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Abstract. This paper is about the connection between certain Banach-algebraic
properties of a commutative Banach algebra E with unit and the associated
commutative Banach algebra C(X, E) of all continuous functions from a compact
Hausdorff space X into E. The properties concern Ditkin’s condition and bounded
relative units. We show that these properties are shared by E and C(X, E). We also
consider the relationship between these properties in the algebras E, B and B̃ that
appear in the so-called admissible quadruples (X, E, B, B̃).
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1. Introduction and preliminaries.

1.1. Introduction. Let A be a commutative Banach algebra with unit. The
Gelfand transform f �→ f̂ is a unital algebra homomorphism from A onto an algebra
Â of continuous complex-valued functions on its character space M(A), the set of
nonzero complex-valued multiplicative linear functionals on A, equipped with the
relative weak-star topology from the dual A∗. The kernel of this homomorphism is the
Jacobson radical rad(A), and so Â is isomorphic to A when A is semisimple. See [3] for
background.

For a nonempty compact Hausdorff space X and a Banach algebra E, we let
C(X, E) be the space of all continuous maps from X into E. We define the uniform
norm on C(X, E) by

‖f ‖X = supx∈X‖f (x)‖, f ∈ C(X, E).

For f, g ∈ C(X, E) and λ ∈ �, the pointwise operations λf , f + g and fg in C(X, E) are
defined as usual. It is easy to see that C(X, E) equipped with the norm ‖ · ‖X is a Banach
algebra. If E = �, we get the algebra C(X, �) = C(X) of all continuous complex-
valued functions on X . Hausner [5] showed that if E is a commutative semisimple
algebra, then C(X, E) is also semisimple, with character space homeomorphic to X ×
M(E).
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In this paper, we consider the connection between certain Banach-algebraic prop-
erties of commutative E and of C(X, E). In many cases, properties of E are inherited
by C(X, E). The properties concerned will be detailed shortly. We also consider
inheritance of properties by certain subalgebras of C(X, E) called E-valued function
algebras. More specifically, we consider E-valued function algebras B̃ that appear in
what are called admissible quadruples (X, E, B, B̃). We now explain this concept.

1.2. E-valued function algebras. We recall definitions from our previous paper [7].

DEFINITION 1.1. By an E-valued function algebra on X, we mean a subalgebra
A ⊂ C(X, E), equipped with some norm that makes it complete such that (1) A has as an
element, the constant function x �→ 1E , (2) A separates points on X , i.e., given distinct
points a, b ∈ X , there exists f ∈ A such that f (a) 	= f (b) and (3) the evaluation map,

ex :
{

A → E,

f �→ f (x),

is continuous, for each x ∈ X .

DEFINITION 1.2. By an admissible quadruple, we mean a quadruple (X, E, B, B̃),
where

1. X is a compact Hausdorff space,
2. E is a commutative Banach algebra with unit,
3. B ⊂ C(X) is a natural �-valued function algebra on X ,
4. B̃ ⊂ C(X, E) is an E-valued function algebra on X ,
5. B · E ⊂ B̃, and
6. {λ ◦ f, f ∈ B̃, λ ∈ M(E)} ⊂ B.

One example is (X, E, C(X), C(X, E)). For other examples, such as the Lipschitz
algebras and algebras associated with E-valued polynomials, rational functions and
analytic functions, see [7], and see also Section 1.6.

Given an admissible quadruple (X, E, B, B̃), we define the associated map (also
called Hausner’s map)

β :
{

X × M(E) → M(B̃)
(x, ψ) �→ ψ ◦ ex.

The associated map is always injective.

DEFINITION 1.3. We say that an admissible quadruple (X, E, B, B̃) is natural if the
associated map β is bijective.

Each quadruple of the form (X, E, C(X), C(X, E)) is admissible and natural. This
is a more precise statement of Hausner’s lemma [5, Lemma 2].

1.3. Properties. Let A be a commutative Banach algebra with unit.
Given an element a ∈ A, the cozero set of a is defined as

coz(a) := {φ ∈ M(A) : â(φ) 	= 0} ,

and the support supp(a) as the closure of coz(a) in M(A).
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To a closed set S ⊂ M(A) are associated two ideals, the kernel of S,

IS = IS(A) := {a ∈ A : â(S) ⊂ {0}},

and the smaller ideal

JS = JS(A) := {a ∈ A : supp(â) ∩ S = ∅}.

For φ ∈ M(A), we abbreviate Iφ = Iφ(A) := I{φ} (a maximal ideal) and Jφ = Jφ(A) :=
J{φ}.

A is said to have bounded relative units if, for every φ ∈ M(A), there exists mφ > 0
such that, for each compact subset K of M(A) \ {φ}, there exists a ∈ Jφ with â(K) ⊂ {1}
and ‖a‖ ≤ mφ .

A satisfies Ditkin’s condition at φ ∈ M(A) if a ∈ clos(aJφ) for all a ∈ Iφ .
A is a Ditkin algebra if A satisfies Ditkin’s condition at each φ ∈ M(A).

A is a strong Ditkin algebra if Iφ has a bounded approximate identity contained in
Jφ for each φ ∈ M(A), i.e., there exists mφ > 0 and un ∈ Jφ (n ∈ �) such that ‖un‖ ≤ mφ

for each n and ‖a − aun‖ → 0 for each a ∈ Iφ .

1.4. Summary of results.

THEOREM 1. Let X be a nonempty compact Hausdorff space and E be a commutative
Banach algebra with unit. Then, C(X, E) is Ditkin if and only if E is Ditkin.

THEOREM 2. Let (X, E, B, B̃) be a natural admissible quadruple and suppose B̃ is
semisimple. Then, B̃ has bounded relative units if and only if both E and B have bounded
relative units.

COROLLARY 1.1. Let X be a nonempty compact Hausdorff space and E be a
commutative Banach algebra with unit. Then, C(X, E) has bounded relative units if
and only if E has bounded relative units

COROLLARY 1.2. Let X be a nonempty compact Hausdorff space and E be a
commutative Banach algebra with unit. Then, C(X, E) is a strong Ditkin algebra if
and only if E is a strong Ditkin algebra.

The ‘only if ’ direction of Theorem 1 and hence of Corollary 1.2 extends to natural
admissible quadruples: (see Propositions 2.1 and Corollary 3.3), but it appears to be
unknown whether the ‘if ’ direction does.

The results about quadruples apply to some so-called Tomiyama products, defined
below. See Corollaries 2.2, 3.2 and 3.4.

We conclude the paper with an application to automatic continuity for maps
T : C(X, E) → C(Y, F). See Section 4.

1.5. Properties of admissible quadruples. If (X, E, B, B̃) is a natural admissible
quadruple, then it is easy to see that B̃ is semisimple if and only if E is semisimple.

Although E is not assumed semisimple in the definition, the quadruple concept
really concerns semisimple E. The following is rather easily checked.
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PROPOSITION 1.3. Let (X, E, B, B̃) satisfy conditions (1)–(5) of the definition.
Define

ˆ̃B := {x �→ f̂ (x) : f ∈ B̃}.

Then, (X, E, B, B̃) is an admissible quadruple, if and only if (X, Ê, B, ˆ̃B) is an admissible
quadruple.

(We emphasize that, in this proposition, Ê denotes the Gelfand transform algebra
with the quotient norm from E/rad(E), not the supremum norm.)

Also, for semisimple E, there is sometimes symmetry in the rôles of E and B.

DEFINITION 1.4. We say that an admissible quadruple (X, E, B, B̃) is tight if for
each f ∈ B̃ the map

�(f ) :
{

M(E) → B
λ �→ λ ◦ f (1)

is continuous from M(E) (with the usual relative weak-star topology from E∗) to B.

PROPOSITION 1.4. Suppose (X, E, B, B̃) is a tight admissible quadruple, and E
is semisimple. Define �(f ) by equation (1), for each f ∈ B̃. Then, � is an algebra
isomorphism of B̃ onto a B-valued function algebra on M(E), and (M(E), B, E,�(B̃)) is
an admissible quadruple.

Proof. Since the quadruple is tight, the map � is a well-defined linear map from the
Banach space B̃ to the Banach space C(M(E), B). An application of the closed graph
theorem [2] shows that � is continuous. Thus, �(B̃) is a B-valued function algebra on
M(E). The rest is clear. �

The following example shows that Proposition 1.4 would fail without the
assumption of tightness.

EXAMPLE 1.5. Let C denote the set of all continuous functions f : [0, 1] × [0, 2] →
� such that the partial derivative ∂f

∂y exists at all points of the rectangle R := [0, 1] ×
[0, 2], is bounded on the whole rectangle, and is such that ∂f

∂y (x, y) is continuous on each
vertical line, i.e., is continuous in y on [0, 2] for each fixed x ∈ [0, 1]. With pointwise
operations and the norm

‖f ‖C := sup
R

|f | + sup
R

∣∣∣∣ ∂f
∂y

∣∣∣∣ ,
C is a natural function algebra on R.

Next, take E = C0([0, 1]), B = C1([0, 2]), and X = [0, 1]. Then, (with pointwise
operations and the usual norms) E and B are semisimple separable commutative
Banach algebras, with M(E) = [0, 1] and M(B) = [0, 2].
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Let

C1 := {
F ∈ E[0,2] : ((x, y) �→ F(y)(x)) ∈ C

}
,

C2 := {
G ∈ B[0,1] : ((x, y) �→ G(x)(y)) ∈ C

}
.

Then, C1 is an algebra of E-valued functions on [0, 2] and C2 is an algebra of B-
valued functions on [0, 1], when endowed with pointwise operations. Both algebras are
algebra-isomorphic to C, via obvious isomorphisms. When they are given the norms
induced by these isomorphisms, (X, E, B, C1) is an admissible quadruple, and, in the
notation of Proposition 1.4, C2 = �(C1).

We claim that (M(E), B, E,�(C1)) = ([0, 1], B, E, C2) is not an admissible
quadruple, because the elements of C2 are not all continuous B-valued functions.
To see this, we give an example of a function f ∈ C such that

{
[0, 1] → C1([0, 2]),

x �→ (y �→ f (x, y)),

is not continuous.
Take

f (x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, 0 ≤ y ≤ x,

(y − x)2

2x
, x < y < 2x,

y − 3x
2

, 2x ≤ y ≤ 2,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ , 0 ≤ x ≤ 1.

Then, f is continuous on R, the partial derivative ∂f
∂y is continuous on each vertical line

and is bounded, but it is not continuous at (0, 0). Moreover, the value of ‖f (x, ·) −
f (0, ·)‖B exceeds 1 for all x > 0, so it does not tend to 0 as x ↓ 0.

1.6. Tensor products. Let A and B be commutative Banach algebras with unit. A
Tomiyama product of A and B is the completion of the algebraic tensor product A ⊗ B
with respect to some submultiplicative cross norm not less than the injective tensor
product norm. See [8] and [6, Section 2.11] for background on cross norms and tensor
products of Banach algebras.

PROPOSITION 1.6. Let C be a Tomiyama product of A and B, two commutative
Banach algebras with unit. Suppose C is semisimple. Then, (M(B), A, B, C) is a natural
admissible quadruple.

REMARK 1.1. Kaniuth shows (cf. [6, Corollary 2.11.3] that if C is semisimple, then
so are A and B. Thus, since we are mainly interested in semisimple C, we might just as
well have restricted to semisimple A and B in the definition of Tomiyama product.

Tomiyama showed [9, Theorem 4] that a Tomiyama product C is automatically
semisimple if both A and B are semisimple, at least one of them has the Banach
approximation property and the norm is either the projective or injective product
norm.
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Proof of Proposition. Let X = M(B).
First, we have to explain how C may be regarded as an A-valued function algebra

on X (condition (4) of the definition of admissible quadruple).
By the definition of Tomiyama product, we have

‖f ‖A⊗̌B ≤ ‖f ‖C,

for all f ∈ A ⊗ B.
Let f ∈ C. Then, there is a C-norm-Cauchy sequence fn ∈ A ⊗ B with ‖f − fn‖C →

0. Thus, (fn) is A⊗̌B-norm-Cauchy as well, and so converges to an element �(f ) ∈ A⊗̌B.
We have

‖�(f )‖A⊗̌B = lim ‖�(fn)‖A⊗̌B ≤ lim ‖fn‖C = ‖f ‖C .

One can check that �(f ) does not depend on which Cauchy sequence (fn) is chosen.
So we have a well-defined continuous map � : C → A⊗̌B, a contraction, in fact. The
map � is also linear, as is easily seen.

Next, we claim that � is injective. Suppose f ∈ C and �(f ) = 0. Take any sequence
fn ∈ A ⊗ B such that fn → f in C-norm. Then, fn → 0 in A⊗̌B-norm.

Fix any χ ∈ M(C). By Tomiyama’s theorem, there exist λ ∈ M(A) and γ ∈ M(B)
such that χ = λ ⊗ γ when restricted to the algebraic tensor product A ⊗ B ⊂ C.
Moreover, there is a character χ ′ on A⊗̌B that agrees with χ on A ⊗ B.

Fix ε > 0. Choose n ∈ � such that

‖f − fn‖C <
ε

2
and ‖fn‖A⊗̌B <

ε

2
.

Then,

|χ (f )| ≤ |χ (f − fn)| + |χ (fn)| <
ε

2
+ ε

2
,

because χ has norm 1 in C∗, χ (fn) = χ ′(fn), and χ ′ has norm 1 in (A ⊗ B)∗. Thus,
|χ (f )| < ε for all ε > 0.

Thus, χ (f ) = 0 for all χ ∈ M(C). Since C is semisimple, f = 0. Thus, � is injective,
as claimed.

So we have a continuous injection from C into the injective tensor product A⊗̌B,
which is a subset of A⊗̌C(X), and the latter is naturally identified with C(X, A), as
shown by Grothendieck [8].

Conditions (1)–(3) and (5) are straightforward, and condition (6) holds because
A ⊗ B is dense in C.

Thus, (X, A, B, C) is an admissible quadruple. It is natural by Tomiyama’s main
result that M(C) is homeomorphic to M(A) × M(B) [9, Theorem 1]. �

REMARK 1.2. The projective tensor product A⊗̂B of commutative Banach algebras
A and B is an example of a Tomiyama product, but it is not always semisimple if A
and B are. The natural map � : A⊗̂B → A⊗̌B (as in the proof above) may fail to be
injective. In fact [1, Section 9], it is injective for all B if and only if A has the Banach
approximation property.

COROLLARY 1.7. Let C be a Tomiyama product of A and B, two semisimple
commutative Banach algebras with unit. Suppose C is semisimple. Then, the admissible
quadruple (M(B), A, B, C) is tight.
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Proof. Applying the Theorem with A and B interchanged, we conclude that
(M(A), B, A, C) is an admissible quadruple, so C is (isometrically isomorphic to) a
B-valued function algebra on M(A), i.e., (M(B), A, B, C) is tight. �

Thus, we can assert that the algebra C in Example 1.5 is not a Tomiyama product
of C0([0.1]) and C1([0, 2]).

2. Ditkin algebras. In this section, we will prove Theorem 1. As indicated, one
direction generalises to admissible quadruples.

2.1. The ‘only if ’ direction.

PROPOSITION 2.1. Let (X, E, B, B̃) be an admissible quadruple. Suppose B̃ is Ditkin.
Then, E and B are Ditkin.

Proof. Suppose B̃ is Ditkin.

By Proposition 1.3, (X, Ê, B, ˆ̃B) is admissible, and since ˆ̃B inherits the Ditkin
property, we may assume without loss in generality that E is semisimple.

To see that E is Ditkin, fix ψ ∈ M(E), and b ∈ E with ψ(b) = 0. We wish to show
that there exist bn ∈ Jψ (E) such that ‖b − bnb‖E → 0 as n ↑ ∞.

Pick any x0 ∈ X , and define φ = β(x0, ψ). Then, φ ∈ M(B̃). Define f (x) = b, for
all x ∈ X . Then, f ∈ Iφ , so since B̃ is Ditkin, we may choose fn ∈ B̃ such that each f̂n = 0
near φ in M(B̃) and ‖f − fnf ‖X → 0 as n ↑ ∞. Take bn = fn(x0). Then, ‖b − bnb‖E →
0. Since β is continuous, we may choose open sets Un ⊂ X and Vn ⊂ M(E) such that
x0 ∈ Un, ψ ∈ Vn and f̂n = 0 on β(Un × Vn). Then, for χ ∈ Vn, we have

b̂n(χ ) = f̂n(β(x0, χ )) = 0.

Thus, bn ∈ Jψ , as desired.
If (X, E, B, B̃) were tight, we could immediately use Proposition 1.4, to deduce

that (M(E), B, E,�(B̃)) is admissible, and the isomorphic algebra �(B̃) is Ditkin, so
B is Ditkin. However, we do not need to make this assumption.

Assume just that (X, E, B, B̃) is an admissible quadruple, and B̃ is Ditkin. The
map,

�(λ) :
{

B̃ → B
f �→ λ ◦ f,

is a well-defined algebra homomorphism, for each λ ∈ M(E). By using the closed graph
theorem, we see that �(λ) is continuous.

Now fix a ∈ X and g ∈ B with g(a) = 0. Pick any λ0 ∈ M(E) and define φ =
β(a, λ0). Then, φ ∈ M(B̃). Define f (x) = g(x) · 1E for all x ∈ X . Then, f ∈ B̃ and φ(f ) =
0, so since B̃ is Ditkin we may choose fn ∈ B̃ such that f̂n = 0 near φ in M(B̃) and ‖f −
fnf ‖B̃ → 0. Let gn = �(λ0)(fn). Then, gn ∈ B and gn = 0 near a. Since g = �(λ0)(f )
and �(λ0) is continuous, we have

‖g − gng‖B → 0.

Thus, B is Ditkin. �
Applying Proposition 1.6, we have the following corollary.
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COROLLARY 2.2. Let A and B be semisimple commutative Banach algebras with unit,
and let C be a semisimple Tomiyama product of A and B. Suppose C is Ditkin. Then, so
are A and B.

2.2. Converse direction. Turning to the other direction, we restrict to the special
quadruple (X, E, C(X), C(X, E)).

PROPOSITION 2.3. Let X be a compact Hausdorff space and let E be a commutative
Banach algebra with unit. Suppose E is Ditkin. Then, C(X, E) is Ditkin.

Proof. Fix φ ∈ M(C(X, E)), and f ∈ Iφ . Let ε > 0 be given.
Choose ψ ∈ M(E) and x0 ∈ X such that φ = β(x0, ψ).
Let a = f (x0). Then, ψ(a) = 0. Since E is Ditkin, we may choose b ∈ Jψ (E) such

that ‖a − ba‖E < ε. Let

U = {x ∈ X : ‖f (x)b − f (x)‖E < ε}.
Then, U is an open neighbourhood of x0. Thus, by Urysohn’s lemma, we may choose
h ∈ Jx0 (C(X)) with h = 1 off U and 0 ≤ h ≤ 1 on X .

Then, for each x ∈ X , we have

‖(1 − h(x))(bf (x) − f (x))‖E < ε.

Thus, ‖(1 − h)(bf − f )‖X < ε. Now

f + (1 − h)(bf − f ) = f (h · 1E + b − hb) ∈ f Jφ

(since h · 1E + b − hb = 0 on β−1
(
h−1(0) ∩ b−1(0)

)
), so the distance from f to f Jφ in

C(X, E) norm is less than ε.
The result follows. �
Proof of Theorem 1. Apply Proposition 2.1 (with B = C(X) and B̃ = C(X, E)) and

Proposition 2.3. �

3. Bounded relative units.

3.1. Proof of Theorem 2. Note the following lemma.

LEMMA 3.1. If A is a commutative Banach algebra with identity, then the following
are equivalent:

(1) A has bounded relative units.
(2) For each φ ∈ M(A), there exists a constant cφ > 0 with the following property: for

every closed subset K of M(A) with φ 	∈ K, there exists x ∈ A such that ‖x‖ ≤ cφ ,
x̂ = 0 on K and x̂ = 1 on some neighbourhood of φ.

Proof. Let e denote the identity of A.
Suppose (1) holds. Fix φ ∈ M(A), and let mφ > 0 be chosen as in the definition of

bounded relative units. Take cφ = mφ + ‖e‖. Let K ⊂ M(A) be compact, with φ 	∈ K .
We may choose a ∈ Jφ such that â(K) ⊂ {1} and ‖a‖ ≤ mφ . Taking x = e − a, we have
‖x‖ ≤ cφ , x̂ = 0 on K and x̂ = 1 near φ. Thus, (2) holds.

The other direction is similar. �
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This shows, in particular, that a unital commutative Banach algebra with bounded
relative units is regular.

Proof of Theorem 2. For the ‘only if ’ direction, suppose (X, E, B, B̃) is an admissible
quadruple, and B̃ has bounded relative units. Then, we have to show that E and B have
bounded relative units.

First, consider E, and fix ψ0 ∈ M(E). Fix any x0 ∈ X . Since the evaluation map
f �→ f (x0) is continuous from B̃ → E, there exists κ > 0 such that ‖f (x0)‖E ≤ κ‖f ‖B̃
for all f ∈ B̃.

Define φ := β(x0, ψ0) ∈ M(B̃). By assumption, there exists m > 0 such that for
each open neighbourhood W of φ there exists f ∈ Jφ such that f̂ = 1 off W and
‖f ‖B̃ ≤ m. Let F ⊂ M(E) \ {ψ0} be a compact subset. Define L := {β(x0, χ ) : χ ∈ F}.
It is clear that L is a compact subset of M(C(X, E))\{φ}. We may choose f ∈ Jφ

such that f̂ (L) ⊂ {1} and ‖f ‖B̃ ≤ m. Define b := f (x0). Then, b ∈ E, b̂(F) ⊂ {1} and
‖b‖E ≤ κ‖f ‖B̃ ≤ κm.

Thus, E has bounded relative units.
Now consider B, and fix x0 ∈ X = M(B). Fix any ψ0 ∈ M(E). As noted in the

proof of Proposition 2.1, the map f �→ ψ0 ◦ f is continuous from B̃ → B, so there
exists κ > 0 such that ‖ψ0 ◦ f ‖B ≤ κ‖f ‖B̃. So defining φ := β(x0, ψ0) ∈ M(B̃), we may
proceed in a very similar way to the above, to deduce that B has bounded relative units.

For the ‘if ’ direction, the key observation (for which the authors would like to thank
the referee) uses the classical automatic continuity theorem of Shilov [3, Theorem
2.3.3, p. 192] that each homomorphism from a Banach algebra into a semisimple
commutative Banach algebra is necessarily continuous. We may apply this to the two
homomorphisms {

E → B̃
a �→ 1X · a

}
and

{
B → B̃
f �→ f · e

}
,

where e is the identity of E and deduce that there exist constants α > 0 and γ > 0 such
that ‖1X · a‖B̃ ≤ α‖a‖E for all a ∈ E and ‖f · e‖B̃ ≤ γ ‖f ‖B for all f ∈ B.

Now every φ ∈ M(B̃) is of the form ψ ◦ ex for some ψ ∈ M(E) and some x ∈ X .
Let cx and cψ be constants as guaranteed by the assumption that B and E have
bounded relative units. Since M(B̃) is homeomorphic to X × M(E) = M(B) × M(E),
given a closed subset K of M(B̃) such that φ 	∈ K , we may find closed subsets C ⊂ X
and D ⊂ M(E) such that K ⊂ (C × M(E)) ∪ (X × D) and x 	∈ C and ψ 	∈ D. Then, by
hypothesis, there exist
� f ∈ B such that ‖f ‖B ≤ cx, f = 0 on C and f = 1 on a neighbourhood of x;
� a ∈ E such that ‖a‖E ≤ cψ , â = 1 on D and â = 1 on a neighbourhood of ψ .

Then, the element f × a of B̃ satisfies f̂ · a = 0 on (C × M(E)) ∪ (X × D) and f̂ · a = 1
in a neighbourhood of φ. Moreover,

‖f · a‖B̃ ≤ ‖f · e‖B̃ · ‖1X · a‖B̃ ≤ αγ ‖a‖E‖f ‖B ≤ αγ cxcφ.

Thus, B̃ has bounded relative units. �
COROLLARY 3.2. Let A and B be semisimple commutative Banach algebras with unit.

Suppose that C is a semisimple Tomiyama product of A and B. Then, C has bounded
relative units if and only if both A and B have bounded relative units.
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3.2. Proof of corollaries.

Proof of Corollary 1.1. This is immediate from Theorem 2, because E has bounded
relative units if and only if Ê does, and C(X, Ê) is semisimple, so the theorem applies
to the quadruple
(X, Ê, C(X), C(X, Ê), and tells us that C(X, Ê) has bounded relative units if and only
if E does. But C(X, Ê) is isometrically algebra isomorphic to ̂C(X, E), so C(X, E) has
bounded relative units if and only if E does. �

Proof of Corollary 1.2. This follows from Theorems 1 and 2, since an algebra is a
strong Ditkin algebra if and only if it is Ditkin and has bounded relative units [3, pp.
417–8]. �

As indicated earlier, one direction of Corollary 1.2 generalises to natural admissible
quadruples.

COROLLARY 3.3. Let (X, E, B, B̃) be an admissible quadruple. Suppose B̃ is strong
Ditkin. Then, E and B are strong Ditkin.

Proof. This follows from Proposition 2.1 and Theorem 2. �
COROLLARY 3.4. Let A and B be semisimple commutative Banach algebras with unit,

and let C be a semisimple Tomiyama product of A and B. Suppose C is strong Ditkin.
Then, so are A and B.

4. Separating bijections.

DEFINITION 4.1. Let A and B be two semisimple commutative Banach algebras
with identity. A linear map T : A → B is said to be separating or disjointness preserving
if coz(Tf ) ∩ coz(Tg) = ∅ whenever f, g ∈ A satisfy coz(f ) ∩ coz(g) = ∅. Moreover, T is
said to be biseparating if it is bijective and both T and T−1 are separating.

Equivalently, a map T : A → B is separating, if it is linear and Tf · Tg ≡ 0,
whenever f, g ∈ A satisfy f · g ≡ 0. As an application of Theorem 1, we obtain the
following theorem.

THEOREM 3. Let X, Y be two compact Hausdorff spaces and E, F be unital
commutative semisimple Banach algebras that are Ditkin algebras and T : C(X, E) →
C(Y, F) be a separating linear bijection, and then

(i) T is continuous,
(ii) T−1 is separating, and

(iii) X × M(E) and Y × M(F) are homeomorphic.

Proof. Use [4, Theorem 1] and Theorem 1.
�

REMARK 4.1. The results of this paper may be extended to semisimple commutative
Banach algebras without identity by the device of adjoining a unit. We have confined
attention to algebras with unit, to avoid clutter.

ACKNOWLEDGEMENTS. This paper was begun while the first-named author was
visiting National University of Ireland, Maynooth; she would like to thank sincerely
members of the Department of Mathematics and Statistics for their hospitality and

https://doi.org/10.1017/S0017089516000628 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089516000628


DITKIN CONDITIONS 163

kindness. The authors are grateful to the anonymous referee for suggestions that
significantly improved the paper. In particular, the referee supplied a key part of the
proof of Theorem 2 and the present proof of Corollary 1.1.

REFERENCES

1. K. D. Bierstedt, Introduction to topological tensor products, Lecture Notes, Mathematical
Institute, University of Paderborn (Paderborn, 2007).

2. J. H. Conway, A course in functional analysis (Springer, New York, 1985).
3. H. G. Dales, Banach algebras and automatic continuity, LMS monographs, vol. 24

(Clarendon Press, Oxford, 2000).
4. Juan J. Font, Automatic continuity of certain isomorphisms between regular Banach

function algebras, Glasgow Math. J. 39 (1997), 333–343.
5. A. Hausner, Ideals in a certain Banach algebra, Proc. Amer. Math. Soc. 8(2) (1957),

246–249.
6. E. Kaniuth, A course in commutative banach algebras (Springer, New York, 2009).
7. A. Nikou and A. G. O’Farrell, Banach algebras of vector-valued functions, Glasgow

Math. J. 56 (2014), 419–426.
8. R. Ryan, Introduction to tensor products of banach spaces (Springer, New York, 2002).
9. J. Tomiyama, Tensor products of commutative Banach algebras, Tohoku Math. J. 12

(1960), 147–154.

https://doi.org/10.1017/S0017089516000628 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089516000628

