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ON THE NUMBER OF PARITY SETS IN A GRAPH 

CHARLES H. C. LITTLE 

1. I n t r o d u c t i o n . The graphs considered in this paper are finite and have 
no loops or multiple edges. If G is such a graph, we denote its vertex set by 
VG and its edge set by EG. If X and Y are disjoint subsets of VG, we define 
8(X, Y) to be the set of edges of G t ha t join a vertex in X to one in Y. 

Let G be a graph, and let A and B be disjoint subsets of VG. Then in [1] a 
subset W of VG is called a parity set relative to (A, B) if for every vertex 
v G A \J B, \8({v}, W — {v})\ is even if v £ A and odd if v £ B. A necessary 
and sufficient condition for the existence of a par i ty set relative to (A, B) is 
given in [1], where this theorem is seen to be a generalisation of a theorem of 
Kasteleyn. We now enumerate the pari ty sets relative to (A, B) and illustrate 
the use of the resulting formula with some applications. In this paper, all con
gruences are understood to be taken modulo 2. 

Acknowledgement. I wish to thank Mr. K. McAvaney for his helpful criticisms 
of an earlier version of this paper. 

2. T h e n u m b e r of pari ty se ts relat ive to (A, B) . We begin with a defini
tion. Let G be a graph, and let U = \u\ . . . , um\ a n d X = {xi, ... ,xn], where U, 
X Ç VG. For each i :g m, let U\ be the set of vertices of X adjacent to uu and 
associate with Ui the vector A t = (an, ai2, . . . , ain) where, for all j S n, 
dij is 1 if %j Ç Ui and 0 otherwise. Then the rank of U in X is defined to be the 
dimension of the vector space (over the field of residue classes modulo 2) 
spanned by the vectors Ai, . . . , Am. 

In [1], the following necessary and sufficient condition for the existence of a 
par i ty set is proved. 

T H E O R E M 1. Let G be a graph and let A, B, X be subsets of VG such that 
A (^ B = (p. Then a necessary and sufficient condition for the existence of a subset 
W of X such that W is a parity set relative to (A, B) is that there does not exist a 
subset S of A \J B such that (i) \S C\ B\ is odd, and (ii) |5({^}, 5 — {v})\ is even 
for every v G X. 

The proof of Theorem 1 given in [1] is based on the following theorem of 
linear algebra. Given scalars atj(i = 1, . . . , m\ j = 1, . . . , n) and 
Zf(i = 1, . . . , m), the equations 

n 

( i ) S aijyj = zi (i = i , . . . , w) 
. 7 = 1 
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can be solved for yi, . . . , yn if and only if, for every sequence of coefficients 

Xi, . . . , \m such tha t the vector YA=I ^i(aa, av2, • • • , ciin) vanishes, we have 

Er=iX** = 0. 
Suppose now tha t all the scalars above belong to a finite field F. If the system 

of equations (1) has rank r then the homogeneous system corresponding to (1) 
clearly has exactly \F\n~T distinct solutions. Since each of these solutions added 
to a fixed particular solution of (1) yields a solution of (1), and all solutions of 
(1) are of this form, we see tha t the number of solutions of (1) is \F\n~r, pro
vided a solution exists. Interpret ing this fact in terms of par i ty sets by the 
method indicated in the proof of Theorem 1 given in [1], we immediately obtain 
the following theorem. 

T H E O R E M 2. Let G be a graph and let A, B^ X be subsets of VG such that 
A r\ B = 0. If there exists a subset of X that is a parity set relative to (A, B), 
then there are exactly 2 | X | - r such sets, where r is the rank of A\J B in X. 

3. A p p l i c a t i o n . We now illustrate how Theorem 2 may be used in certain 
types of enumerat ion problems. 

If G is a graph, a principal forest of G is defined to be a spanning subgraph 
whose components are spanning trees of components of G. T h e cycle rank of G 
is defined to be the number of chords of any principal forest of G. If G has p{) 

components , then a formula for the cycle rank of. G is \EG\ — \ VG\ + po. 
(See [2].) We define an odd factor of G to be a subset 5 of EG such tha t every 
vertex of G is incident on an odd number of edges of S. As our first example of 
an application of Theorem 2, we show tha t if G has an odd factor, then the 
number of them is the number of subsets of the chords of a fixed principal forest 
of G. This result is a corollary of the next theorem. 

T H E O R E M 3. Let G be a graph, and let A and B be disjoint subsets of VG. Then 
a necessary and sufficient condition for the existence of a subgraph W of G such 
that A VJ B Ç VW and every vertex of A has even valency in W while every vertex 
of B has odd valency in W is that for every component C ofG such that \ VC r\ B\ = 
1, some vertex of C belongs to VG — (A\J B). Furthermore, if W exists, then 
there exist exactly 2lEG\~lA u B\+m choices for W, where m is the number of compo
nents C of G for which VC Ç A\J B. 

Proof. T h e first s ta tement of the theorem is Corollary 1 of Theorem ô in [1]. 
To establish the second s ta tement , we define a bipar t i te graph H and a subset 

X of VH as in the proof of Corollary 1 in [1], and use the fact t ha t if W exists 
the number of possible choices for W is exactly 2{EG\~r where r is the rank of 
A \J B in X. This fact is deduced from Theorem 2 by noticing tha t EW is a 
par i ty set of H relative to (A, B). I t remains only to calculate r. We note t ha t 
a necessary and sufficient condition for a subset S of VG to have the proper ty 
t ha t every vertex of X is adjacent in H to an even number of vertices of S is 
t ha t S be the union of the vertex sets of some collection of components of G. 
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If follows tha t in the graph H the rank of A \J B in X is \A U B\ — m. Hence 
the number of possible choices for W is 2 I^G?I_ |A u B\+m. 

COROLLARY. G has an odd factor if and only if every component of G has an even 
number of vertices. Furthermore, if G has an odd factor, then the number of odd 
factors of G is exactly 2Pl where pi is the cycle rank of G. 

Proof. Apply Theorem 3 with A = <j> and B = VG, using the fact tha t 
pi = |EG| — \VG\ + po where po is the number of components of G. 

This corollary suggests a 1 : 1 correspondence between odd factors of G, if 
they exist, and subsets of the set of chords of a given principal forest of G. We 
nowr establish such a correspondence directly, thereby providing an al ternative 
proof of this corollary. 

Let T be a principal forest of a graph G, and let C be a set of chords of T. We 
will show tha t there exists a t most one odd factor F of G such tha t i^Pi 
(EG - ET) = C. 

Lett ing | VG\ = n, we define a sequence To, Ti, . . . , Tn-P0 of forests of G 
and a sequence G0, Ci, . . . , Cn-PQ of subsets of EG as follows. Set To = T and 
Go = G. Now let i < n — po, and suppose tha t Tt and Ct have been defined, 
tha t Ct C\ ETt = <j> and tha t if F is any odd factor of G for which 
FH (EG - ET) = C, then F H (EG - ETt) = Ct. Let e be an edge of Tt 

incident on a vertex v of valency 1 in Tt. Let Ti+i = Tt — {v}. Let 
Ci+i = Ci or Ct VJ {e} according to whether the number of edges of Ct incident 
on v is odd or even. Then the number of edges of Ci+i incident on v is odd, and 
clearly if F is an odd factor of G for which F P\ (EG — ETt) = Cu then F C\ 
(EG — ETi+i) = Ci+i. 

Since \ET\ = n — po, we have ETn_PQ = 0. Furthermore, Tn_po has exactly 
po vertices, one in each component of G. Let u be a vertex of Tn-.po, and let / 
be the component of G containing u. By construction, every vertex of VJ — {u} 
is incident on an odd number of edges of Cn-P0. Since every edge of Cn-PQ T^ EJ 
is incident on exactly two vertices of J, we conclude tha t u is incident on an 
odd number of edges of Cn-PQ if and only if | VJ — {u}\ = 1. Therefore Cn-P0 H 
EJ is an odd factor of / if and only if | VJ\ = 0. Thus Cn-PQ is an odd factor of 
G if and only if every component of G has an even number of vertices. 

Fur thermore , by construction, if F is an odd factor of G for which F C\ 
(EG — ET) = C, then F C\ (EG — ETn_P0) = Cn_po. In other words, F = 
Cn-P0. Hence G has a t most one odd factor F satisfying F C\ (EG — ET) = C. 
By the previous paragraph, such an F exists if and only if every component of 
G has an even number of vertices. Fur thermore, if G satisfies this condition, 
then for each subset G of EG — ET, there exists a unique odd factor F of G 
satisfying F C\ (EG — ET) = C. Hence the number of odd factors of G is 
2P1, as asserted in the corollary. 

Our next application of Theorem 2 is concerned with the circuits of a graph. 
If C is a circuit of a graph G, we designate one of the two senses of G as clock-
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wise. If G is a directed graph, then C is said to be clockwise odd if the number of 
edges of C t h a t are directed in agreement with the clockwise sense is odd. 
Otherwise C is said to be clockwise even. 

T H E O R E M 4. Let G be a directed graph. Let So be the set of clockwise even circuits 
of G, and let Si be the set of clockwise odd circuits of G. Then there exist exactly 
2\VG\-PQ orientations of G in which every circuit of So is clockwise even and every 
circuit of Si is clockwise odd, where po is the number of components of G. 

Proof. Let 5 be the set of circuits of G. Let H be the bipart i te graph defined 
as follows. Let VH = S U EG, and let vertices v, w Ç VH be adjacent if and 
only if v £ S, w £ EG and w £ Ev in G. Let X = EG. 

Let Q be the given orientation of G. We must show tha t there are exactly 
2\VG\-vo orientations R of G with the proper ty tha t , for every circuit C of G, 
there are an even number of edges of EC whose orientations under Q and R 
differ. For any orientation R of G with this property, let WR be the set of edges 
whose orientations under Q and R differ. Then WR is clearly a par i ty set of H 
relative to (5, 0 ) . T h u s we require the number of par i ty sets of H relative to 
(S, 0) t ha t are subsets of EG. Such par i ty sets exist since </> is one of them. 
Hence by Theorem 2, the number of them is 2\EG\~r where r is the rank of S. 
But it is well known tha t r = \EG\ — | VG\ + po (see [2]). Hence the required 
number of orientations is 2 ^ G I - ^ G I H ™ | + P 0 ) = ^VG\~P\ 

We apply this theorem to some work of P. W. Kasteleyn. Let G be a planar 
graph, and M a representat ion of G in the plane. For each circuit C of M, we 
define the clockwise sense of C in the usual manner. Then Kasteleyn shows in 
[31 t ha t the edges of M may be oriented so tha t for any circuit C, the number 
of edges of C t ha t are oriented in the clockwise sense has opposite par i ty to the 
number of vertices enclosed by C. We shall call an orientation of M with this 
proper ty a Kasteleyn orientation. Kasteleyn orientations are used in the enum
eration of the 1-factors of a planar graph, as explained in [3]. 

The following corollary of Theorem 4 is now clear. 

COROLLARY 1. If G has a Kasteleyn orientation, then it has exactly 2 | r r / |~~Po 

of them. 

If G is a graph and X ÇZ VG, then ô(X, VG — X) is called the coboundary 
of G determined by X (or by VG — X). We now have the following addit ional 
application of Theorem 4. 

COROLLARY 2. A subset W of EG satisfies \W C\ EC\ = 0 for every circuit C 
of G if and only if W is a coboundary. 

Remark, I t follows tha t if every circuit of G has even length, then EG is a 
coboundary. This corollary therefore generalises the theorem tha t a graph is 
bipart i te if and only if every circuit has even length. 
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Proof. I t is clear t ha t every coboundary lias the required property, as the 
edge set of any circuit of G must intersect every coboundary in an even number 
of edges. By the proof of Theorem 4, there are only 21 VG\-*o sets of edges having 
the required proper ty; hence it remains only to show tha t the number of dis
t inct coboundaries of G is 2lVGl~Po. Let Hu . . . , Hpo be the components of G. 
Let 5 C VG, and let 8 be the coboundary of G determined by S. For all i such 
that 1 ^ i ^ po, let St = S r\ VHt. Then for any set T of components of G, 
the set obtained from 5 by replacing S* by VHt — St for every Hi G 7" deter
mines the same coboundary 8. Since it is clear tha t all sets which determine ô 
are of this form, there are exactly 2P0 sets which determine 8. Since the number 
of sets of vertices is 2 | F ( ? i , there exist exactly 2 | V G ! | _ P 0 coboundaries.The proof 
is complete. 
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