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THE TWO-TYPE CONTINUUM RICHARDSON MODEL:
NONDEPENDENCE OF THE SURVIVAL OF BOTH
TYPES ON THE INITIAL CONFIGURATION
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Abstract

We consider the model of Deijfen, Häggström and Bagley (2004) for competing growth of
two infection types in R

d , based on the Richardson model on Z
d . Stochastic ball-shaped

infection outbursts transmit the infection type of the center to all points of the ball that are
not yet infected. Relevant parameters of the model are the initial infection configuration,
the (type-dependent) growth rates, and the radius distribution of the infection outbursts.
The main question is that of coexistence: Which values of the parameters allow the
unbounded growth of both types with positive probability? Deijfen, Häggström and
Bagley (2004) conjectured that the initial configuration is basically irrelevant for this
question, and gave a proof for this under strong assumptions on the radius distribution,
which, e.g. do not include the case of a deterministic radius. Here we give a proof that
does not rely on these assumptions. One of the tools to be used is a slight generalization
of the model with immune regions and delayed initial infection configurations.
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1. Introduction

We consider a model for the competing growth of n types of infection on R
d , where

d ≥ 1 is the number of spatial dimensions. We will refer to it as the (d-dimensional n-type)
continuum Richardson model (CR model). The corresponding model with one infection type
was introduced by Deijfen [1] as a continuum version of the growth model on Z

d introduced
by Richardson [6]. The multitype versions of these models were first considered by Häggström
and Pemantle [5] (discrete model) and Deijfen et al. [4] (continuum model).

The CR model is a stochastic process Z = (Zi
t )i,t , where Zi

t denotes the subset of R
d that is

infected with type i ∈ {1, . . . , n} (i.e. i-infected) at time t ≥ 0. Initially, given disjoint regions
�i are i-infected. Whenever a region is i-infected, it stays like that. Furthermore, it tries to
i-infect healthy ‘neighboring’ regions by means of stochastic infection outbursts. The waiting
time for the first outburst of infection type i after time t is exponentially distributed with rate
βiλ

d(Zi
t ), where λd denotes the Lebesgue measure and βi is a type-dependent growth rate.

The outburst has the shape of a ball, where the center is chosen uniformly in Zi
t and the radius
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is chosen with respect to a given radius distribution ρ. At the time of the outburst all points
within the ball that are not yet infected become i-infected. We note that the i-infected region
Zi

t is increasing in t , and at any given time t the sets (Zi
t )i are disjoint.

The parameters of the CR model are the initial configuration � = (�1, . . . , �n), the growth
rates β = (β1, . . . , βn), and the radius distribution ρ. Throughout the paper, we will assume
that λd(�i) > 0, βi > 0, and ρ({0}) = 0 to avoid trivialities; furthermore, we will assume that
�i is bounded and that ρ satisfies

∫ ∞

0
rd dρ(r) < ∞, (1)

which will ensure that the model is well defined. Other assumptions on ρ that sometimes play
an important role are stronger moment assumptions such as

∫ ∞

0
eϕr dρ(r) < ∞ for some ϕ > 0, (2)

and conditions on the support of ρ such as

ρ((0, δ)) > 0 for all δ > 0. (3)

For instance, in [1] and [4] the authors showed, for the one-type CR model, that, under condition
(2) on ρ, the asymptotic shape of Zt/t for t → ∞ is a ball; we have stated this result as
Theorem 3 in Section 2.3.

An interesting question for the CR model is that of coexistence: Do all infection types
grow unboundedly at the same time with positive probability? In the two-type CR model it
is conjectured that we have coexistence if and only if β1 = β2. It is known that, for fixed
β1, at most countably many values of β2 allow coexistence (see [4]) and the value β2 = β1
is one of them (see [2]). Both results assume condition (2) and concern models with special
initial configurations consisting of two disjoint balls. However, the question of coexistence is
basically independent of the initial configuration. This is shown in [4], assuming that ρ satisfies
(2) and (3). The aim of the present paper is to show how these extra assumptions can be avoided.
(In fact, it turns out that assuming condition (1) is sufficient.) As an immediate consequence,
the aforementioned coexistence results extend to basically all initial configurations for all radius
distributions satisfying (2). This is desirable as some of the most natural choices of ρ do not
satisfy (3), e.g. the case of outbursts with a deterministic radius.

For stating our result, let us consider a two-type CR model with initial condition� = (�1, �2)

and growth rates β = (β1, β2). Let B� denote the smallest ball centered at the origin containing
�∪ := �1 ∪�2. Let Li be the event that type i leaves B� , let Gi be the event that type i reaches
points arbitrarily far from the origin, and let G := G1 ∩ G2 be the event of unbounded growth
of both types. Whenever we consider more than one model, we will indicate the relevant
parameters in parentheses after the corresponding event.

Theorem 1. We consider two d-dimensional two-type CR models with d ≥ 2, initial configu-
ration � and �′, growth rates βi = β ′

i , and radius distributions ρ = ρ′ (satisfying (1)). If we
have P(Li(�)) > 0 and P(Li(�

′)) > 0 for i = 1, 2, the possibility of coexistence does not
depend on the initial condition:

P(G(�)) > 0 ⇐⇒ P(G(�′)) > 0.
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We note that the condition on the events Li merely states that in the initial configurations
no type strangles the other. As mentioned above, combining Theorem 1 with the coexistence
results from [2] and [4] immediately gives the following result.

Theorem 2. We consider a d-dimensional two-type CR model with d ≥ 2, initial configuration
�, growth rates β = (β1, β2), and radius distribution ρ satisfying (2).

(a) If β1 = β2 > 0 and P(Li(β)) > 0 for i = 1, 2, we have P(G(β)) > 0.

(b) For fixed β1, we have P(G(β)) = 0 for all but countably many values of β2.

We briefly discuss to what extent the proof of Theorem 1 of [4] makes use of the stronger
assumptions on the radius distribution. One of the tools used is the aforementioned theorem on
the asymptotic shape of the infected region, which relies on (2). But only the lower bound of the
asymptotic shape is used, which is still valid if the radii of the outbursts are increased. Thus, it
is easy to relax (2) to (1). Another tool in the proof is the construction of an infection evolution
that infects some given points with type 1 (‘type-1 points’) and some other given points with
type 2 (‘type-2 points’). For this, condition (3) is essential. Suppose that some type-1 points are
surrounded by type-2 points. Utilizing (3) it is easy to construct a sequence of sufficiently small
outbursts that 1-infect the type-1 points without 1-infecting the type-2 points. Without (3), this
seems to be hopeless. Instead, our strategy will be to 2-infect all type-2 points, but to 1-infect
only a single (suitably chosen) type-1 point. The construction of such an infection evolution
turns out to be possible without (3), though somewhat complicated in terms of geometry. We
then have to investigate how the unknown infection states of the remaining type-1 points affect
the subsequent infection evolution. Our key tool for this is a generalized version of the CR
model that allows immune regions and delayed infections in its initial configuration.

We define a generalized initial configuration � of an n-type CR model to be a finite collection
� = (�j ) of disjoint bounded Borel subsets of R

d , each of which has an associated type
i(�j ) ∈ {1, . . . , n} and an associated time t (�j ) ∈ [0, ∞]. We consider �j to be uninfected at
times t < t (�j ) and infected with type i(�j ) at times t ≥ t (�j ). If t (�j ) < ∞, this corresponds
to a delayed initial configuration, and if t (�j ) = ∞, this corresponds to an immune region (and
in this case i(�j ) is irrelevant). We will use the shorthand notation �∪ := ⋃

j �j . Additionally,
we are given growth parameters βi > 0 and a radius distribution ρ as before. The corresponding
stochastic process will again be denoted by Z = (Zi

t )i,t , where Zi
t denotes the i-infected subset

of R
d at time t ≥ 0. The dynamics of outbursts is a generalization of that for the CR model

with standard initial configurations. It is defined by the following properties.

• Z is a Markov process (which is time homogeneous if and only if t (�j ) ∈ {0, ∞} for
all j ).

• In �∪ we have a deterministic infection evolution as described above.

• Regions of �c∪ can only be infected by ball-shaped infection outbursts. If the center of
such a ball is i-infected then the outburst i-infects all points within the ball that are not
yet infected and not in �∪.

• At a given time t an outburst of type i occurs at rate βiλ
d(Zi

t ). The center of the
corresponding ball is chosen uniformly in Zi

t and the radius is chosen with respect to ρ.

The above properties uniquely define the distribution of the process Z. We will refer to such a
process as the CR model with generalized initial configuration or the generalized CR model.
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This paper is organized as follows. In Section 2 we clarify some notation, describe two ways
to construct a generalized CR model from a Poisson point process, and state a shape theorem and
some other important properties of the generalized CR model. The proofs of the corresponding
lemmas and theorems are relegated to Section 3. In Section 4 we prove Theorem 1. The proofs
of the corresponding lemmas are relegated to Section 5.

2. Setting

2.1. The underlying space and point process

First we introduce some notation concerning subsets of R
d and point processes. We denote

the Lebesgue measure on R
d by λd and the restriction of λ = λ1 to R+ = [0, ∞) by λ+. Let

B(x, r) denote the closed ball with center x ∈ R
d and radius r > 0. Let d(x, y) := |x − y| be

the Euclidean distance between two points x, y ∈ R
d . We will use d(·, ·) in the usual way also

for the distance between a point and a set or the distance between two sets. For A ⊂ R
d and

r > 0, let
A+r = {x ∈ R

d : d(x, A) ≤ r}.
Considering point processes, we will be mainly concerned with points p = (x, s, r, w) ∈

R
d × R+ × R+ × R+ =: R

d×. We will refer to the components of such a point p as position x,
time s, radius r , and strength w. For A ⊂ R

d and time interval I ⊂ R+, by abuse of notation
we will sometimes consider A and A × I as subsets of R

d×. A point configuration X is defined
as a locally finite subset of R

d×. Let X denote the set of all point configurations. For a Borel
set E ⊂ R

d× and X ∈ X, let NE(X) be the number of points of X in E, and let FE be the
σ -algebra on X generated by all counting variables NE′ , where E′ is a Borel subset of E.
We define F := F

R
d× to be the σ -algebra usually associated to X. Sets M ∈ FE will be

called events, depending only on (the information in) E. For a given radius distribution ρ,
we consider the Poisson point process with intensity measure λd× := λd ⊗ λ+ ⊗ ρ ⊗ λ+ and
denote its distribution by P.

2.2. Constructing the model from a Poisson point process

Many proofs rely on the comparison of different generalized CR models, so we have to
construct suitable couplings between them. To prepare this, we describe two methods to
construct an infection evolution Z = Z(X) for a given point configuration X ∈ X. Typically,
X will be a realization of P.

The first method to construct an infection evolution from X is called ‘scanning from the time
of infection’. The infection evolution in the generalized initial configuration �∪ is deterministic:
every region �j is infected at the associated time with the associated type (and is uninfected
before). Whenever a previously uninfected region A is i-infected at some time t , it gets a
scanning device that starts scanning for points of X in A × [t, ∞) × R+ × [0, βi]. A point
p = (x, s, r, w) ∈ X located in A with time s ≥ t and strength w ≤ βi will be scanned at
time s. At this time the point p produces an outburst i-infecting all points of B(x, r) that are
not yet infected and not in �∪. We stress that in this construction a point p = (x, s, r, w) ∈ X

can produce an outburst only if x has been infected by time s; if x has been i-infected before
time s and w ≤ βi , p produces an outburst at time s.

This construction is changed slightly in the second method: ‘scanning from time 0’. The
infection evolution in �∪ is the same as above, and again a previously uninfected region A that
is i-infected at some time t gets a scanning device. But now this device starts scanning for
points of X in A × [0, ∞) × R+ × [0, βi]. So a point p = (x, s, r, w) ∈ X located in A with
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time s ≥ 0 and strength w ≤ βi will be scanned at time t + s. The outburst generated by p at
this time has the same effect as above. We stress that in this construction the only condition for
a point p = (x, s, r, w) ∈ X to produce an outburst is that w is sufficiently small (depending
on the eventual infection type of x); if x gets i-infected at time t and w ≤ βi , p produces an
outburst at time t + s.

If X is chosen according to P, both constructions give a random infection evolution with
the properties described in Section 1, and thus yield a generalized CR model. Furthermore,
for both methods of construction, there are only finitely many outbursts in any finite amount of
time almost surely (a.s.). This can be shown as in [1, Proposition 2.1] for the usual one-type
CR model, making use of property (1) of the radius distribution ρ. As a consequence of the
properties of the Poisson point process, in both methods of construction, a.s., no point is scanned
at the same time as another point or at a time associated to part of the initial configuration. The
only instance where we will use ‘scanning from time 0’ is in the proof of Theorem 4. In
every other instance, when a CR model is related to a point process or a point configuration,
we will assume that the CR model is constructed by ‘scanning from the time of infection’.
Whenever we consider two or more initial configurations, we write Zi

t (�) to indicate which
initial configuration the process uses. In the special case of a standard initial configuration, the
above constructions are slightly easier; see [1], [2], and [4].

We conclude this subsection by introducing some notions useful for describing an infection
evolution. The total infected region at time t will be denoted by Z∪

t := Z1
t ∪ · · · ∪ Zn

t . Next we
consider a point p = (x, s, r, w) scanned at time t . The point p is said to produce an effective
outburst if it produces an outburst that increases the infected region, i.e. B(x, r) �⊂ Z∪

t ∪�∪. The
point p is said to produce a virtual effective outburst if w ≤ maxi βi and B(x, r) �⊂ Z∪

t ∪ �∪
(but x is not necessarily infected at time s, so p might not produce any outburst). A virtual
effective outburst is said to virtually infect points of a set C if B(x, r) ∩ C �⊂ Z∪

t ∪ �∪. A time
t is called a time of growth if at this time the infected region increases, which may be due to
the initial configuration or an effective outburst. Many proofs of assertions about an infection
evolution are by induction on the times of growth (considered in linear order). Finally, we call
a sequence (pn)n of points pn an i-infection path if every pn produces an effective outburst
that i-infects the position of pn+1.

2.3. Auxiliary results

Let Z denote a two-type CR model with standard initial configuration � = (�1, �2). In
the proof of Theorem 1 we have to construct various infection evolutions. A building block
of these constructions is to let one type, say type 1, grow along a given set C. If at time T1
a neighborhood of some point c0 ∈ C is 1-infected and C is not 2-infected, we construct an
infection evolution in the time interval (T1, T2] so that type 2 does not grow at all and type 1
infects some enlargement of C (as far as that is possible). For this, we use outbursts of a certain
size, so we choose a d0 > 0 with

ρ([d0, d0 + ε]) > 0 for all ε > 0, (4)

e.g. d0 := inf{r > r0 : ρ([0, r]) > ρ([0, r0])} for some small r0 with ρ([0, r0]) < 1. We
fix the value of such a d0 for the rest of the paper. Definition 1 below gives a more precise
description of the growth of type 1 along a set C, and in Lemma 1 below we give conditions
on C under which this kind of growth is possible.

Definition 1. (Growth along a set.) Let 0 < δ < d0/2, 0 ≤ T1 < T2, B, C ⊂ R
d be bounded

Borel sets with C+d0+2δ ⊂ B, and c0 ∈ C. An event M of point configurations is said to
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describe the growth of type 1 along C (within B, starting at c0) in the time interval (T1, T2]
using outbursts of size d0 with precision δ if it has the following properties: M depends only
on B × (T1, T2], P(M) > 0, and

{B(c0, δ) ⊂ Z1
T1

, Z∪
T1

⊂ B, C+δ ∩ Z2
T1

= ∅} ∩ M

⊂ {C+d0−2δ − Z2
T1

⊂ Z1
T2

⊂ C+d0+2δ ∪ Z1
T1

, Z2
T2

= Z2
T1

}.

Lemma 1. (Constructing infection evolutions.) In the situation of Definition 1 suppose that
the set C is of one of the following types.

(a) C = {c0, . . . , cn}, where d({c0, . . . , ci−1}, ci) ≤ d0 − 2δ for all i ≥ 1.

(b) C is a bounded, pathwise connected set.

Then it is possible to let type 1 grow along C (within B, starting at c0) in the time interval
(T1, T2] using outbursts of size d0 with precision δ.

We note that Lemma 1 and Definition 1 apply analogously when the roles of types 1 and 2
are interchanged. An important special case of Lemma 1(b) is that C is the trace of some
continuous curve γ : [0, 1] → R

d with c0 = γ (0).
For a given CR model and a Borel set B, let τB denote the first time all points of B are

infected, and let ζB denote the time of the last effective outburst produced by a point with
position in B. These random variables have finite values.

Lemma 2. Let Z be a d-dimensional n-type CR model with standard initial configuration, and
let B ⊂ R

d be a bounded Borel set. We have, a.s.,

(a) τB < ∞, i.e. B is completely infected after a finite time,

(b) ζB < ∞, i.e. only finitely many effective outbursts originate from B.

Very similar results have been obtained before. Note that in Lemma 2(b) we do not assume
condition (2) on the radius distribution (compare to Lemma 4.5(a) of [4]). The proof of part (b)
basically relies on the shape theorem stated below. For its proof, we refer the reader to [4].

Theorem 3. Let Z be a d-dimensional one-type CR model with standard initial configuration
�, growth rate β, and radius distribution ρ satisfying (2). There exists a µ > 0 (independent
of β and �) such that, for all 0 < ε < 1, we have, a.s.,

(1 − ε)B

(
0,

β

µ

)
⊂ Zt

t
⊂ (1 + ε)B

(
0,

β

µ

)
for sufficiently large t .

We need a version of Lemma 2 for a CR model Z̃ with generalized initial configuration �̃.
There may be regions that never become infected since they are enclosed by a thick layer of
immune region. So we consider B�̃ , the smallest ball enclosing �̃∪ centered at the origin, and
L, the event that the infection leaves B�̃ . Let ζ̃B be the time of the last virtual outburst that is
produced by a point with position in B and virtually infecting points outside B�̃ .

Lemma 3. Let Z̃ be a d-dimensional n-type CR model with generalized initial configuration
�̃, and let B ⊂ R

d be a bounded Borel set. On L we have, a.s.,

(a) τB−B
�̃

< ∞, i.e. B − B�̃ is completely infected after a finite time,
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(b) ζ̃B < ∞, i.e. there are only finitely many virtual effective outbursts originating from B

virtually infecting points outside B�̃ .

Again, part (b) of Lemma 3 relies on a corresponding version of the shape theorem.

Theorem 4. Let Z̃ be a d-dimensional one-type CR model with generalized initial configuration
�̃, growth rate β, and radius distribution ρ satisfying (2). There exists a µ > 0 (independent
of β, �̃) such that, for all 0 < ε < 1, we have, a.s., on L,

(1 − ε)B

(
0,

β

µ

)
⊂ Z̃t ∪ B�̃

t
⊂ (1 + ε)B

(
0,

β

µ

)
for sufficiently large t .

3. Proofs of auxiliary results

For the following proofs, we set β∧ := mini βi and β∨ := maxi βi .

3.1. Constructing infection evolutions: Lemma 1

In both cases (a) and (b) we define an event M that can be easily checked to induce the
desired infection evolution. For (a), let

ti := T1 + i

n + 1
(T2 − T1) (0 ≤ i ≤ n + 1) and Bi := B(ci, δ) (0 ≤ i ≤ n).

Let M be the set of all point configurations with exactly one point in each of Bi × (ti , ti+1] ×
[d0, d0 + δ) × [0, β1] for all 0 ≤ i ≤ n, and no other points apart from these in B × (T1, T2] ×
[0, β∨].

For (b), we note that the compact set C+d0−2δ is covered by the union of all open balls with
center in C and radius d0 − δ. We choose a finite subcover consisting of balls with centers
c1, . . . , cn. Without loss of generality we assume that d(ci−1, ci) ≤ d0 − 2δ for 1 ≤ i ≤ n (by
joining the points ci by continuous curves within C and adding points of these curves that are
sufficiently close to each other to this list of centers). Let M be the event constructed in (a) for
this choice of points {c0, . . . , cn}.
3.2. Standard initial configuration: Lemma 2

For the proof of part (a), we assume that B is a ball with B ⊃ � (by replacing B with
a sufficiently big ball). Let δ < d0/2. As in the proof of Lemma 1(b), we can choose
c1, . . . , cn ∈ B such that d(ci−1, ci) ≤ d0 − 2δ and

⋃
i B(ci, d0 − δ) ⊃ B. We set C0 = � and

Ci = B(ci, δ), and, for given T > 0, we set ti := iT /(n + 1) (0 ≤ i ≤ n + 1). Let MT be the
set of all point configurations with at least one point in each of Ci ×(ti , ti+1]×[d0, ∞)×[0, β∧]
for all 0 ≤ i ≤ n. On MT , B is completely infected at time T , and, for T → ∞, we have
P(MT ) → 1.

For the proof of part (b), we first show that there is a constant v > 0 such that

MT := {B(0, 2tv) ⊂ Z∪
t for all t ≥ T } ↑ X a.s. for T → ∞. (5)

This is basically a consequence of a comparison argument and the shape theorem (Theorem 3).
Let f : [0, ∞) → [0, 1) be a bijective increasing function such that f (x) ≤ x, e.g. f (x) =
x/(1 + x). The radius distribution ρ̃ := ρ ◦ f −1 has bounded support and, thus, satisfies (2).
Let Z̃ be the one-type CR model with initial configuration �∪, growth rate β∧, and radius
distribution ρ̃. Theorem 3 gives (5) for Z̃ instead of Z. Thus, it suffices to construct a coupling
of Z and Z̃ such that Z̃t ⊂ Z∪

t for all t ≥ 0 a.s. Let Z be constructed from X, and let Z̃ be

https://doi.org/10.1239/aap/1316792661 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1316792661


604 • SGSA S. CARSTENS AND T. RICHTHAMMER

constructed from X̃ := {(x, s, f (r), w) : (x, s, r, w) ∈ X}, scanning from the time of infection,
where X is chosen with respect to P. Using this coupling, the desired inclusion easily follows
by induction on the times of growth of Z̃. This shows (5).

Suppose that T is chosen so large that B ⊂ B(0, T v). On MT every point p = (x, s, r, w)

producing an effective outburst in B after time T satisfies r ≥ 2sv − T v ≥ sv and w ≤ β∨.
More formally, Neff

B,T 1MT
≤ NE(B), where Neff

B,T denotes the number of effective outbursts with
respect to Z in B after time T and

E(B) := {(x, s, r, w) ∈ R
d× : x ∈ B, r ≥ sv, w ≤ β∨}.

The P-expectation of NE(B) is

λd×(E(B)) =
∫

B

dλd(x)

∫
dρ(r)

∫ β∨

0
dλ1(w)

∫ r/v

0
dλ1(s) = β∨λd(B)

v

∫
ρ(dr)r,

where the last term is finite by condition (1) on ρ. So

P({Neff
B,0 = ∞} ∩ MT ) = P({Neff

B,T = ∞} ∩ MT ) ≤ P(NE(B) = ∞) = 0,

i.e. on MT the number of effective outbursts in B is finite a.s., and the result follows from (5).

3.3. Generalized initial configuration: Lemma 3

For the proof of (a), we assume that B is some big ball centered at 0 minus the set B�̃ . For
rational parameters c0 ∈ B, t0 > 0, and δ < d0/2, let L

t0
c0,δ

be the event that Z∪
t0

∩ B contains
B(c0, δ). As

⋃
t0,c0,δ

L
t0
c0,δ

= L, it suffices to show that τB < ∞ a.s. on L
t0
c0,δ

for arbitrary t0,
c0, and δ as above. This follows using the same construction as in the proof of Lemma 2(a),
using C0 := B(c0, δ).

The proof of part (b) is almost exactly the same as that of part (b) of Lemma 2. Here we
let N

peff
B,T be the number of virtual effective outbursts in B virtually infecting points outside B�̃

after time T . We can use a comparison argument and Theorem 4 to show that

MT := {B(0, 2tv) ⊂ Z̃t ∪ B�̃ for all t ≥ T } ↑ L a.s. for T → ∞
for some v > 0, and N

peff
B,T 1MT

≤ NE(B) gives P({Npeff
B,0 = ∞} ∩ MT ) = 0.

3.4. Generalized shape theorem: Theorem 4

The basic idea of the proof is to compare the CR model Z̃ with generalized initial config-
uration �̃ to the CR model Z with standard initial configuration � := B�̃ , and then to use the
shape theorem for Z. In order to be able to compare Z̃ and Z, we construct them from the same
underlying Poisson point process ‘scanning from time 0’; see Section 2. For given rational
times 0 ≤ T1 ≤ T2, we define

MT1,T2 := {ζ�(Z) ≤ T1, ZT1 ⊂ Z̃T2 ∪ �} ∩ L,

where ζ�(Z) is the time of the last effective outburst in � with respect to Z. Here ZT1 is bounded,
and, by Lemmas 2 and 3, both ζ�(Z) and τB−�(Z̃) are finite on L for any bounded Borel set B,
where τB−�(Z̃) is the first time that B is infected with respect to Z̃. Thus,

⋃
T1,T2

MT1,T2 = L,
so it suffices to show the generalized shape theorem on MT1,T2 . By the shape theorem for Z,
there exists a µ > 0 independent of �, �̃, and β such that(

1 − ε

2

)
B(0, βµ−1) ⊂ Zt

t
⊂

(
1 + ε

2

)
B(0, βµ−1) for sufficiently large t .
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In order to see that this implies that

(1 − ε)B(0, βµ−1) ⊂ Z̃t ∪ �

t
⊂ (1 + ε)B(0, βµ−1) for sufficiently large t

on MT1,T2 , we use the facts that (t − T2)/t ≥ (1 − ε)/(1 − ε/2) for sufficiently large t and

Z̃t ∪ � ⊂ Zt ⊂ Z̃t+T2 ∪ � for all t ≥ 0 on MT1,T2 . (6)

For the proof of (6), we fix a point configuration X ∈ MT1,T2 . We note that the chosen coupling
of Z̃ and Z implies that every p = (x, s, r, w) ∈ X with x /∈ � and w ≤ β produces an outburst
in both models, and in both models the time between the infection of x and the time p produces
the outburst is s.

For the inclusion Z̃t ∪ � ⊂ Zt , we observe that Zt ⊃ � is trivial and Z̃t ⊂ Zt can be shown
by induction on the growth times of Z̃. For t = 0, the assertion is trivial. If t > 0 is a growth
time then either this growth is from the initial configuration �̃ of Z̃ (and in this case Z̃t ⊂ Zt

follows from � ⊂ Zt ) or there is a point p = (x, s, r, w) ∈ X producing an outburst at time t

with respect to Z̃. In this case w ≤ β and x was infected in Z̃ at time t ′ = t − s. By the
induction hypothesis, Z̃t ′ ⊂ Zt ′ , so x was infected in Z at an earlier time t ′′ ≤ t ′, i.e. p produces
an outburst with respect to Z at time t ′′ + s ≤ t ′ + s = t .

For Zt ⊂ Z̃t+T2 ∪ �, we argue with induction on the growth times of Z. For 0 ≤ t ≤ T1,
the assertion is trivial since ZT1 ⊂ Z̃T2 ∪ � on MT1,T2 . If t > T1 is a growth time with respect
to Z, there is a point p = (x, s, r, w) producing an effective outburst in Z at time t . So x

was infected in Z at time t ′ = t − s < t , which gives x ∈ Zt ′ ⊂ Z̃t ′+T2 ∪ � by the induction
hypothesis. On MT1,T2 the last effective outburst located in � occurs before T1. Since t > T1,
we know that x /∈ �, so x ∈ Z̃t ′+T2 ∪ � implies that x ∈ Z̃t ′+T2 . Thus, the outburst caused by
p with respect to Z̃ occurs no later than (t ′ + T2) + s = t + T2.

4. Proof of the main result: Theorem 1

4.1. Outline of the strategy

We denote the two given CR models by Z(�) and Z(�′). Assuming that

P(G(�)) > 0 and P(Li(�
′)) > 0 for i = 1, 2, (7)

it suffices to show that P(G(�′)) > 0. Without loss of generality, we assume that β1 ≥ β2.
Our basic strategy to show that P(G(�′)) > 0 in the next subsections will be to decompose
the evolution of Z(�) into an initial part and a final part separated by a space-dependent time
horizon. This will be chosen such that, with positive probability, the initial evolution will
infect certain fundamental regions before the time horizon, and in the final evolution outbursts
in these fundamental regions will yield infinite infection paths for both types after the time
horizon. After that we will describe an initial evolution of Z(�′) infecting the fundamental
regions before the time horizon and having positive probability. By coupling the final evolution
of Z(�′) to the final evolution of Z(�) we also have coexistence for the initial condition �′,
i.e. P(�′) > 0.

4.2. Escaping the initial configuration in Z(�′)
By (7), the initial configuration �′ allows each type to escape some ball with positive

probability. However, what we need is that �′ also allows both types to escape some large
ball at the same time with positive probability. To describe these escape routes, we need some
notation for line segments. For given points x1 �= x2, let lx1x2 denote the straight line passing
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through these points. We identify lx1x2 with R such that x1 < x2 so that we can use the induced
order on lx1x2 along with the corresponding interval notation for line segments.

Definition 2. We say that an infection configuration (A1, A2) has escape corridors specified
by x1, x2 ∈ R

d and r0, δ0 > 0 whenever d(x1, x2) > d0 + 4δ0, B(xi, δ0) ⊂ Ai ⊂ B(0, r0),
(−∞, x1]+δ0 ∩ A2 = ∅, and [x2, ∞)+δ0 ∩ A1 = ∅.

We note that in the situation of Definition 2 we can use Lemma 1 to let the two species
grow along (−∞, x1] and [x2, ∞), and we will show that this situation occurs with positive
probability.

Lemma 4. Let d0 > 0 be the constant chosen in (4). For suitably chosen T ′
0 ≥ 0, x1, x2 ∈ R

d ,
δ0 < d0/8, and r0 > 2d0, we have P(M ′

0) > 0, where M ′
0 is the event that ZT ′

0
(�′) has escape

corridors specified by x1, x2, r0, and δ0.

4.3. Time horizon and fundamental regions for Z(�)

In the following we will define subsets of M0 := G(�) by specifying certain parameters of
the infection evolution of Z(�). After that we will show that the parameters can be chosen in a
way such that these subsets of M0 have positive probability. In step 1 we use the parameters r0
and T ′

0 chosen in Lemma 4. In step 3 we restrict our attention to only one infinite infection path
of the stronger type. This idea was already used by Deijfen et al. [3] for the two-type discrete
Richardson model.

Step 1. Let r2 > r1 > r0 and Bi := B(0, ri). Let M1 be the set of configurations of M0
such that

• at time T ′
0 the infected region is contained in B1,

• no outburst with position in B1 infects anything outside B2.

Step 2. Let d1 > 0. Let M2 be the set of configurations of M1 such that 2d1 is a lower bound
on the distances of the positions of effective outbursts in B2 to

• the lines passing through the position of another effective outburst in B2 and the origin,

• the boundaries of infection balls of outbursts that infect regions in B2,

• the boundaries of the balls B1 and B2.

Step 3. Let 0 < d2 < d1, let D1, D2
1, . . . , D2

k be balls of radius d2 (‘fundamental balls’),
and let T (D1), T (D2

1), . . . , T (D2
k ) > 0 be times associated to the balls. Let M3 be the set of

configurations of M2 such that

• D1 contains the starting point of an infinite type-1 infection path that never returns to B2,

• the effective outbursts of type 2 within B2 − B1 are located in the balls D2
1, . . . , D2

k ,
k ≥ 1 (one ball for each outburst),

• at the time T (·) corresponding to a fundamental ball, the position of the corresponding
outburst is infected, but the outburst has not yet occurred.

Lemma 5. The above parameters r1, r2, d1, d2, D1, . . . , D2
k , and T (D1), . . . , T (D2

k ) can be
chosen so that P(Mi) > 0 for i = 1, 2, 3; furthermore,

r1 > r0 + 4d0, r2 > r1 + 4d0, d1 <
d0

4
, d2 < min

{
d1

10
,

d2
1

8d0

}
. (8)
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We now choose the parameters according to the above lemma, and consider them to be fixed
for the rest of the proof. Let Min,fi := M3 be the desired specification of the (initial and final)
infection evolution of Z(�). We have P(Min,fi) > 0 by Lemma 5, and on Min,fi the following
properties hold.

• All fundamental balls are contained in B2 − B1 and keep a distance of at least 2d1 − d2
to the boundaries of this set. All type-2 fundamental balls keep a distance of at least
2d1 − d2 to the line through the center of D1 and the origin. The distance between two
fundamental balls is at least 2d1 −2d2. The times corresponding to the fundamental balls
are greater than T ′

0.

• Each fundamental ball is infected as a whole (so the type-1 fundamental ball is com-
pletely 1-infected and the type-2 fundamental balls are completely 2-infected), and each
fundamental ball contains the position of exactly one effective outburst. A fundamental
ball is infected at the associated time, but the effective outburst in this ball occurs later.

• Every 2-infection of a region in Bc
2 originating in B2 in fact originates in one of the type-2

fundamental balls. The type-1 fundamental ball is the starting point of an infection path
to infinity for type 1 such that this path never returns to B2.

In Section 4.1 we introduced the notion of a space-dependent time horizon. We now choose
the time horizon on the fundamental balls to be the times associated with these balls, and on
Bc

2 to be T (Bc
2) := 0. On the rest of the space, it will be chosen later.

4.4. Initial evolution of Z(�′)
In this section we only consider the model with initial configuration �′, so we set Z := Z(�′).

We would like to construct an initial evolution starting from �′ that infects all fundamental balls
before the time horizon. More precisely, we define T ′ := min{T (D1), T (D2

1), . . . , T (D2
k )} >

T ′
0 and M ′

in to be the set of all configurations such that, for Z at time T ′, ball D1 is 1-infected, all
balls D2

i (1 ≤ i ≤ k) are 2-infected, and no point of Bc
2 is infected. By definition, M ′

in depends
only on the point configuration in �in := B2 × [0, T ′]. In order to show that P(M ′

in) > 0, we
give a step-by-step description of a suitable infection evolution with the desired properties.
The main reason why this explicit construction is possible is that we only have to infect one
small ball with type 1, but are allowed to infect everything else in B2 with type 2. For the
construction, we choose fixed times T ′

0 < T ′
1 < · · · < T ′

4 := T ′, and we define a sequence of
events M ′

i describing a desirable infection state at time T ′
i .

We will use interval notation for line segments of l0a , where a denotes the center of D1.
Furthermore, let c1 denote the point on [0, ∞) ⊂ l0a with d(c1, 0) = (r0 + r1)/2, c2 := −c1,
C :=B2 − B1 − (∂B2)+d0+d2 − [0, ∞)+d0+2d2 , andC+ :=B2 − B1 − (∂B2)+d1 − [0, ∞)+d1 ;
see Figure 1. We note that D1 ⊂ [0, ∞)+d1 and, thus, C+ ∩D1 = ∅. The events M ′

i (as shown
in Figure 2) can now be defined by

M ′
1 := {B(c1, d2) ⊂ Z1

T ′
1

⊂ B1 − [−r1, c2]+d2 , B(c2, d2) ⊂ Z2
T ′

1
⊂ B1 − [c1, r1]+d2},

M ′
2 := {B(c1, d2) ⊂ Z1

T ′
2

⊂ B1, C+d0−d2 − B1 ⊂ Z2
T ′

2
⊂ B2 − [c1, r2]+d2},

M ′
3 := {D1 ⊂ Z1

T ′
3

⊂ B1 ∪ [0, r2]+d1 ∩ B2, C+d0−d2 − B1 ⊂ Z2
T ′

3
⊂ B2},

M ′
4 := {D1 ⊂ Z1

T ′
4

⊂ B2, C+ ⊂ Z2
T ′

4
⊂ B2};

M ′
0 is the event of positive probability chosen in Lemma 4.
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D2
j

B2

D1

B1

B0

C

C�d0–d2
 � B1

B(c1; d2)

B(c2; d2)

C�

Figure 1: Sketch of the sets relevant in the definition of the initial evolution.

Infected by species 2 or not at all

Infected by species 1 or not at all

Infection state unspecified

Infected by species 2

Infected by species 1

Not infected

T3

`

T2

`

T1

`

T4

`

Figure 2: Sketch of the infection states at time T ′
i on the set M ′

i for 1 ≤ i ≤ 4.

Lemma 6. There are events M ′
(i−1)→i (i = 1, 2, 3, 4) describing an infection evolution in

(T ′
i−1, T

′
i ] such that P(M ′

(i−1)→i ) > 0 and M ′
i−1 ∩ M ′

(i−1)→i ⊂ M ′
i .
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By the independence property of the Poisson process, P(M ′
i−1 ∩ M ′

(i−1)→i ) = P(M ′
i−1) ×

P(M ′
(i−1)→i ), so Lemma 6 inductively gives P(M ′

i ) > 0 for i = 0, . . . , 4. As, by construction,

all balls D2
i are contained in C+, we have M ′

4 ⊂ M ′
in and, thus,

P(M ′
in) > 0. (9)

4.5. Final evolution of Z(�′)
Let us now consider the two-type CR model Z̃ = Z(�̃) with generalized initial configuration

�̃ consisting of all fundamental balls with their associated times and types, and D0, the
remaining part of B2, with associated time ∞. We assume that Z̃ is constructed using the
Poisson point process underlying Z(�). On Min,fi the infection evolution of Z̃ in Bc

2 is very
similar to that of Z(�), differing only in that type 1 has been reduced considerably. However,
we will show that in Z̃ type 1 is still strong enough to grow without bound. Let Mfi := G(�̃)

denote the event that in Z̃ both types grow without bounds.

Lemma 7. We have Min,fi ⊂ Mfi and, thus, P(Mfi) > 0.

We would now like to use Mfi for the final evolution of Z(�′), but unfortunately on M ′
in ∩ Mfi

we are not guaranteed to have coexistence for Z(�′). The problem is that in the construction of
Z̃ from a point configuration all points in D0 are ignored, so Mfi has no information on points
in this region, whereas, using M ′

in for the initial evolution of Z(�′), it is very likely that D0 will
be at least partially infected at time T ′. To guarantee coexistence in Z(�′), we would thus like
to delete any point of the underlying point configuration in D0, producing a virtual effective
outburst virtually infecting points of Bc

2 after time T ′. By Lemma 3 we know that ζ̃B2 < ∞
a.s. on Mfi, because Mfi ⊂ L. Thus, we can choose a time T ′′ > T ′ such that,

for M ′
fi := Mfi ∩ {ζ̃B2 < T ′′}, we still have P(M ′

fi) > 0, (10)

where M ′
fi denotes the final evolution in the �′-model. Setting T (D0) := T ′′ we have defined

a time horizon on all of R
d . Since M ′

fi is defined in terms of Z̃, it depends only on part of the
point configuration after the time horizon, i.e. on the point configuration in

�fi :=
⋃

D∈D

D × [T (D), ∞), where D = {Bc
2, D

0, D1, D2
1, . . . , D2

k }.

We now delete the remaining points that could interfere with the desirable final evolution. Let
M ′

de be the set of all point configurations without any point in

�de :=
⋃

D∈D

D × [T ′, T (D)) × R+ × [0, β1].

As T (Bc
2) = 0, we have λd×(�de) < ∞, and, thus,

P(M ′
de) > 0. (11)

By construction, the sets of point configurations M ′
in, M ′

de, and M ′
fi depend on �in, �de, and �fi,

respectively, and these sets are disjoint. By the independence property of the Poisson process,
we thus have

P(M ′
in,fi) = P(M ′

in) P(M ′
de) P(M ′

fi) > 0 for M ′
in,fi := M ′

in ∩ M ′
de ∩ M ′

fi,

where all probabilities are positive because of (9), (10), and (11). It is an immediate consequence
of the construction that on M ′

in,fi the model Z(�′) has exactly the same infection evolution in
Bc

2 as the model Z̃, and we have coexistence for the model Z̃ on M ′
in,fi since M ′

in,fi ⊂ M ′
fi ⊂ Mfi.

This implies that we also have coexistence for the model Z on M ′
in,fi, i.e. P(G(�′)) > 0.
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5. Proofs of the lemmas

5.1. Escape corridors: Lemma 4

In this subsection we only consider the CR model with initial configuration �′, so let Z :=
Z(�′); Z does not change a.s. if �′ is modified outside its support. Thus, we may assume
without loss of generality that supp(�′

i ) = �′
i , which implies that supp(Zt

i ) = Zt
i for all t ≥ 0.

The proof of Lemma 4 consists of three parts. First we construct an event M ′′
0 of positive

probability such that on M ′′
0 there is a time T and distinct yi ∈ Zi

T (i = 1, 2) such that, using
interval notation on ly1y2 ,

(−∞, y1 − d0] ∩ Z2
T = ∅ and [y2 + d0, ∞) ∩ Z1

T = ∅. (12)

In the second part we show that a stronger version of (12) holds for fixed values of T , y1, and
y2 with positive probability. In the third part we verify the existence of deterministic escape
corridors.

For the first part, we define the minimal enclosing ball (MEB) of a set K ⊂ R
d to be a closed

ball containing K with minimal radius. Every bounded set has a unique MEB. We will make
repeated use of the following property of MEBs.

(A) The MEB B of a compact set K is also the MEB of ∂B ∩ K .

Let B = B(m, r) denote the MEB of �′
1 ∪ �′

2. Without loss of generality, ∂B ∩ �′
1 �= ∅ and

∂B ∩ �′
2 = ∅. (By (A), one of these sets is nonempty. If the other set is nonempty, we can

argue similarly. If both are nonempty, the assertion is trivial as we can choose T = 0 and
yi ∈ ∂B ∩ �′

i .) Thus, by (A), B is the MEB of ∂B ∩ �′
1.

Case 1: ρ([r, ∞)) > 0. In this case we assume without loss of generality that d0 with
property (4) was chosen such that d0 ≥ r . We set M ′′

0 := X, T = 0, and choose y2 ∈
�′

2 − {m} and y1 ∈ ∂B ∩ �′
1 such that d(y1, y2) > r . (As B(m, r) is the MEB of ∂B ∩ �′

1,
B(y2, r) does not enclose this set.) In order to see that y1 and y2 have the above property,
we only have to check that [y2 + d0, ∞) ∩ �′

1 ⊂ [y2 + d0, ∞) ∩ B = ∅, which follows from
λ1(ly1y2 ∩ B − [y1, y2]) < 2r − r = r ≤ d0.

Case 2: ρ([r, ∞)) = 0. Let M ′′
1 := {Z1

T ′′ = �′
1} and M ′′

2 = {Z2
T ′′ �⊂ B}, where T ′′ is chosen

sufficiently large such that P(M ′′
2 ) > 0. We also have P(M ′′

1 ) > 0, and, since the absence
of outbursts of type 1 can only strengthen type 2, we have P(M ′′

2 | M ′′
1 ) > P(M ′′

2 ). Setting
M ′′

0 = M ′′
1 ∩ M ′′

2 , we obtain P(M ′′
0 ) > 0. On M ′′

0 at some time T an outburst B ′ = B(x′, r ′) of
species 2 occurs which for the first time infects a region in Bc. As r ′ < r a.s. and as B is the
MEB of ∂B ∩ �′

1, B ′ cannot enclose this set. So we can choose points y1 ∈ ∂B ∩ �′
1 − B ′ and

y2 ∈ ∂B ∩ B ′ that have the above property.
For the second part, we note that the infection configuration is always constant over a time

interval of positive length, Zi
T is always a compact set, the infected region is always bounded,

and if the points y′
i are sufficiently close to yi , these points still satisfy (12). This shows that

on M ′′
0 there are rational parameters T ′ > 0, 0 < δ < d0/8, y′

1, y
′
2 ∈ R

d , and r > 0 such that

(−∞, y′
1 − d0]+4δ ∩ Z2

T ′ = ∅, [y′
2 + d0, ∞)+4δ ∩ Z1

T ′ = ∅, d(y′
1, y

′
2) > 4δ,

Z∪
T ′ ⊂ B(0, r), and λd(B(y′

i , δ) ∩ Zi
T ′) > 0 for i = 1, 2.

(13)

Thus, for some particular choice of these parameters, the event M ′
00 for which (13) holds for

this choice of parameters has positive probability.
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Finally, for the last part, let M ′
01 be the set of all point configurations with exactly one point

in each of the sets

(B(y′
i , δ) ∩ Zi

T ′) × (T ′, T ′ + 1] × [d0, d0 + δ) × [0, β2], i = 1, 2,

and no additional points in B(0, r) × (T ′, T ′ + 1] × [0, β1]. Note that M ′
01 ∈ FRd×(T ′,T ′+1]

is independent of M ′
00 ∈ FRd×[0,T ′] and has positive probability. As a consequence M ′

0 :=
M ′

00 ∩ M ′
01 has positive probability. On M ′

0 the infection configuration ZT ′+1 has escape
corridors specified by the parameters x1 := y′

1 − d0 + 2δ, x2 := y′
2 + d0 − 2δ, r0 := r + 2d0,

and δ0 := δ.

5.2. Specifying the evolution in the �-model: Lemma 5

Step 1. We have M0 ∩ {ZT ′
0

⊂ B(0, r1)} ∩ {ζB1 < T } ∩ {ZT ⊂ B(0, r2)} ⊂ M1 for any
T > 0. The events {ZT ′

0
⊂ B(0, r1)}, {ζB1 < T }, and {ZT ⊂ B(0, r2)} are increasing in

r1, T , and r2, respectively, and ζB1 < ∞ a.s. by Lemma 2 and, for fixed T , ZT is bounded
a.s. Thus, we only have to choose first r1, then T , and then r2 large enough in order to obtain
P(M1) > 0.

Step 2. Observing that the event of all given distances being bounded from below by 2d1 is
decreasing in d1, it remains to show that the infimum of the distances is positive a.s. Since every
single distance is positive a.s., it suffices to observe that the number of effective outbursts in
B2 is finite a.s. by Lemma 2 and the number of outbursts that infect a region in B2 is finite a.s.,
as B2 is completely infected after a finite time by Lemma 2. Therefore, if we choose d1 > 0
small enough, we have P(M2) > 0.

Step 3. We choose a small d2 > 0 satisfying (8), and we fix a finite covering of B2 consisting
of balls of radius d2. For any infection configuration, it is possible to choose a finite number
of balls with the properties described in step 3 of Section 4.3, and as in each ball the time span
between the infection of the outburst position and the outburst at that position is positive a.s.,
we can choose a rational time to serve as the time horizon on the ball. The number of ways to
choose a finite set of fundamental balls from the finite covering and a rational time horizon is
countable, so there is a specific choice of fundamental balls and corresponding time horizons
such that P(M3) > 0.

5.3. Local evolution in the �′-model: Lemma 6

M ′
0→1: infecting the balls B(ci, d2). We use the parameters chosen in Lemma 4, δ := δ0,

and T ′
1/2 := (T ′

0 + T ′
1)/2. Choosing two curves Ci ⊂ B1/2 := B(0, r0 + 2d0) (i = 1, 2)

joining xi ∈ B0 and ci ∈ ∂B1/2, we use Lemma 1 to let type 1 grow along C1 in the time
interval (T ′

0, T
′
1/2] with precision δ and after that to let type 2 grow along C2 in the time interval

(T ′
1/2, T

′
1] with precision δ. This infection evolution defines an event M ′

0→1 with the desired
properties, provided that the curves Ci satisfy

d(C1, Z
2
T ′

0
) > δ, d(C2, Z

1
T ′

0
) > δ, d(C1, C2) = d(x1, x2) > d0 + 4δ,

and

d(C1, B(c2, d2)) > d0 + 2δ.

For a possible construction of such curves, see Figure 3. Here b1 and b2 are antipodal points
on the surface of B(0, r0 + d0/2) such that lb1b2 is parallel to lx1x2 . After passing bi , the curve
Ci continues on the line in the hyperplane perpendicular to lb1b2 that hits B1/2 in a point with
minimal distance to ci .
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c1c2

B0B1/2

x2

x1

C2

C1

b2

b1

Figure 3: Construction of the curves C1 and C2.

c1 a0 a1 a2 a3 � a

C�d0–d2
∂B2

Sd1
(b0)

Sd1
(b1)

Sd1
(b2)

Figure 4: Definition of the infection evolution of step M ′
2→3 in the difficult case. Some infection outbursts

are indicated by segments of their boundaries, which are connected to their centers by dotted lines.

M ′
1→2: infecting most of B2 − B1 with type 2. We use Lemma 1 to let type 2 grow along

C′ := C ∪ [−r1, c2] in the time interval (T ′
1, T

′
2] with precision δ := d2/2. This infection

evolution defines an event M ′
1→2 with the desired properties.

M ′
2→3: infecting D1 with type 1. In this step we basically want to let type 1 grow along

[c1, r2] with precision δ := d2/2 until it reaches D1. In order to keep the 1-infections close
to [c1, r2], we have to ensure that, for every outburst of type 1, all points of the corresponding
ball that are too far away from [c1, r2] are already 2-infected before the outburst occurs. In this
case we say that species 2 provides sufficient containment for the outburst. In the following
things get more complicated if D1 is near ∂B2, and, thus, outbursts infecting D1 do not yet
have sufficient containment. In this case we only let type 1 grow along [c1, r2] as long as there
is sufficient containment. After that we alternatingly produce outbursts of type 2 (providing
further containment and possibly infecting part of [c1, r2]) and outbursts of type 1 (infecting
points close to [c1, r2] further up); see Figure 4. It turns out that we have to repeat this scheme
at most twice. In the remainder of this subsection we will give a more detailed description of
this construction.

For a line segment l′ of the line l = lc1c2 , let Sr(l
′) denote the cylindrical shell with axis l′

and radius r , i.e. the set of all points x with d(x, l) = r such that the projection of x onto l is
on l′. In case of a single point x we write Sr(x) := Sr({x}). In order to determine for which
points a′ ∈ [c1, a] an infection outburst at a′ with precision δ has sufficient containment on
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M ′
2, we first note that

d(Sr(r2 − s), ∂B2) ≥ s − r for all 0 ≤ r ≤ s ≤ r2. (14)

(This and other purely geometric relations will be proved at the end of this subsection.)
Equation (14) implies that Sd0+2d2([0, r2 − 2d0 − d1]) − B1 ⊂ C and, thus,

S3d2([0, r2 − 2d0 − d1]) ⊂ Sd0+2d2([0, r2 − 2d0 − d1])+d0−d2 ⊂ C+d0−d2 ∪ B1. (15)

On M ′
2 we know that C+d0−d2 − B1 is 2-infected, so this shows that the above described

infection outburst at a′ has sufficient containment if a′ ∈ [c1, a] is such that

a′ ≤ r2 − 2d0 − d1 − (d0 + 2δ) = r2 − (3d0 + d1 + d2). (16)

Thus, if a′ := a − (d0 − 2δ) satisfies (16) (i.e. if a ≤ r2 − (2d0 + d1 + 2d2)), we can use
Lemma 1 to let type 1 grow along [c1, a

′] in the time interval [T ′
2, T

′
3] with precision δ, and

immediately get an event M ′
2→3, as desired. However, if a > r2 − (2d0 + d1 + 2d2), we might

need two more outbursts (of size d0) to reach D1 with containment not yet provided. We now
define a0 < a1 < a2 < a3 := a and bi ≤ ai+1 to be those points on [c1, a] satisfying

d(ai, ai+1) = d0 − 2d2 and d(Sd1(bi), ai+1) = d0 + 2d2. (17)

We note that
ai ≤ bi ≤ ai + 1

2d1 and a3 = a ≤ r2 − 2d1. (18)

Figure 4 shows a half-plane starting from lc1a . The three points above [c1, a] indicate the
points of intersection of the half-plane with the cylindrical shells Sd1(bi). We define M ′

2→3 to
be the following infection evolution (where T ′

2 = t ′0 < t ′1 < · · · < t ′5 = T ′
3):

1. growth of type 1 along [c1, a0] in [t ′0, t ′1],
2. growth of type 2 along Sd1([b0, b1]) in [t ′1, t ′2],
3. growth of type 1 by a single outburst at a1 in [t ′2, t ′3],
4. growth of type 2 along Sd1([b1, b2]) in [t ′3, t ′4],
5. growth of type 1 by a single outburst at a2 in [t ′4, t ′5].

In every step the growth is meant to be within B2 and with precision δ. The important part of
the boundary of the infection outburst in every step is indicated in Figure 4. By Lemma 1 we
have P(M ′

2→3) > 0, and Figure 4 shows that, for M ′
2 ∩ M ′

2→3 ⊂ M ′
3, we only have to ensure

the following properties in the corresponding steps. In step 1 we need sufficient containment,
i.e. a0 has to satisfy (16). This is a consequence of (17), (18), and 8d2 ≤ d1. Also, B(a1, d2) has
to be fully infected, which follows from (17). For step 2, we observe that b0 ≤ r2 − 2d0 − d1,
which follows from (17) and (18). Thus, (15) implies that Sd1(b0)+d2 ⊂ C+d0−d2 , which means
that the growth of type 2 can start from Sd1(b0). No part of B(a2, d2) is 2-infected by (17).
Also, step 2 has to provide sufficient containment for the next step, i.e. we need

B(ai, d0 + 2d2) ⊂ [0, r2]+d1 ∪ Sd1([bi−1, bi])+(d0−d2) (19)

for i = 1. In step 3 B(a2, d2) has to be fully infected, which follows from the first part of (17).
Steps 4 and 5 have properties analogous to those of steps 2 and 3, provided that (19) is also
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Sr(r2 � s)

r

sr2 � s 0 � 2d2

d0 � 2d2
d1

∂B2

Sd1
(bi)

ai ai�1d

Figure 5: Illustrations for the proofs of (14) (left) and (18) (right).

d0 � d2

d0 � 2d2

Sd1
(bi)

Sd1
(bi � d0 � d2)

ai ai�1

Figure 6: Illustration for the proof of (19).

satisfied for i = 2. Finally, to ensure that the growth is always within B2, we need

Sd1([b0, b2])+(d0+d2) ∪ B(a2, d0 + 2d2) ⊂ B2. (20)

What remains to be checked are properties (14), (18), (19), and (20). As can be seen from
Figure 5, assertion (14) is equivalent to√

(r2 − s)2 + r2 + (s − r) ≤ r2,

which holds for all r ≤ s ≤ r2. Figure 5 also shows that the first part of (18) is equivalent to

0 ≤ d0 − 2d2 −
√

(d0 + 2d2)2 − d2
1 ≤ 1

2d1,

which is satisfied for d2 ≤ d2
1/(8d0) and 2d1 ≤ d0. The second part of (18) follows by the

definitions of a and d1. For (19), we observe that [ai − (bi − ai), ai + (bi − ai)] ⊂ [bi−1, bi],
which follows from (18), so, by symmetry, it suffices to check that

d(Sd1(bi + d0 − d2), ai) ≥ d(Sd1(bi), ai+1) = d0 + 2d2;
see Figure 6. Here the equality follows from (17) and Figure 6 shows that the inequality
follows from ai ≤ bi and bi + d0 − d2 ≥ ai + d0 − d2 > ai+1. For (20), we first observe that
B(a2, d0 + 2d2) ⊂ B2 follows from r2 − a2 ≥ 2d1 + (d0 − 2d2) ≥ d0 + 2d2, where we have
used (18). Furthermore, we have

Sd1+d2(r2 − d0 − d1 − 2d2)+d0+d2 ⊂ B2,

by (14), so it suffices to show that b2 ≤ r2 − d0 − d1 − 2d2. This follows from (17) and (18).
M ′

3→4: infecting the remaining part of B2 − B1 with type 2. Let r ′
2 := d(Sd1+d2(r2 − d0 −

d1 − 2d2), 0) and C′ := B(0, r ′
2) − B1 − [0, r2]+d1+d2 . We define M ′

3→4 by the growth of
type 2 along C′ in the time interval [T ′

3, T
′
4] with precision δ := d2/2. By Lemma 1 we have

P(M ′
3→4) > 0 and, for M ′

3 ∩ M ′
3→4 ⊂ M ′

4, it suffices to observe that on M ′
3 no point of C′+d2

is 1-infected, most of C′ is 2-infected, by (14) we have C′+d0+d2
⊂ B2, and, by the choice of r ′

2
we have C′+d0−d2

⊃ C+.
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5.4. Restricting the strong type: Lemma 7

In this subsection we restrict our attention to the infection evolutions of Z := Z(�) and Z̃

for a fixed point configuration X ∈ Min,fi. By the definition of Min,fi we know that Z2 grows
without bound and that X contains an infinite type-1 infection path (pn)n≥1 with respect to Z

such that, for p1 = (x1, t1, r1, b1), we have x1 ∈ D1 and t1 ≥ T (D1). It suffices to show
that

• Z̃2
t ∩ Bc

2 ⊃ Z2
t ∩ Bc

2 for all t ≥ 0, and

• (pn)n is an infinite type-1 infection path with respect to Z̃.

To prove the first assertion, we show that, for all t ≥ 0,

Z̃∪
t ⊂ Z∪

t , Z̃1
t ⊂ Z1

t , and Z2
t ∩ Bc

2 ⊂ Z̃2
t ∩ Bc

2

by induction on the times of growth of both models. At t = 0 the above is trivial, so suppose
that t > 0 is a time of growth. If the growth is due to the initial configuration of Z̃, the
inclusions remain true, because in the model Z every fundamental ball is infected at its time
horizon. Otherwise, the growth is due to an outburst p = (x, t, r, w) ∈ X in one of the models.
If p produces an effective type-1 outburst in Z̃, the same outburst happens in Z. If p produces
an effective type-2 outburst in Z̃, there is also an outburst of type 1 or type 2 in Z. So if p

produces an effective outburst with respect to Z̃, all inclusions remain true. Now we take a look
at the remaining case, i.e. p produces an effective outburst in Z and not in Z̃. We only have to
worry about the third inclusion, and, thus, we only have to consider the case that p produces
an effective type-2 outburst in Z such that B(x, r) �⊂ B2 and x ∈ B2. (If B(x, r) ⊂ B2, the
outburst contributes to neither side, and if x /∈ B2, the outburst contributes to both sides.) In
this case x is in one of the fundamental balls and t is after the corresponding time horizon.
Thus, the initial configuration of Z̃ ensures that the same outburst happens in Z̃ and the third
inclusion remains true.

For the second assertion, we show by induction that pn 1-infects xn+1 in Z̃. By the induction
hypothesis, xn gets 1-infected in both models at time tn, so we have a type-1 outburst at time tn+1
in both models. Since Z̃∪

t ⊂ Z∪
t at all times, xn+1 cannot get infected in Z̃ earlier than in Z.

Thus, the outburst 1-infects xn+1 in Z̃ as well.
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