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ON THE NUMBER OF PARITY SETS IN A GRAPH 

CHARLES H. C. LITTLE 

1. I n t r o d u c t i o n . The graphs considered in this paper are finite and have 
no loops or multiple edges. If G is such a graph, we denote its vertex set by 
VG and its edge set by EG. If X and Y are disjoint subsets of VG, we define 
8(X, Y) to be the set of edges of G t ha t join a vertex in X to one in Y. 

Let G be a graph, and let A and B be disjoint subsets of VG. Then in [1] a 
subset W of VG is called a parity set relative to (A, B) if for every vertex 
v G A \J B, \8({v}, W — {v})\ is even if v £ A and odd if v £ B. A necessary 
and sufficient condition for the existence of a par i ty set relative to (A, B) is 
given in [1], where this theorem is seen to be a generalisation of a theorem of 
Kasteleyn. We now enumerate the pari ty sets relative to (A, B) and illustrate 
the use of the resulting formula with some applications. In this paper, all con­
gruences are understood to be taken modulo 2. 

Acknowledgement. I wish to thank Mr. K. McAvaney for his helpful criticisms 
of an earlier version of this paper. 

2. T h e n u m b e r of pari ty se ts relat ive to (A, B) . We begin with a defini­
tion. Let G be a graph, and let U = \u\ . . . , um\ a n d X = {xi, ... ,xn], where U, 
X Ç VG. For each i :g m, let U\ be the set of vertices of X adjacent to uu and 
associate with Ui the vector A t = (an, ai2, . . . , ain) where, for all j S n, 
dij is 1 if %j Ç Ui and 0 otherwise. Then the rank of U in X is defined to be the 
dimension of the vector space (over the field of residue classes modulo 2) 
spanned by the vectors Ai, . . . , Am. 

In [1], the following necessary and sufficient condition for the existence of a 
par i ty set is proved. 

T H E O R E M 1. Let G be a graph and let A, B, X be subsets of VG such that 
A (^ B = (p. Then a necessary and sufficient condition for the existence of a subset 
W of X such that W is a parity set relative to (A, B) is that there does not exist a 
subset S of A \J B such that (i) \S C\ B\ is odd, and (ii) |5({^}, 5 — {v})\ is even 
for every v G X. 

The proof of Theorem 1 given in [1] is based on the following theorem of 
linear algebra. Given scalars atj(i = 1, . . . , m\ j = 1, . . . , n) and 
Zf(i = 1, . . . , m), the equations 

n 

( i ) S aijyj = zi (i = i , . . . , w) 
. 7 = 1 
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can be solved for yi, . . . , yn if and only if, for every sequence of coefficients 

Xi, . . . , \m such tha t the vector YA=I ^i(aa, av2, • • • , ciin) vanishes, we have 

Er=iX** = 0. 
Suppose now tha t all the scalars above belong to a finite field F. If the system 

of equations (1) has rank r then the homogeneous system corresponding to (1) 
clearly has exactly \F\n~T distinct solutions. Since each of these solutions added 
to a fixed particular solution of (1) yields a solution of (1), and all solutions of 
(1) are of this form, we see tha t the number of solutions of (1) is \F\n~r, pro­
vided a solution exists. Interpret ing this fact in terms of par i ty sets by the 
method indicated in the proof of Theorem 1 given in [1], we immediately obtain 
the following theorem. 

T H E O R E M 2. Let G be a graph and let A, B^ X be subsets of VG such that 
A r\ B = 0. If there exists a subset of X that is a parity set relative to (A, B), 
then there are exactly 2 | X | - r such sets, where r is the rank of A\J B in X. 

3. A p p l i c a t i o n . We now illustrate how Theorem 2 may be used in certain 
types of enumerat ion problems. 

If G is a graph, a principal forest of G is defined to be a spanning subgraph 
whose components are spanning trees of components of G. T h e cycle rank of G 
is defined to be the number of chords of any principal forest of G. If G has p{) 

components , then a formula for the cycle rank of. G is \EG\ — \ VG\ + po. 
(See [2].) We define an odd factor of G to be a subset 5 of EG such tha t every 
vertex of G is incident on an odd number of edges of S. As our first example of 
an application of Theorem 2, we show tha t if G has an odd factor, then the 
number of them is the number of subsets of the chords of a fixed principal forest 
of G. This result is a corollary of the next theorem. 

T H E O R E M 3. Let G be a graph, and let A and B be disjoint subsets of VG. Then 
a necessary and sufficient condition for the existence of a subgraph W of G such 
that A VJ B Ç VW and every vertex of A has even valency in W while every vertex 
of B has odd valency in W is that for every component C ofG such that \ VC r\ B\ = 
1, some vertex of C belongs to VG — (A\J B). Furthermore, if W exists, then 
there exist exactly 2lEG\~lA u B\+m choices for W, where m is the number of compo­
nents C of G for which VC Ç A\J B. 

Proof. T h e first s ta tement of the theorem is Corollary 1 of Theorem ô in [1]. 
To establish the second s ta tement , we define a bipar t i te graph H and a subset 

X of VH as in the proof of Corollary 1 in [1], and use the fact t ha t if W exists 
the number of possible choices for W is exactly 2{EG\~r where r is the rank of 
A \J B in X. This fact is deduced from Theorem 2 by noticing tha t EW is a 
par i ty set of H relative to (A, B). I t remains only to calculate r. We note t ha t 
a necessary and sufficient condition for a subset S of VG to have the proper ty 
t ha t every vertex of X is adjacent in H to an even number of vertices of S is 
t ha t S be the union of the vertex sets of some collection of components of G. 
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If follows tha t in the graph H the rank of A \J B in X is \A U B\ — m. Hence 
the number of possible choices for W is 2 I^G?I_ |A u B\+m. 

COROLLARY. G has an odd factor if and only if every component of G has an even 
number of vertices. Furthermore, if G has an odd factor, then the number of odd 
factors of G is exactly 2Pl where pi is the cycle rank of G. 

Proof. Apply Theorem 3 with A = <j> and B = VG, using the fact tha t 
pi = |EG| — \VG\ + po where po is the number of components of G. 

This corollary suggests a 1 : 1 correspondence between odd factors of G, if 
they exist, and subsets of the set of chords of a given principal forest of G. We 
nowr establish such a correspondence directly, thereby providing an al ternative 
proof of this corollary. 

Let T be a principal forest of a graph G, and let C be a set of chords of T. We 
will show tha t there exists a t most one odd factor F of G such tha t i^Pi 
(EG - ET) = C. 

Lett ing | VG\ = n, we define a sequence To, Ti, . . . , Tn-P0 of forests of G 
and a sequence G0, Ci, . . . , Cn-PQ of subsets of EG as follows. Set To = T and 
Go = G. Now let i < n — po, and suppose tha t Tt and Ct have been defined, 
tha t Ct C\ ETt = <j> and tha t if F is any odd factor of G for which 
FH (EG - ET) = C, then F H (EG - ETt) = Ct. Let e be an edge of Tt 

incident on a vertex v of valency 1 in Tt. Let Ti+i = Tt — {v}. Let 
Ci+i = Ci or Ct VJ {e} according to whether the number of edges of Ct incident 
on v is odd or even. Then the number of edges of Ci+i incident on v is odd, and 
clearly if F is an odd factor of G for which F P\ (EG — ETt) = Cu then F C\ 
(EG — ETi+i) = Ci+i. 

Since \ET\ = n — po, we have ETn_PQ = 0. Furthermore, Tn_po has exactly 
po vertices, one in each component of G. Let u be a vertex of Tn-.po, and let / 
be the component of G containing u. By construction, every vertex of VJ — {u} 
is incident on an odd number of edges of Cn-P0. Since every edge of Cn-PQ T^ EJ 
is incident on exactly two vertices of J, we conclude tha t u is incident on an 
odd number of edges of Cn-PQ if and only if | VJ — {u}\ = 1. Therefore Cn-P0 H 
EJ is an odd factor of / if and only if | VJ\ = 0. Thus Cn-PQ is an odd factor of 
G if and only if every component of G has an even number of vertices. 

Fur thermore , by construction, if F is an odd factor of G for which F C\ 
(EG — ET) = C, then F C\ (EG — ETn_P0) = Cn_po. In other words, F = 
Cn-P0. Hence G has a t most one odd factor F satisfying F C\ (EG — ET) = C. 
By the previous paragraph, such an F exists if and only if every component of 
G has an even number of vertices. Fur thermore, if G satisfies this condition, 
then for each subset G of EG — ET, there exists a unique odd factor F of G 
satisfying F C\ (EG — ET) = C. Hence the number of odd factors of G is 
2P1, as asserted in the corollary. 

Our next application of Theorem 2 is concerned with the circuits of a graph. 
If C is a circuit of a graph G, we designate one of the two senses of G as clock-
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wise. If G is a directed graph, then C is said to be clockwise odd if the number of 
edges of C t h a t are directed in agreement with the clockwise sense is odd. 
Otherwise C is said to be clockwise even. 

T H E O R E M 4. Let G be a directed graph. Let So be the set of clockwise even circuits 
of G, and let Si be the set of clockwise odd circuits of G. Then there exist exactly 
2\VG\-PQ orientations of G in which every circuit of So is clockwise even and every 
circuit of Si is clockwise odd, where po is the number of components of G. 

Proof. Let 5 be the set of circuits of G. Let H be the bipart i te graph defined 
as follows. Let VH = S U EG, and let vertices v, w Ç VH be adjacent if and 
only if v £ S, w £ EG and w £ Ev in G. Let X = EG. 

Let Q be the given orientation of G. We must show tha t there are exactly 
2\VG\-vo orientations R of G with the proper ty tha t , for every circuit C of G, 
there are an even number of edges of EC whose orientations under Q and R 
differ. For any orientation R of G with this property, let WR be the set of edges 
whose orientations under Q and R differ. Then WR is clearly a par i ty set of H 
relative to (5, 0 ) . T h u s we require the number of par i ty sets of H relative to 
(S, 0) t ha t are subsets of EG. Such par i ty sets exist since </> is one of them. 
Hence by Theorem 2, the number of them is 2\EG\~r where r is the rank of S. 
But it is well known tha t r = \EG\ — | VG\ + po (see [2]). Hence the required 
number of orientations is 2 ^ G I - ^ G I H ™ | + P 0 ) = ^VG\~P\ 

We apply this theorem to some work of P. W. Kasteleyn. Let G be a planar 
graph, and M a representat ion of G in the plane. For each circuit C of M, we 
define the clockwise sense of C in the usual manner. Then Kasteleyn shows in 
[31 t ha t the edges of M may be oriented so tha t for any circuit C, the number 
of edges of C t ha t are oriented in the clockwise sense has opposite par i ty to the 
number of vertices enclosed by C. We shall call an orientation of M with this 
proper ty a Kasteleyn orientation. Kasteleyn orientations are used in the enum­
eration of the 1-factors of a planar graph, as explained in [3]. 

The following corollary of Theorem 4 is now clear. 

COROLLARY 1. If G has a Kasteleyn orientation, then it has exactly 2 | r r / |~~Po 

of them. 

If G is a graph and X ÇZ VG, then ô(X, VG — X) is called the coboundary 
of G determined by X (or by VG — X). We now have the following addit ional 
application of Theorem 4. 

COROLLARY 2. A subset W of EG satisfies \W C\ EC\ = 0 for every circuit C 
of G if and only if W is a coboundary. 

Remark, I t follows tha t if every circuit of G has even length, then EG is a 
coboundary. This corollary therefore generalises the theorem tha t a graph is 
bipart i te if and only if every circuit has even length. 
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Proof. I t is clear t ha t every coboundary lias the required property, as the 
edge set of any circuit of G must intersect every coboundary in an even number 
of edges. By the proof of Theorem 4, there are only 21 VG\-*o sets of edges having 
the required proper ty; hence it remains only to show tha t the number of dis­
t inct coboundaries of G is 2lVGl~Po. Let Hu . . . , Hpo be the components of G. 
Let 5 C VG, and let 8 be the coboundary of G determined by S. For all i such 
that 1 ^ i ^ po, let St = S r\ VHt. Then for any set T of components of G, 
the set obtained from 5 by replacing S* by VHt — St for every Hi G 7" deter­
mines the same coboundary 8. Since it is clear tha t all sets which determine ô 
are of this form, there are exactly 2P0 sets which determine 8. Since the number 
of sets of vertices is 2 | F ( ? i , there exist exactly 2 | V G ! | _ P 0 coboundaries.The proof 
is complete. 
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