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POSITIONING MATRICES WITH RESPECT TO

THE BOUNDARY OF THE MAXIMAL GROUP

J. DEFRANZA AND C.J. FLEMING

Let A denote the Banach algebra of all conservative triangular

matrics, M the maximal group of invertible elements of A , B the

boundary of M and W = A \ W . In this note little Norlund

means are located with respect to the disjoint decomposition

M u S u W of A in terms of the zeros of the generating power

series. Further, corridor matrices of finite type, that is,

conservative methods with finitely many convergent diagonals,

are located with respect to M u B u W .

.1. Introduction

In [70] B.E. Rhoades considered the problem of locating classes of

summability methods with respect to the boundary of the maximal group of

invertible elements in the Banach algebra A of all conservative

triangular methods. In particular, he determined the location of most of

the Norlund polynomial methods in terms of where the roots of the

generating polynomial sit with respect to the unit disk. The one case yet

to be settled is the location of those methods whose polynomials admit
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roots inside and on the unit disk. In the special case of polynomials of

degree two these were shown by I.D. Berg [7] to be in the complement of

the closure of the maximal group.

In [7 3] Sharma considered the collection of little No'rlund means

which form a closed subalgebra of A containing its inverses. In this

smaller algebra those methods whose series admit roots inside and on the

unit disk are shown to be located in the complement of the closure of

the maximal group of this smaller algebra. In section 3 we improve

several of the results of [73] using arguments quite distinct from those

of [70] or [73].

In [4] the authors considered the class of bi-diagonal methods.

That is, methods with convergent sequences {a } and {b } on the main

and lower diagonal respectively and zeros elsewhere. These were shown to

locate according as the Norlund polynomial method generated by Pn + P7
2

where p_ = lim a and p = lim b . In section 4 we extend this result^0 n r1 n
n

to include the class of corridor matrices. That is, conservative methods

with finitely many convergent diagonals. This allows one to locate many

methods which do not fit into various classes determined by Rhoades [70]

and Sharma [73].

It should be pointed out that [73, Theorem 6 and comment 2, p. 288]

are stated incorrectly. The author claims, that if a little Norlund

mean is on the boundary of the maximal group of invertible elements of

the Banach algebra of little No'rlund means, then the generating function

is identically zero on the closed unit disk or has zeros only on the

boundary of the closed unit disk. However, the product of a little

Norlund mean on the boundary of the maximal group with one in the

maximal group is back in the boundary of the maximal group. Therefore,

the correct statement in this case is either the generating function is

identically zero on the closed unit disk or has no zeros in the interior

of the closed unit disk. This in fact is what is proven in [73].

2. Preliminaries

If A = (a ,) is an infinite matrix, A defines a sequence to

sequence transformation, mapping the sequence x to Ax where
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Let a. = {ilto e a} where a denotes the space of convergent sequences.

Well known necessary and sufficient conditions for A to be conservative

are:

(i) || A || E sup I \an]<\ < .
n k

(ii) t = lim I CL j, exists, and
n k

(iii) a, = lim a , exist for k = 0,1,2. . . .
K n nk

If lim (Ax) = lim x for all x e o, then A is called regular.
n n n n

A conservative matrix A is regular if and only if t = 1 and a, = 0

for all fe. A conservative matrix A is said to be of type M provided

b e JL = (x | L |ic, | < »} and £>A = 0 implies b = 0 where f^r, =

n nk'

Let Bio) denote the Banach algebra of bounded linear operators on

o, V the subalgebra of conservative matrices and A the subalgebra of

triangular (that is a , = 0 for k >n) conservative matrices. An

element A e A is a triangle provided a ^ 0 for all n. With the

norm given in (i) above A and V are closed Banach subalgebras of B(c).

If X is any Banach algebra we denote the maximal group of

invertible elements by MX), B(X) the boundary of the maximal group, and

N(X) = X\M(X). Since MX) is open, B(X) =WU\M(X) and

M(X)uB(X)uN(X) is a disjoint decomposition of X. For simplicity we

write M = M(h), B = EYA; and N =

3. L i t t l e Ndrlund Means
oo

Let p(z) = I pyz be a complex power series. The little NOrlund
k=0 K

mean N = (a ,) associated with p(z) is defined by [see for example 6]
p TiK.
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ank =

n-~k k i n ,

k > n.

It follows easily that a little Norlund mean N is conservative if and

only if the generating sequence p = (p.) e L . In this case the radius

of convergence R of the power series p(z) satisfies R > 1. In

this section we restrict our attention to little Norlund means N for

P
which R > 1.

P
Given little Norlund means N and N , the matrix product

p q
N7 = N N i s a l i t t l e NSrlund mean generated by the functionh p q
h(z) = p(z)q(z). Also the matr ix product N N and opera tor composition

N (N') agree for l i t t l e Norlund means. For any l i t t l e Norlund mean N
P <l P

we define three sets

v^ = iz\l < \z\ < Rp, p(z) = 0}3

v p = {z\l = \z\, p(z) = 0} and

Finally let

v , = {z\ \z\ < 1, p(z) = 0} .

A = {N I p(z) = lpnzn , p e
F n=0

In [ 10~] Norlund polynomial methods are positioned with respect to the

decomposition U( b>)uE(h)uM(h) and in [73] l i t t l e Norlund means are

posi t ioned with respect to the decomposition M(A)uB(A) N(A). In

p a r t i c u l a r i t i s shown in [13] t ha t for a l i t t l e Norlund mean N , with

no r e s t r i c t i o n on the radius of convergence of the generating s e r i e s ,

N e MCA) i f and only i f v = 0 and v , = 0 and N e BC/U if andp Z o p

only i f v . ^ 0 and v , = 0. The question f i r s t posed in [70] and

examined in [4] and [ 5 ] , which remains of i n t e r e s t , i s whether i t i s true

tha t N e BfA,J i f and only i f vo ^ 0 and v, = 0. The sufficiencyP o o

follows immediately from Sharma's r e su l t since B(AJ<^B(h). For l i t t l e

Norlund means with R > 1 the following theorem improves a r e s u l t
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given in [73].

THEOREM 3 . 1 . If N is a little NVrlimd mean with R > 1 and

such that v = 0 and v d 0 , then N e M(h) .

Proof. Since p(e^Q) ^ 0 V r e a l 8 , by Wiener ' s Theorem [7 7, 74]

t h e r e e x i s t s a g de f ined on T = {z\ \z\ = 1} such t h a t

g(z) = I bnzn , I \bn\ < -
n=-<» n=-°>

with p.g = g.p = I the identity on T. Moreover

, id. , iB. v , v •, , inBp(e )g(e ) = I ( I V f c V e
n=« k="

for all real 9 . Since p(z) ? 0, v n {z \ \z \ < i?1} is finite for any
o

R' with 0 < R' < R . Hence there exists an annulus i?., < I z\ < Rn < R 3p 1 2 p

Rn < 1, Ro > 1 so that the Laurent expansion of l/p(z) is defined
00

and hence equals g(z). Since v ^ 0, l/p(z) = g(z) = \ b z is
n=-oo

such that b is non-zero for some negative indices. Define

N = (b ,) by b , = b , k = 0.1.2..... Then N is not triangularg nk nk n-k g

and moreover

N .N = I fi N N
9 P P 3

Thus N has a left inverse in T which is not a right inverse and i t
P

follows that N does not have a two-sided inverse in r and hence
P

N f M(Tj. indeed, if B i s a two-sided inverse for N in r , then i t
P P

is the unique two-sided inverse of U in A (equalling the unique right

inverse in A ) . Then

S = N I = N (N B) = (N N )B = B ,
g 9 9 v 9 P

a contradiction. Associativity holds since N is row finite and N

and B are triangles. Moreover, since N has a left inverse in r / it
follows that N is not a left topological divisor of zero in r. Thus

P
N / B(T) which implies S e N(T) and hence Ne N.
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THEOREM 3.2. If N is a little NOrlund mean with E > 1 and

such that v_ ^ 0 and v ^ 0 3 then N is in the closure of N(A) .
o o p

Proof. Since p(z) £ 0 on \z\ < 1, p(z) has a f i n i t e number of

zeros with modulus l e s s than 1. Let (r ) be a sequence of rea l numbers
m

0 < r < 1 for m > 1 such that lim r = 1. Define g (z) = p(r z)

for each m. Then for r sufficiently close to 1, g (z) will satisfy

v = 0 and v ^ 0. By Theorem 3.1, N e M for m sufficiently

large. We claim that (N ) converges to N in norm. Indeed, let
g m p

€ > 0 be given. Consider

\\N -N || = s u p I \p \\l-rn
m-k\

r am n k~0

' " f c " I ' - " , * '_ IP* I \2--k
n k=0

for any m. Since \l - r \ < 1 V m> V k

I | p , I U - r k \ < I \pA <~Vm.
k=o K m k=o K

oo

Choose M so tha t I | p , | < e/2. Then choose L such tha t m > L
k=Mfl

implies for 0 < k S M

\1 - rk\ < e/(2 I \p.\) .

I t t h e n fol lows t h a t \\ N - N \\ -> 0 as m •> <» and hence ff e N("Ay).
11 P ^ " P

In summary we have

THEOREM 3.3 . Let N be a little Nb'rlund mean.
P

a) v = v = 0 ** N € Mr A; (113, Theorem 41);
ad ~p

b) v ft 0, v = p ** N e. B(&) (L13, Theorem 61);
Z o p
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a) If R> 1 and v = 0 , v ^ 0 =» N e N(b)
p 6 0 p

d) If R > 1 and v ? 0 , v, t 0 => N WW .
p H o p

Question 3.3. Can the hypothesis that R > 1 be dropped in the two

preceeding theorems?

Question 3.4. Is BfAjnA= B(A) ?

If the answer to this question i s in the affirmative, then l i t t l e Norlund

means would position in A as they do in A and thus would se t t le the

remaining positioning question. As in the case of Norlund polynomial

methods [JO] the question of whether or not a l i t t l e Norlund mean with

v j1 0 and v ^ (f is in H(h) remains unresolved. In [?] i t was
a O

shown that Norlund polynomial methods, generated by polynomials of degree

two, with roots in and on the unit disk are in N(&). From [5] it

follows that a little Norlund mean is of type M if and only if v,=0•

o

Consequently, to show that a little Norlund mean with roots in and on

the unit disk is in NCA,) is equivalent to showing that any little

Norlund mean in BfAj must be of type M.

4. Corridor Summabilty Methods.

In this section we use Norlund polynomial methods to determine the

position in M u 8 u W of a large class of matrices which occur

frequently in summability theory.

DEFINITION 4.1. A conservative triangular matrix A = (a .) is

called a corridor matrix provided

(i) p 5 lim a , , exists for each n = 0,1,2,... and

(ii) p e %1 .

If A is not the zero matrix and if there exists a least j such that

for each n > j and for all k > 1, a , . = 0 the corridor matrix is

said to be of finite type j.

We remark here that Norlund polynomial methods are corridor matrices

of finite type. Given a corridor matrix A of finite type M let
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M k

p(z) = Y pvz and associate with A the NSrlund polynomial method N .
k=0 * P

If a corridor matrix A of finite type satisfies p = lim a , , = 0
n &->•<» n '

tor all n, then A is coercive ("that is, A maps each bounded sequence

into a) and hence is in the boundary of the maximal group [72]. The

next result positions a class of corridor matrices.

THEOREM 4.2. Let A = (a •,) be a corridor matrix of finite type

M and suppose the associated Norlund polynomial method N satisfies

pQ ? 0 . Then

(i) A e M o N e M

(ii) A e 8 «• N e B and
P

(Hi) A e. N o N e W
P

Proof. We f i r s t verify par t (ii) of the theorem.

Since A = (a -,) i s of f in i te type M we have a , = 0 for a l l

k > n and a j , 7, = 0 for each n > M and for a l l k. For m = 1,2,...

define A(m) = ( a ^ ) as follows:

(m)a
, k

a , , for each n > 0 and for a l l k < m ,

p for 0 < n < M} k t m + 1 and
n

otherwise.

S i n c e ( A x ) = (N x) f o r a l l n > m + M i t i s c l e a r t h a t a =o , , .
n p n p A

We c l a i m t h a t \\A m - A | | -s- 0 . But \\A m - A\\ i s compu ted f rom

m a x { I am+l,m+l ~ P0 I ' I am+2,m+l ~ P i l + l a P I

~ p o \ } and
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Since lim a , , = p V 0 < n < M we can choose Mn such that, n+k,k en l

\a j.v v ~ P I < e^M V 0 s n £ M and V k > M . I t then follows that

|| A -A || < eVm>M and hence \\A ' - A\\ -> (7 as m -> ». Now

suppose tha t # e 8. Since c = c , . for a l l m by [4 , Lemma 2.4]
P p 4 m

A e B and since B i s closed th i s gives the sufficiency of p a r t ( i i ) .

To prove the necessity for m = 1,2, . . . define BM = (b(™)) as

as follows:

b(m)

P , 0 < n s My k i. m

a , , , for each n, k > m,
n+k,k n+k>k

•0 otherwise.

I t then follows that a , , = a and as in the'previous argument

BlW A

| | N - B(m)\\ •+ 0 . Now suppose A e B. Then by 14, Lemma 2 . 4 ] B(m) e B

f o r a l l m and h e n c e N e 8 .

P

Suppose W e M and define i4 as above. It then follows that

a , , = a. = o and hence A e M for all m. Moreover

|| 4 -y}|| ->• fl as m - v » and hence A e M. But from the first

part of the proof A / B and hence A £ II. Similarly A e M implies

that iV e M. This gives part (i). Part (iii) now follows

immediately.

It would be of interest to know if Theorem 4.2 remains valid for

general corridor methods. By considering the Cesaro matrix one observes

that the techniques used in the proof of 4.2 -will not carry over to this

more general setting.
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Added in proof. Professor W. Beekmann has pointed out tha t the

hypothesis R' > 1 can be dropped from Theorem 3.2 by choosing the

sequence (r ) so tha t lim r = 1 and for each m , 0 < r < 1 with
in m rn

p(s) + 0 for a l l z sa t i s fy ing \z\ = r .
m
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