po (see [2]). Hence the required
number of orientations is 2!#¢I=UEGCI=IVE[+p0) = 2IVEI=Po,

We apply this theorem to some work of P. W. Kasteleyn. Let G be a planar
graph, and M a representation of G in the plane. For each circuit C of M, we
define the clockwise sense of C in the usual manner. Then Kasteleyn shows in
{3] that the edges of M may be oriented so that for any circuit C, the number
of edges of C that are oriented in the clockwise sense has opposite parity to the
number of vertices enclosed by C. We shall call an orientation of 37 with this
property a Kasteleyn orientution. Kasteleyn orientations are used in the enum-
eration of the 1-factors of a planar graph, as explained in [3].

The following corollary of Theorem 4 is now clear.
CoroLLARY 1. If G has a Kasteleyn orientation, then it has exactly 21V %=1

of them.

If Gisagraph and X C VG, then 6(X, VG — X) is called the coboundary
of G determined by X (or by 1'G — X). We now have the following additional
application of Theorem 4.

CororLary 2. A subset W of EG satisfies |W (N EC| = 0 for every circuil C
of G if and only if W is a coboundary.

Remark. 1t follows that if every circuit of G has even length, then £G is a

coboundary. This corollary therelore generalises the theorem that a graph is
bipartite if and only if every circuit has even length.
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Proof. 1t is clear that every coboundary has the required property, as the
edge set of any circuit of G must intersect every coboundary in an even number
of edges. By the proof of Theorem 4, there are only 2!V¢1—29 gets of edges having
the required property; hence it remains only to show that the number of dis-
tinct coboundaries of G is 2!V¢I=?0, Let Hy, ..., H,, be the components of G.
Let S C VG, and let 6 be the coboundary of G determined by S. For all 7 such
that 1 £ ¢ £ py, let S; = .SM VH,. Then for any set T of components of G,
the set obtained from .S by replacing S; by VH; — S, for every H; € T deter-
mines the same coboundary 8. Since it is clear that all sets which determine §
are of this form, there are exactly 279 sets which determine §. Since the number
of sets of vertices is 2!7%! there exist exactly 2!7¢—?¢ coboundaries. The proof
is complete.
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