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THE TOPOLOGY OF QUASIBUNDLES 

H. MOVAHEDI-LANKARANI AND R. WELLS 

ABSTRACT. Let M(N, N) be the space of all N x N real matrices and let Cj{N) be 
the set of all linear subspaces of RN. The maps ker and coker from fM(N, N) onto Q{N) 
induce two quotient topologies, the right and left respectively. A quasibundle over a 
space X is defined as a continuous map from X into Q{N)\ it is a right quasibundle 
if Ç{N) = M(N,N)/ ker and a left quasibundle if Ç(N) = M(N,N)/ coker. The 
following is established. Theorem: Let £ be a left quasibundle over a closed subset of 
some Euclidean space. Then the following statements are equivalent: (i) £ has enough 
sections pointwise. (ii) Sections zero at infinity over closed subsets may be extended 
globally, (iii) A vector subbundle over a closed subset extends to a vector subbundle 
over a neighborhood, (iv) £ is a fibrewise sum of local vector subbundles. (v) There 
exist finitely many global sections spanning £. (vi) £ is an image quasibundle. (vii) £ 
results from a Swan construction. These results are used to prove a version of the Hirsch-
Smale immersion theorem for locally compact subsets of Euclidean space. 

1. Introduction. Real, complex, and algebraic varieties as well as a closed invari­
ant set of a diffeomorphism of a manifold are among the examples of nonmanifold objects 
which arise naturally in differential topology. In order to study the differential topology of 
these objects, the varieties may be decomposed into manifolds via Whitney stratification, 
but the invariant sets (e.g. the Henon attractor [7]) are too wild for such a decomposition. 
Since the notion of the tangent bundle plays a primary role in the classical differential 
topology, any attempt to study these more general objects must begin with the definition 
of a tangent space. For instance, if Xis a Whitney stratified set with ^-dimensional man­
ifold stratum Xk, then we may define the Whitney tangent space at x G X to be that of 
the unique stratum containing x. The most notable properties of this definition are the 
following two: 

i) The dimension of the tangent space may vary from point to point. 
ii) Nonetheless, the tangent space varies continuously (in a certain sense) from point 

to point. (This is indeed condition A for a Whitney stratification.) 
This Whitney tangent space is superseded by the generalized tangent spaces of 

Goresky and MacPherson investigated in [4]. In this set up the correspondence x i—> TXX 
is not single valued, but satisfies properties (i) and (ii) in a suitable sense. 

The invariant sets above are not so easily handled because there are many ways to 
define what is meant by a vector tangent to a subset X of Euclidean space [2, 3, 11, 12, 
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16]. If we use the definition presented in [3, 11], then the set of vectors tangent to X, 
labeled by source, TX = {(x, v) | v G R^ is tangent to X at JC} C X x R^ becomes a 
natural generalization of the tangent bundle of a smooth manifold and possesses the same 
two properties above. However, the sense of continuity in (ii) for TX'vs essentially dual 
to that for the Whitney tangent bundle. One advantage of this definition is that it allows 
us to prove a version of the Inverse Function Theorem [3, 11]: If X is locally compact 
and TxXis the fibre of TX over JC, then the orthogonal projection nx: R

N —> TXX carries 
a neighborhood U of x in X diffeomorphically onto irx(U). That is, there is a C1 map 
tfjc- nx(U) —> U such that ax = (TTX\U)~1- Moreover, no vector subspace Q of RN with 
dimension smaller than the dimension of TxXhas this orthogonal projection property. 

With the above facts as motivation, we proceed to study this general type of fibration. 
We note that our example TX comes equipped with a classifying map, which we denote 
by the same symbol TX: X —> Ç(N), where Ç(N) is the set of all vector subspaces of R^. 
The map TX is defined by requiring that TX: x t—» TXX. Still another natural example of 
a generalization of a vector bundle is the normal bundle of X defined by NX = {(JC, v) | 
v _L TXX} and the classifying map NX.X-^ Ç(N). There are two natural (and in a sense 
dual) topologies on Q(N) producing topological spaces Çr(N) and Qt(N) so that the 
classifying maps TX:X —• Qr{N) and NX:X —» Qt{N) are continuous. (See Section 2.) 
These spaces Çr(N) and Çe(N) are not Hausdorff, but they are compact. Indeed, each 
is a finite disjoint union of Grassmannian manifolds topologized as usual. With the two 
spaces Qr(N) and Qi{N) available, we define a right (respectively, left) quasibundle over 
X to be a continuous map from X into Çr(N) (respectively, Qi{N)). Using [11] it is a 
routine task to show that for X a locally compact subset of R^, the tangent quasibundle 
TX: X —> Qr{N) is indeed a right quasibundle. Then, because the canonical maps given 
by the orthogonal complement operation _L: Qr{N) —» Çt(N) and _L: Qi{N) —» Qr{N) are 
homeomorphisms, the normal quasibundle NX:X —* Çi(N) is a left quasibundle. More 
generally, a quasibundle £ is a left quasibundle if and only if _L o £ is a right one. 

The total space |£| of a quasibundle £ is defined as |£| = {(JC, V) | x G l , v G £(JC)} 

with the topology it inherits from the product topology of Xx RN. This space is equipped 
with a natural map p: |£| —» Xgiven by p(jc, v) = x, which corresponds to the ordinary 
vector bundle projection. For a connected spaceXa map £: X —» ^(JV) is continuous with 
respect to both the right and left topologies if and only if there is some Grassmannian 
manifold Gkji C </(A0 with i:X—* Gkjt C Ç(N), i.e., p:\£\ —> Xis an ordinary vector 
bundle. It is an interesting fact that the total space |£| is closed in X x RN if and only if 
£:X —> Çr{N) is continuous. 

One of the most useful elementary properties of a vector bundle is the fact that any 
vector over a point is the value at that point of a global section. Here, we turn this property 
into a definition and say that a quasibundle £ over a spaceXhas enough sectionspointwise 
if, for any point x G X there exist finitely many global sections Jf—» |£| whose values at 
x form a basis for p~l(x). We observe that if £ is a left quasibundle and y is sufficiently 
near JC, these sections remain linearly independent at y. On the other hand, if £ is a right 
quasibundle and_y is sufficiently close to x, these sections remain a spanning set over y. 
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These observations are related to the fact if £ is a left quasibundle, then dim £(x) is locally 
a minimum at x, while if £ is a right quasibundle, then dim £(x) is locally a maximum at 
JC. In either case, we stratify the base space Xby the dimension of the fibre. Specifically, 
for f^.X —> Ç(N) we s e t ^ = {x | dim£(x) = /} . This provides a filtration 0 = X~l C 
^ C l l C - - - c / = I , where X = UK/X/- Note that each filtration setX is open 
when £ is a right quasibundle and closed when £ is a left quasibundle. 

In [15], a quasibundle is defined as a triplet p.E —> X, where /? is continuous and 
every fibre p~l(x) has the structure of a vector space. Thus, our two definitions are more 
restrictive because, in the corresponding triplet p: |£| —> X for both the right and the left 
cases, the vector space operations in the fibre p~x(x) are related by our condition that 
£:X —» (̂AO be continuous with respect to either the right or the left topology. The 
class of quasibundles then considered in [15], for which the dimension function is lower 
semi-continuous, includes our left quasibundles. In order to prove the main theorem in 
[15], Samsonovicz imposes the additional condition that the base space is a finite CW 
complex and that the filter sets are subcomplexes. Under these hypotheses, it is shown in 
[15] that the existence of enough sections pointwise is equivalent to any of the following 
three conditions: 

(i) The quasibundle is the image of an ordinary vector bundle morphism. 
(ii) The quasibundle admits a tight para-atlas. (See [15] for definition.) 

(iii) The quasibundle admits a decomposition. (See [15] for definition.) 
In this paper we develop the theory of quasibundles £:X—> Ç(N) withXhomeomor-

phic to a closed subset of a Euclidean space, with unrestricted strata. We show that for 
a left quasibundle Ç.X —•» Qi(N) with X such a space, the existence of enough sections 
pointwise is equivalent to any of the following six statements, 

(i) £ has the section extension property. 
That is, any section defined over a closed subset of Xand vanishing at infinity extends 

to a global section vanishing at infinity. 
(ii) £ has the bundle extension property. 
That is, a true vector subbundle of £ over a closed subset of X extends to a true vector 

subbundle over a neighborhood of that closed set. 
(iii) £ is pieced. 
That is, £ is the fibrewise sum of vector subbundles defined over open subsets of X. 

This statement extends the existence of a decomposition in [15]. 
(iv) There exist finitely many sections spanning £. 
That is, there exist sections s\,... ,sg:X —» |£| so that for every x G X, the vectors 

s\(x),.. .,s\(x) span p~x(x). 
We note a subtlety at this point: It does not appear to follow that the sections s\,...,sq 

above span the module T(£) of (continuous) sections over the ring Co(X) of continuous 
functions on evanishing at infinity. 

(v) £ is an image quasibundle. 
That is, there exists an ordinary vector bundle morphism Q>:X x Rq —> X x Rq with 

image |£|. This statement extends the image property in [15]. 
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(vi) £ results from a Swan construction. 

That is, there exists a finitely generated topological module M over C{X*) and closed 
submodules Jx of M, for x £ X, so that the map JC i—> M/Jx is naturally equivalent to £ 
and M becomes a submodule of T(£). 

It is also shown that if £ is a left quasibundle with enough sections pointwise, then 
_L o £ is isomorphic to ker *F, where *F is an ordinary vector bundle morphism of the 
trivial bundle. Some rudimentary homotopy properties in the general spirit of [10] also 
follow from the above results. 

We note at this point that the most crucial open problem appears to be the following 
one: 

PROBLEM. Does every left quasibundle over a closed subset of a Euclidean space 
have enough sections pointwise? 

However, it is easily shown that if £ is a left quasibundle over a locally compact space 
X, then for each x G l and v G £(x) there is a map sx:X —• |£| with sx(x) = v which is 
continuous at x, but not necessarily at nearby points. 

Our second main result (Theorem 3.4) is a refinement of an earlier bundle extension 
theorem for right quasibundles. This theorem is used heavily in the proof of our last main 
result (Theorem 3.5) which, partially addressing the homotopy classification problem, 
deals with extensions of homotopies via quasibundles monomorphisms. We remark here 
that this work does not address the issues relating to ^-Theory, or characteristic classes 
for quasibundles. For current work in these directions see [14], [15], and [16]. 

As an application of our main results we prove a generalized version of the Hirsch-
Smale Immersion Theorem [5, 8, 13] for differential immersions into a Euclidean space 
of certain locally compact subsets of another Euclidean space. 

We thank L. Vaserstein for the idea of ordering the cover V in Lemma 4.4. 

2. Quasibundles. In this section we define quasibundles and prove some prelimi­
nary results about them. As in the case with vector bundles, we would like each quasibun­
dle to be induced from a universal quasibundle by a map into a universal base space. Our 
candidate for such a base space is the set Ç(N) of all linear subspaces of R^. There are 
two natural topologies that we wish to define on this set. To this end, let 9A.{p> q) denote 
the set of all real/? x q matrices with the obvious topology. For^4 G 0K(p, q) let ker(A) and 
coker(y4) denote the null space and the column space of A, respectively. Then both func­
tions ker: !M(p, q) —» Ç(q) and coker: M(p, q) —> Q(p) are surjective. The two topolo­
gies on Q{N) are then defined as the corresponding quotient topologies from ${(N,N). 
We use the notation Qr{N) = M(N,N)/ ker and Çt{N) = M{N,N)/ coker to denote 
Ç(N) with these topologies. We will show that both topologies are non-HausdorfTand 
induce the standard (metric) topology on each Grassmannian manifold Gkjt, 0 <k <N. 
(Here, Gkjj is the subset of Q{N) consisting of the A:-dimensional subspaces.) This is ac­
complished by showing that both topologies are defined by the unsymmetric Hausdorff 
distance. 
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Let 6(x9y) be the standard Riemannian metric on the unit sphere SN~{ of RN. That is, 
ô(x9y) is the angle between x and y. As usual, for x G SN~l and Q G Ç(N)9 the distance 
between x and Q is defined as 

e(x,Q) = mf{0(x,y)\y£QnSN-1} 

— COS"1 ||'7Tgx||, 

where ITQ denotes the orthogonal projection on Q and || • || is the Euclidean norm. Then 
for P9Q £ Q(N)9 the distance from P to Q is defined by 

d(P9 Q) = sup{0(x, Q) | x G PH SN~l}. 

This distance function has the following properties which are used (either explicitly or 
implicitly) throughout this paper: 

i) 0 < d(P9 Q) < TT/2 for all P, Q G Ç(N). 
ii) d(P9 0 = 0 if and only if P C Q. 

iii) If d(P9 0 = 0, then 
a) d(Q9 P) = 0 if and only if P = Q\ 
b) d(Q9P) = TT/2 if and only if P C 0 

iv) d(P9 0 < </(P, R) + </(/?, 0 for all P9Q9Re Ç(N). 
v) If P n g 1 ^ {0}, then d(P, Q) = TT/2. 

vi) If dim P = 1, then d(P9 Q) + d(P9 Q
1) = TT/2. 

vii) d(P9 0 + rf(P, Q1) > TT/2 for all P, g G £(#). 
viii) For any P9Q £ Ç(N) we have J(P, Q) = «/(g1, P x ) . 

ix) LetP9Q G ^(N) and let 7r̂  denote the orthogonal projection on Q. Then for all 
y G P we have HTT^H > cos(d(P,0)|[y||. 

x) For P9Q£ Q(N) we have d(P, Q) = J(P, TTÔP). 

The two topologies on (̂AO are now defined as follows. In the first topology (the right 
topology) a neighborhood base for Q is defined by the sets 9£(Q) = {P | d(P9 Q) < 
e}. In the second topology (the left topology) we use the base of sets 9^(P) = {Q \ 
d(P9 0 < e}. Let £ r(#) and ££(JV) denote Q(N) with the right and the left topology, 
respectively. Observe that the map P \—> P x is an anti-isometry from r̂(7V) to ^(AO 
and from Qi(N) to Çr(N)- It is a homeomorphism from Qr(N) to ^(iV) and from Çt(N) 
to £(JV). 

Our aim is to show that Çr(N) 9É Qr(N) and ££(A0 = Çe(N). But first, let us record 
the following criterion for convergence in Çr(N)\ the proof is trivial. 

Let {Pn}n>\ and P be in Çr(N)- The Pn —•> P in §r(iV) if and only if for some wo there 
exists a constant dimensional sequence {P«}«>/70 with 

i) {Vn}n>n0 converging to some V in the appropriate Grassmannian; 
ii) Pn C Vn for«0 < n9 

iii) F c P . 
The following criterion for convergence in Çe(N) is analogous to the one above: 
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Let {Pn}n>\ and P be in Çt{N). Then Pn —> P in (̂ (AO if and only if for some «0 

there exists a constant dimensional sequence {Vn}n>no with 
i) {^«}AI>«O converging to some V in the appropriate Grassmannian; 

ii) Vn CPnforn0 < n; 
iii) PCV. 

LEMMA 2.1. 0fe Aave £r(N) = Çr(N) and ÇE(N) = <̂ (7V)-

PROOF. It suffices to show that the maps coker: fW(/V,TV) —> Çt(N) and 
ker: iW(N, ,/V) —» -̂(AO are quotient maps. That coker: fW(JV, N)—*Çi(N) is continuous 
follows directly from the criterion for convergence in Çe(N). Also, since _L: ^ ( ^ 0 ~* 

Çr(N) is a homeomorphism and (coken/T)) = ker(^), we have that ker: M(N9N) —» 
Çr(N) is continuous. Here, AT denotes the transpose of A. 

Next we show that coker (and hence ker) is an open map. To this end, let e > 0 be given 
and let A G M(N,N). We must show that there is S > 0 such that if d(cokei(A)9P) < 8, 
thenP = coker(Z?) with \\A— B\\ < e, where || || denotes the Euclidean norm on M(N9 N). 
For 0 < K < 1, there is S\ > 0 such that \\irPy\\ > K\\y\\ for y G Q provided that 
d(Q9P) < Si. Let P G Qt(N) with d{coker{A)9P) < S{. Write A = [Au... 9AN] and 
set ,0 = [5i, . . .,/?#], where 5, = 7i>4/, 1 < i < N. Then there is £2 > 0 such that 
\\At -Bi\\<e/y/N9 for </(coker04),i>) < 62. In this case we get 

/ ^ ^\ 1/2 

U-B\\ = CZUi-Bi\\2) <6. 

Using property (x) above, we obtain d(cokçr(A),P) = d(coker(A)9 TTP coker(/4)) = 

t/(coker(^), coker(5)). 

Let 6 = min{5i,^2} and suppose that j(coker(^(),P) < 6. Then we may find B as 
above so that \\A — B\\ < e and d(coker(A)9 coker(i?)) < 5. If coker(Z?) = P, we are 
done. If not, let R be the orthogonal complement of coker(Z?) in P. We may suppose that 
the columns A\,...,Am of A form a basis for coker(A). Then the columns B\,... ,Bm 

form a basis for coker(#). We may find vectors B'm+l ,...,B
f
Nso that \\Bt — B[\\ are small 

for m + 1 < / < N9 and so that 2?m+i — Bf
m+l9. ..9B — B'N span R. Then the matrix 

B=[B\9...9 Bm9B'm+x 9...9B
f
N] has the two properties \\A - B\\ < e and coker(i?) = P. m 

Because of the above lemma, we simplify our notation and use Qr{N) and Qt{N) to 
denote Q(N) with the right or the left topology. 

Observe that if {Pn}n>\ and {Qn}n>\ are constant dimensional sequences in Ç{N) 
with Pn C Qn for all n and P„ —» P9 Qn —> 2 *n t n e appropriate Grassmannians, then 
P C g . 

LEMMA 2.2. 772é? map span: Qi(N) x £*(#) —* &(#) w continuous. Thus Çi(N) 
is an abelian monoid. 

PROOF. Let {Pn}n>\ and {Qn}n>\ converge to P and Q respectively. We must show 
that span{P„, Qn} —> span{P, Q} in Çi(N). We may assume that the sequences {Pn}n>\, 
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m = {\ 

{Qn}n>\ and {span{P„, Qn}} > are ail constant dimensional and that in the appropriate 
Grassmannians Pn —> P D P, QN —* g D g, and span{P„, g„} -+ tf. Then P C R and 
Q C R because both Pn and g„ are contained in span{P„, Qn}. Hence, span{P, Q} C 
span{P, Q} C R as desired. • 

We are now ready to define a quasibundle. 

DEFINITION 2.3. Let X be a topological space. A right (respectively, left) (N,L)-
quasibundle over Xis a continuous map £ fromX into Çr(iV) (respectively, Çi(N)) such 
that max{dim £(x) | x E X} = L. 

When there is no danger of confusion, i. e., N and/or L are implicitly understood or are 
unimportant, we use the term right (respectively, left) quasibundle. For simple examples 
of quasibundles which are not vector bundles, we give the following two constructions. 
Let Ube an open subset of a topological space Xand let/: U —» G^ be a vector bundle. 
(Here, G^N denotes a Grassmannian manifold.) Then the map r\\X-^ Çr(N) given by 

«to- / / (* ) for* Et/ 
W IRN otherwise 

is a right quasibundle. Similarly, the map £:X—* Çe(N) defined by 

jf(x) forxeU 
0 otherwise 

is a left quasibundle overX 
Observe that if £ is a right (respectively, left) quasibundle over X, then dim(£(x)) is 

locally a maximum (respectively, minimum) at x. Hence, if £ is both a right and a left 
quasibundle, then dim(£(x)) is locally a constant. Therefore, each component of X maps 
into a single Grassmannian Gkjv for some 0 < k < N. 

The following lemma is just a rephrasing of the definition of a quasibundle on a first 
countable space. 

LEMMA 2.4. Let X be a first countable space, 
i) A map Ç.X —> Qr{N) is a right quasibundle if and only ifd^(xn), £(x)) —» 0 

whenever xn —» x. 
ii) A map ^:X —» ^(AT) w a /e// quasibundle if and only if d(£(x)9 £(xn)) —• 0 

w/ze«everx„ —> x. 

For a quasibundle £, set 

|£| = {(*,v)|*eJf,veÉ(*)} 
and 

^(0 = fev)|xGX,vG£(x),||v|| = l} 
= \Z\n(XxsF-1) 

with the topology they inherit froml x RN. In addition, we define a map p: |£| —> X by 
setting p(x, v) = x. We also denote by p the restriction of this map to !(£)• Clearly, Z(£) 
is closed inX x R^ if and only if |£| is closed inX x RN. We call |£| the total space ofÇ 
and the map £(£) —> Jf the sphere quasibundle associated with £. The following lemma 
(whose proof is straightforward) will be needed for the proof of Theorem 3.4. 
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LEMMA 2.5. £ is a right quasibundle over a first countable space X if and only if 
£(£) is closed in X x RN. Consequently, £ is a right quasibundle over a first countable 
space X if and only if\£\ is closed in X x RN. 

Observe that the analogous result for left quasibundles is false. Indeed, let £: [0,1] —» 
Çt(2) be the left quasibundle with total space |£| = ([0,1) x R) U ({1} x {0}) which is 
not closed (nor open) in [0,1] x 1R2. 

Now consider the following two natural examples: 
i) id: Q{N) —» Ç(N) is a right quasibundle over Çr{N) and a left quasibundle over 

ii) _L: Çr(N) —> Çe(N) is a left quasibundle and _L: Qt{N) —» Çr{N) is a right quasi­
bundle. 

Therefore, to each right quasibundle r\\X—» Çr(N) there corresponds a left quasibundle, 
which we call theperp of 77 and denote by rj^, by setting 

r1
± = ±oj1:X-+ÇE(N). 

Similarly, if £ is a left quasibundle over X, then its perp £x = _L o £:X —> Qr{N) is a 
right quasibundle. Furthermore, for any quasibundle £, we have (C±)± = C 

Let £ and 7/ be quasibundles over the same space X. If both £ and rj are right (respec­
tively, left) quasibundles, then their Whitney sum £ 0 77 is defined as usual and is a right 
(respectively, left) quasibundle. In general, however, the Whitney sum of a left and a 
right quasibundle may not be defined as a right or left quasibundle. Nevertheless, for any 
quasibundle £ over a space X we have £ 0 £-•- = eN, the unique (N, A^-bundle overX 

A quasibundle map from one quasibundle to another over the same base space is 
defined exactly as a bundle map. Specifically, ip: £ —-> 77 is a quasibundle map if ip = 
{^jcjjtez so that, for each x G X, the map ^ : £(x) —• //(x) is linear, and the following 
diagram commutes: 

Kl - ^ I-7I 
, j J, 
X ^ A-

where O is a continuous map, defined by setting 0(JC, v) = (x, (pxv). In particular, £ and 77 
are equivalent if the map O is a homeomorphism. In this case we use the notation £ = 77. 
Of course, it is possible for two quasibundles £ and 7/ to be equivalent while Ç1 is «0/ 
equivalent to T/-1. 

DEFINITION 2.6. Let Xbe a topological space and let £ and 77 be quasibundles over 
X. If for some natural number q the sequence 

0—>\r]\ — ^ x » — > | £ | —>0 

is exact and continuous, then we say that £ is an image quasibundle and 77 is a kernel 
quasibundle. 
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It is clear that every image quasibundle is a left quasibundle and every kernel quasi-
bundle is a right quasibundle. One of our major goals is to determine when the converse 
of this statement is true. 

Now letXbe a locally compact space. We say that a map/: X —> RN vanishes at infinity 
if for each e > 0 there is a compact set K(e) C X such that \\f(x)\\ < e for x G X \ K(e). 
As usual, by a section of a quasibundle £ over X we mean a continuous map s:X—» |£| 
such that p(s(x)) = x for every x G X. We say a section s:X—> |£| C X x R^ vanishes 
at infinity if and only if the map 7T2 OS:X— -> R^ vanishes at infinity. Here, TT2 denotes the 
projection onto the second factor. 

For a topological space X, we use the standard notation C(X) to denote the continuous 
real valued functions on Zand Co(X) to denote the set of functions in C(X) which vanish 
at infinity. We denote the one-point compactification of X by X* and we set CQC ) = 
R + CQ(X). If £:X —> Ç(N) is a quasibundle, we may extend it to £+:A* —> £(JV) by 
setting £+(oo) = {0} if £ is a left quasibundle and £+(oo) = R^ if £ is a right quasibundle. 

Here is a way to piece together vector bundles in order to form left quasibundles. 
Let 11 be a locally finite open cover of a topological space X and for each U G £Z let 
£t/- £/ —* Gk(U),N be a vector bundle. Then define £:X—* ^(AO be setting 

£(x) = span{£t/(jc) | x G f/ G ÎZ}. 

To check that £ is a left quasibundle, let x G X and let U\,...,Um be the members of 
11 containing the point x. It follows from Lemma 2.2 that span: ((^(N)) —* ^(AO is 
continuous. Hence, £\uxn-num = span{£^,,..., £t/m} is continuous as desired since it is 
a composition of continuous maps 

Uin...nUm^(Uin...nUmriu'^Um(gm)m^çm. 
Here, Am denotes the diagonal in (U\ n • • • PI £/m)m-

We summarize the above remarks as the following lemma. 

LEMMA 2.7. Let 11 be a locally finite open cover of a topological space X and 
suppose that for each U G 11 there is a continuous map (a vector bundle) £um. U —> 
Gk{U)jj. Then the map £:X—> QiiN) defined by setting 

i(x) = span{^(x) | x G U G 11} 

is a left quasibundle overX. 

DEFINITION 2.8. We say that a left quasibundle is pieced if it is constructed as above. 
We call the vector bundles £u- U —> G^jj)^ the pieces (of the construction). 

As was mentioned earlier, the existence of sections remains as one of the fundamental 
open problems. In the remainder of this section we give an example and construct two 
classes of left quasibundles which do have sections. But first we record the following 
easy result for the sake of completeness. 
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PROPOSITION 2.9. Let £ be a quasibundle over a locally compact space X and let 
xo G X. Suppose that there exist a neighborhood U ofxo and local sections a\,..., a^: 
U —> |£|, k — dim£(xo), such that v\(x),... 9Vk{x) are linearly independent for each 
x G U and o"i(xo), • • •, 0>(*o) form a basis for £(xo). Then there exist global sections 
s\9...,Sk:X—> |£| such thats\(x)9... ,Sk(x) are linearly independent for eachx G U and 
5I(JCO), . . . , s/((xo)form a basis for £(xo). 

DEFINITION 2.10. Let £ be a quasibundle over a topological space X. We say that £ 
has enough sections pointwise if for eachx G X there exist sections s i , . . .,£*(*), &(x) = 
dim £(x), such that si(x),..., ̂ (x)(x) form a basis for £(x). 

Of course, if £ is a left quasibundle with enough sections pointwise, then for eachx G 
X there exist a neighborhood U of x and sections s\9... ,^(x) such that si(x),... ,s*(jt)(x) 
form a basis for £(x) and si(y),.. .9Sk(X)(y) are linearly independent for each y G U. 

Clearly, there is no hope for a general right quasibundle to have enough sections point-
wise. However, the situation is much more promising for left quasibundles. Indeed, it is 
essentially trivial to show that the Whitney tangent bundle of a Whitney stratified set 
in RN is a left quasibundle with enough sections pointwise. Furthermore, if X is a lo­
cally compact subset of RN

9 then the normal bundle (in the sense of [3, 11]) of X is a 
left quasibundle with enough sections pointwise. This follows from the fact that for each 
x G X there is, by the Inverse Function Theorem (see the Introduction), a neighborhood 
U of x in X and a C1 manifold M such that U C M and TXX = TXM. Hence, any vector 
v G (TXX)L = (TxM)1 extends (as a C1 section) to a neighborhood of x in M and so to a 
neighborhood of x in X. 

The next result provides another class of examples (albeit obvious) of left quasibun­
dles with enough sections pointwise. 

THEOREM 2.11. Let £ be a left quasibundle over a normal space X.If^ is pieced, 
then it has enough sections pointwise. 

PROOF. Let Zl be a locally finite open cover of X and let xo G X. Let U\,..., Ur be 
the members of U containing xo. Then there are open neighborhoods V\,..., Vr of xo 
so that Vj C Uj,i = 1, . . . , r. We may find a basis e\,..., e^0) for £(xo) such that each 
vector ej lies in some £t/;(/)(x). Also, we may find sections Oj of ^ ^ with GJ{XQ) = ej. 
Letf\9...,fk(x0) be Urysohn functions so that^(x) = 1 for x G Vt andy?(x) = 0 for 
x G X\ Uf. We may then define sections sy.X-^ |£|,y" = 1, . . . , A:(xo), by setting sy(x) = 
f(j)(x)aj(x)for x G Ui(j) and Sj(x) = 0 for x G l \ Ui(j). Clearly s\,... ,fy(x0) have the 
desired properties. • 

In Section 4 we will prove the converse of the above theorem when X is homeomor-
phic to a closed subset of a Euclidean space. 

Next, we construct yet another class of left quasibundles with enough sections point-
wise. We will refer to the following construction as the Swan Construction. (See [17].) 
Let X be a locally compact Hausdorff space and let M be a finitely generated topological 
module over C{X* ). Let (p\9...9<fN generate M. Suppose that we have a family {Jx}xex 
of submodules of M with the following properties: 
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i) For each x G X, IXM C Jx, where Ix is the ideal Ix = {f G C0(l) | f(x) = 0}. 
ii) The set J = U{(* xJx)\xeX} is c/osedinJf x M. 

Observe that condition (ii) implies that Jx is closed in M because x x / x = J n ( x x M). 
Moreover, that J is closed is analogous to the closure condition in Lemma 2.5. For x G X 
define 

Aj(x) = {(au...9aN) G RN | £ ^ / G J, f o r ^ W = * 

This is well defined since at — ft{x) — ft(x) implies that (ft — ft) G Ix and so 
T?=\(fi — fi)Vi € IXM C Jx. Because Jx is closed in M, the quotient Vj(x) = M/Jx 

is a topological quotient for each x G X. We may then define, for each x G X, a map 
t*(jt): R* —> F>(jc) by setting 

TV N 

a(x)b = Yj&Vi +Jx = Yjbupi +JX, 

where g,-(jt) — 6,-, 1 < / < N. Again this is independent of the choice of g, for b[. 
Note that for each x G X, a(x) is surjective because (p\,...,(fN generate M and that 
ker(a(x)) = Aj(x) because a(x)b — 0 implies Y$Li b^t +JX = 0 giving E ^ £/<£>/ G Jx. 
This of course means that b G Aj(x) by definition of Aj(x). Consequently, for eachx G X 
the map /3(x) = a(x)|A±(jc): Aj-(x) —> K/(x) is an algebraic isomorphism and hence a 
homeomorphism. 

LEMMA 2.12. The map x i—> Aj(x) is a right quasibundle overX. 

PROOF. Let {JCW}„>I C X converge to x G X. We may assume (by choosing subse­
quences) that dim Aj{xn) is constant and that {Aj(xn)}n>\ converges in the appropriate 
Grassmannian to some A/. It suffices to show that Âj C Aj(x). Let b G Aj. Then there 
is a sequence {bn}n>\ C RN with bn G Aj(xn) and converging (in RN) to b. Denote 
bn — (bn,\,- • -,bnjsi). By the continuity of multiplication /i„ = J2^L\ b„j(fi converges to 
/i = Y$Li bjifi. But /i„ G JXn because bn G Aj(x„). Hence, {(x„, fJ,n)}n>\ converges to 
(JC, /x) and (x, /i) G J. Therefore, [i G J* and so & G AJ(JC). • 

THEOREM 2.13. Let Xbea locally compact Hausdorff space and let M be a finitely 
generated topological module over C{X^). Then, in the above notation, the map i'.X—* 
QtiN) defined by setting £(x) = Aj-(x) is a left quasibundle over X with enough sections 
pointwise. 

PROOF. That £ is a left quasibundle over X follows immediately from Lemma 2.12. 
It remains to show that £ has enough sections pointwise. Consider the following diagram 

XxM 

(XxM)/J=Vj J- \i\ 

X -^ X 
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where (JC, p) ~ (y, i/) mod J if and only if x = y and p—v G Jx\ (Xx M)jJ = (Jfx A/)/ ~ 
a n d / ? : I x M - ^ (X x A/)/J is the quotient map; /3(JC,6) = /3(x)i = T$L\ bupt + JX; 
and 7(x, c) = (x, £ ^ £/<£>/) for c = (ci , . . . , c#). Clearly 7 is continuous. Note that the 
diagram is commutative because 

( i , E f = i W ) 

(x> EJLi <W + •/*) <— (x, c) 

and the square is clearly commutative. The commutativity of the triangle implies that 
the map f3 = p o 7 is continuous because it is the composition of two continuous maps. 
Furthermore, (5 is a bijection because it is so at the fibre level. 

Now let (p G M and define sections sj (with respect to TTJ) and s (with respect to 
/o) by setting sj(x) = (x, cp + Jx) and S(JC) = /?_1s/(*) = /3_1(x, <̂  + J*). We claim that 
p~l (sjÇXf) is closed inXxM. To see this, let (xn, pn) G p~l {sj(Xfj converge to (JC,p). 
Then pn G <p + •/*„ and so (//„ — <p) G */x„ converges to (p — <̂ ) G «/* by the assumption 
that the set J is closed. Therefore / i G ^ + J ^ and so (x, //) G /?_1 (^(1)). 

Finally, the continuity of 7 implies that l~lp~l (sj(XJ) is closed. But7~1/?~1 (sj(X)) = 

i8-1(jy(X))=j(A0. Hence, j is continuous. • 

Again, in Section 4 we will prove the converse of this theorem when X is homeomor-
phic to a closed subset of a Euclidean space. 

3. Main results. In this section we list our main results. But first let us introduce 
the following terminology. 

DEFINITION 3.1. We say that a topological space X is Euclidean closed if and only 
if X is homeomorphic to a closed subset of a Euclidean space. 

It follows from the classical embedding theorem of Menger-Nôbeling [9] that a space 
Xis Euclidean closed if and only if X is a locally compact separable metric space of finite 
covering dimension. 

THEOREM 3.2. Let X be a Euclidean closed space and let £:X —> Çt{N) be a left 
quasibundle. Then the following statements are equivalent, 

i) £ has enough sections pointwise. 
ii) £ has the section extension property. That is, if Y G Xis closed and s y: Y —» |£| 

is a section over Y vanishing at infinity, then there is a global section S:X-^ |£|, 
vanishing at infinity, which extends sy. 

Hi) £ has the bundle extension property. That is, ifYcX is closed and X/J: Y —-> 
Gkjj is a vector bundle with \p(y) C Hy)for all y G Y, then there is an open 
neighborhood UofY and a vector bundle £: U —-* G^ such that £| y — ip and 
C(x) C£(x)forallxe U. 

iv) £ is pieced. 
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v) There exist finitely many (global) sections spanning £. That is, there exist q > N 
and sections s\,...,sq such that for every x GXwe have £(x) = span{si(x),..., 
sq(x)}. 

vi) £ is an image quasibundle. 
vii) £ results from a Swan Construction. 

COROLLARY 3.3. Let X be a Euclidean closed space and let r/:X —* Çr(N) be a 
right quasibundle such that £ = r\^\X —•» Qi{N) has enough sections pointwise. Then 
there exists a bundle morphism *¥: X x RN —> X x RN such that \r]\ = ker VF. 

Next, we recall the following notation. If £ is a left (respectively, right) (Af, L)-quasi-
bundle over a space X, we set 

Xt = {xeX\ dimC(x) = z; 0 < / < L} 

and 
X: = {x G X | dimCW < i; 0 < i < L} = \JXj. 

This provides us with a filtration ofXby sets closed (respectively, open) inX: 

Clearly, ifXis locally compact, then so are the setsJG and^L7, 0 < i <L. 
Our second main result is a refined bundle extension theorem for right quasibundles 

(cf. Theorem 4.5, Corollary 4.6, and [3; Chapter 2, Proposition III]). 

THEOREM 3.4. Let X be a locally compact subset of a Euclidean space and let 
r\\X —+ Qr(N) be a right (N,L)-quasibundle such that r\^\X —> Çe(N) has enough 
sections pointwise. Then there exist neighborhoods Vo, V\,..., Vi ofXç,,X\, ...9Xi re­
spectively and vector bundles 7/: Vi —> Gi^for i = 0 , 1 , . . . ,L such that 

i) Vin(x\x) = <t>; 
n) li\xt = rçU; 

Hi) J](x) C li(x)for all x G Vt; and 
iv) li(x) C li+\(x)for allx G Vt D F m . 

Before stating the next result, we introduce some notation and terminology. If £: X —> 
Ç*(N) is a quasibundle, right or left, and / = [0,1], we write £ x / for the composition 

X x / -!—^ Jf - ^ Ç*{N). Clearly, |£ x /| may be identified with |(| x / and contains |(| x 0 

and |£| x 1 canonically. We say that a quasibundle map 

ICI - ^ l/3| 

I I 
X — > Y 

is a quasibundle monomap if it is a monomorphism on each fiber; the base map X —> Y 
may be many-to-one. Then a monotopy is a quasibundle monomap from ( x / to /3; it 
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is a monotopy from its restriction to |(| x 0 to its restriction to \(\ x 1. We may define 
quasibundle epimaps and epitopies in the same way. 

If (f: |£| —-> \/3\ is a quasibundle map and C is a subspace of the base spaceXof (, we 
write (p || C for the restriction of (/? to |(|c|. 

THEOREM 3.5 (THE MONOTOPY EXTENSION THEOREM). LetXbe a locally compact 
subset of Euclidean space and let rj:X —» Çr{N) be a right (N, L)-quasibundle such that 
rjL:X—> Çi(N) has enough sections pointwise. Suppose that for some n 

H - ^ R-

I I 
X —> * 

is a quasibundle monomap and that 
|>?k |x [0 , l ] - ^ R» 

I I 
l x [ 0 , l ] —> * 

is a monotopy with start ip \\Xi. Then there exists a monotopy 

\r]\ x [0,1] -^-> W1 

1 I 
l x [ 0 , l ] —> * 

extending <X> a«t/ starting at <p. 

In Section 6, as an application of our main results, we state and prove a generalized 
version (Theorem 6.1) of the Hirsch-Smale Immersion Theorem [5, 8, 13] for differen­
tial immersions into a Euclidean space of locally compact subsets of another Euclidean 
space. 

4. Proof of Theorem 3.2. The outline of the proof of Theorem 3.2 is as follows: 

(i) = > (ii) = > (iii) = » (iv) = > (v) = > (vi) 

(vii) = > (i) 

More specifically, we have 
(i) = > (ii): Theorem 4.1 
(ii) =^ (iii): Theorem 4.5 
(iii) = > (iv): Theorem 4.7 
(iv) ==> (v): Lemma 4.9 
(v) = > (vi): Corollary 4.10 
(vi) = > (i): A trivial consequence of the definition of an image quasibundle. 
(v) = > (vii): Theorem 4.11 
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(vii) ==> (i): Theorem 2.13 
Let X be a set and let J be a family of subsets of X. By the order of the family J 

we mean the largest integer n such that the family J contains n + 1 sets with nonempty 
intersection. If no such integer exists, then f has order oo. This, of course, means that if 
f is of order n, then every point of X is in at most n + 1 members of 5. It follows from a 
straight forward argument that iOf is a Euclidean closed space with covering dimension 
of X < Z), then every open covering of X has a locally finite open refinement of order 
< 4(D + 1). This implies that the integer q in (v) and (vi) of Theorem 3.2 may be chosen 
so that N <q< N{N + \){D + l ) /2 . (See Lemma 4.8 and Lemma 4.9.) 

THEOREM 4.1 (THE SECTION EXTENSION THEOREM). Let Xbea Euclidean closed 
space and let £:X —> (ji(N) be a left quasibundle with enough sectionspointwise. Let 
Y be a closed subset ofX and suppose that sy.Y—» |£| is a section over Y vanishing at 
infinity. Then there is a section s:X—> |£|, vanishing at infinity, which extends sY. 

PROOF. Replace X with its one point compactification X* and replace £ with its 
canonical extension £+: Jf" —> Qt{N). So we may assume that X° ^ </> and that X is 
compact. Then the theorem is an immediate consequence of the following lemma. 

LEMMA 4.2. Let X be a compact Euclidean closed space of covering dimension 
< D and let £ be a left quasibundle over X with enough sections pointwise. Let Y be a 
closed subset of X and set Yn = Y H X1, n > —\. Ifsn: Y" —> |£| is a section, then there 
is a section s:X—> |£| such thats\Y" = sn. 

PROOF. We will prove the lemma by induction on n. Clearly, s-\ = <j> and SQ = 
{0} = s\Y°. 

Assume that the lemma is true for n — 1. Let sn : F
1 —* | £ | be a section. By the induction 

hypothesis, there is a section s^:X —» |£| such that s^|r„-i = s„\Yn-i. Set S = s„ — s'n and 
observe that S\Yn-\ = 0. Let xo G f \ Yn"x. Then (by hypothesis) there is a neighborhood 
U of xo in X \ F1"1 and n (global) sections a\, 02 >..., a„ such that o"i(xo)5 • • • » 0"n(*o) 
form a basis for £(xo) a n d ^ i ( 4 ...,crn(x) are linearly independent for each x G £/. 
Hence, if x G (7 D A71, the vectors &\(x),..., 0"W(JC) form a basis for £(JC). Let V be an 
open neighborhood of xo in X \ Y"-1 with the property that V C V C U. Then for each 
x e V(l r we have S(x) = £JLi c,(x>77(jt), where each c,-: FD F —> R, 1 < i < n, is 
continuous. By the Tietze Extension Theorem, each c,- extends to a continuous function 
c\\X—* R. Therefore, we may define a section SXo:X—+\£\by setting 

(4.2.1) sxo(y) = tc'i(y)°i(y)> y^x. 

Next, we use the family of sections {Sx}xeYn\Yn-i (defined as in (4.2.1)) to find a family 
of open pairs {(WJ9OJ)}JÇJ in X \ Yn~x and sections Sn/.X —• |£| with the following 
properties: 

1) Oj C Ô, compact CWj CX\ F1"1; 
2) the family {#}}/e./ is locally finite; 
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3) diam(JJy) (and hence diam(<9y)) approaches zero as y tends to infinity; 

4) r\r-lc\jJeJOj; 
5) (Snj — S)\ôjfXYn\Y"-1) = ^ 

6) Snj\(X\Wj) — 0. 

Let 0 = \JjejOj which is open mX\Yn~x. Then O is a Euclidean closed space of 
covering dimension < D. Therefore, there is a locally finite refinement {£//}/G/ of {Oj}jeJ 

of order < 4(D + 1). Furthermore, we may assume that diam(£/z) goes to zero as / tends 
to infinity. Let {U-}iei be a shrinking of {£//},-G/; of course the order of {£/•}/£/ is at most 
4(D + 1). We let ft- - max{||S(x)|| | x G ^ n ( r \ (yw- 1)}, / G /. Then for each z, we let 
Oj be a member of O containing £//. Let (pf.X—* [0,1] be a continuous function which 
is identically 1 on \J\ D (Y" \ F1-1) and has support in a sufficiently small neighborhood 
of 0- PI ( F \ F1"1) contained in £//. Writing 5 ^ = ^ -S^ we may then assume that 

1) support of S'n • is in £/,-; 

3) max{ | |5 ; / WHUeC/ / }<2 M / . 

CLAIM 1. Hindoo ^ = 0. 

If not, then there exist e > 0, a sequence of indices i\ <Î2 <h < • — , and a sequence 
of points {*,-,}*>! with*,, G ̂ H ( r \yw~1) such that/i/, > e and \\S(xik)\\ > e.Because 
X (and hence Yn) is compact, we may assume that the sequence {xtk}k>\ converges to 
some x G Y". There are two possibilities: 

a) If x G Y" \ Y"~\ then the cover {£/-}/G/ is not locally finite at x and we have a 
contradiction. 

b) If x G Y"'1, then \\S(xik)\\ —> ||S(JC)|| = 0 by continuity. This contradicts the 
assertion that | |5(^)| | > e > 0 for all k and the claim is established. 

Now there is a partition of unity {//}/<=/ subordinate to the cover {£/-}/G/. Since the 
cover {Uj}i£i is locally finite, we may define a section S: O —• |£| by setting S(jt) = 
Ylifi(x)S'n t(x). (That 5 is continuous follows from the finite order of {£/-}z(E/.) Observe 
that if x G Yn \ Y"~\ thenx is only in some L^, . . . , Û'ir I < 4(D + 1), and so 

S(x) = ZfiXxKiM) = Zfdx)S(x) = S(x). 
r r 

Therefore, S\Yn\Yn-\ — S\Yn\Yn-\. (Recall that S is defined only on Yn and that {fi}ta are 
subordinate to {£/-}/(E/.) 

CLAIM 2. S vanishes at infinity with respect to O. 

For JC G O define /(x) = {/ G / | ^(JC) > 0} and note that this is a set of cardinality 
< 4(D + 1). Let {jcm}m>i be a sequence in O which goes to infinity with respect to O. 
Then the minimum element of I(xm) tends to infinity because at most 4(D + 1) terms are 
non-zero. Set /i(x) = max{/iy | j G I(x)} for x G O and note that limm_+oo Kxm) = 0. 
But ||£(xw)|| < 2/i(xw); thus limw_̂ oo ||S(xm)|| = 0. This proves the claim. 
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Finally, define a section S':X —• |£| by setting S'(x) = S(*) for je G O and £'(*) = 0 
for x eX\0. That £' is continuous follows from Claim 2. Then s = S + s'n:X —> |£| is 
a section with the property that s\y» = sn. • 

We note that the following is an easy consequence of Theorem 4.1. 

COROLLARY 4.3 (RUDIMENTARY COVERING HOMOTOPY THEOREM). Let ibea left 
quasibundle over a spaceX which has enough sectionspointwise. Let p: |£| —-> Xdenote 
the projection. Let Y be a Euclidean closed space and suppose that there is a continuous 
mapf: Y —» |£|. If there is a homotopy g:Y x [0,1] —-» X such that pof = g(, 0), //*e« 
f/jere w a homotopy F:Y x [0,1] —•> |£| wzY/z p o F — g andF(, 0) = /". 

In other words, there exists F:Y x [0,1] —» |£| so that the following diagram com­
mutes. 

7x{0} -U \i\ 

n ^ V 
F x [ 0 , l ] - ^ Jf 

This result, of course, implies that if Ç.X —> ^(AO is a left quasibundle which has 
enough sections pointwise, then the projection p\ |£| —•> X is a fibration (with respect 
to Euclidean closed spaces). It is interesting to note, however, that if p: X(£) —> X is 
the sphere quasibundle associated with £, then there is a Covering Homotopy Theorem 
(with respect to finite CW complexes) for E(£) if and only if £ is a true vector bundle. 
Indeed, since the Covering Homotopy Theorem implies that p: E(£) —» Jf is a fibration 
(with respect to finite CW complexes), then all fibres must be (weakly) homotopically 
equivalent and hence are spheres of the same dimension. But then the fibres of p: |£| —> X 
also all have the same dimension. 

Our goal now is to prove a Bundle Extension Theorem which states that a vector 
subbundle of a left quasibundle, lying over a closed subset of the base space, may be 
extended to a vector subbundle of the left quasibundle, lying over a neighborhood of the 
closed subset. Our Bundle Extension Theorem also implies a dual statement for a right 
quasibundle. But first we have to establish a crucial lemma. 

We say that a metric space Y is uniformly locally convex if there is e > 0 such that for 
any>> G Y there is a map hy: B(y, e) x B(y, e) x [0,1] —-> B(y, e) such that hy(y\,y2,0) = y\ 
and hy(y\,y2,1) = yi and hy(y\,y2, t) depends continuously on all four variables. Here, 
B(y, e) denotes the closed ball of radius e centered at j ^ . We call this number e a modulus 
of convexity for Y. 

Observe that for Y compact we have an easily proved uniformity property: 

UNIFORMITY PROPERTY. Suppose that {yn}n>\ and {zn}n>\ are sequences in Y such 
that>>„ —* y £ Y andz„ G B(yn,e), n > 1. Suppose further that {tn}n>\ C [0,1] is a 
sequence converging to zero. Then lim„_+oo hyn(yn,z„, tn) = y. 

It follows from a theorem of J. H. C. Whitehead [6] that a compact Riemannian 
manifold M is uniformly locally convex. Indeed, the function hy(y\,y2,t) is given by 
hy(y\,y2,t) = 7(0, where 7: [0,1],0,1 —> M,y\,y2 is the geodesic fromy\ toj2-
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LEMMA 4.4. Let X be a Euclidean closed space and letV — { Ko, V\,...} be an 

ordered locally finite family of closed subsets of X such that the interiors {V%, V\,...} 
cover X. Let Ç.X —•» ^(AO be a left quasibundle and let Y be a closed subset of X. 

Suppose that for each / > 0 there exists a k-dimensional vector bundle gf. V[ —> G^ 

with the following three properties: 

i) gi(x)c£(x)forallxe Vt; 

ii) d{gi{x\gj(xj) < e for all x G Vt H Vf, 

Hi) gi(x) = gj(x)for allx G Y H Vt H Vj. 

Here, e > 0 is a modulus of convexity for G^ with tne standard Riemannian metric. 

Then there is a k-dimensional vector bundleg:X—> Gkjv such that 

i) g(x)^i(x)forallxeX; 

ii) d{g{x\gi(x)) < 2e for allx <G Vif i > 0; 
Hi) g(x) = gi(x)for allx G YD Vit i > 0. 

PROOF. Forx G X define V(x) = {Vt\xe Vf} and se t l j = {(x, Vt) \xeVt} with 
the obvious topology so that the projection p:X\ —• X defined by setting p(x, Vi) = x 
restricts to a homeomorphism Vt x {Vt} —> Vt. Next, set 

Aoo = if G [0, Xf | f(Vt) = 0 for all but finitely many i and £ f(vd =1}-
Viel/(x) 

Then Aoo inherits the product topology from [0,1]^. Furthermore, this topology co­
incides with the weak topology with respect to Ao C Aj C A2 • • • C A^, where 
Ar = {f G Aoo I f(Vt) = 0 for / > r} with the obvious topology. Therefore, if K is 
a compact subset of Aoo, then K C Ar for some r. Indeed, it follows that Aoo is a &-space; 
i.e., it has the weak topology determined by the family of its compact subspaces. Since 
X is locally compact and A^ is a espace, we have that X x Aoo is also a A>space. (See 
[1].) Moreover, if C C X x A^ is compact, then C C X x Ar for some r and so the 
product topology of X x A^ coincides with the weak topology with respect to the family 
X x A o C X x A i c • • • CXx Aoo. 

Now defined = {(*,/) | / G [0, lf{x) and ZVi^(x)f(Vi) = 1}. We giveX2 the 
topology determined by the injection /: X2 ^ X x A^ defined by setting i(x,f) = (x,f), 
where/(K,) = f{Vi) for Vt G V(x) and/(F,) = 0 for F, £ <J/(x). We wish to define a 
continuous map g.Xi —> G ^ such that 

(4.4.1) g(*, ?}) = £«(*), 

where K/(Ky) = 0 for / ^j and V^Vf) = 1 for i =j. To this end, letX2,r = i~\X x Ar). 
We begin by setting go(x, Vo) — go(x). Suppose inductively that we have defined maps 
gn'-X2,n —̂  GkyN for 0 < n < r, so that gn extends gn-\ and that gr(x, Vt) = gt(x) for 0 < 
i < r. Now let (x,f) G X2^\ \X2/, then the support off is a set { Vh, K/2,..., J^ } C V(x) 
with /1 < ?2 < • * * < h — r + 1 • Because G^ is uniformly locally convex with modulus 
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of convexity e > 0, for each/? G G^thereisamap/^:i?(/?,e)x2?(p,e)x[0,1] —• B(p,e) 
such that hp(pup2,0) = p\ and hp(p\,p2,1) — p2. Set 

and define 

(4. 4 . 2) g,+ l(x J ) = V i W ^ r f 1 (*) ,gr (* , / r ) , 1 ~ / ( ^ l ) ) 

for (x,/) G A^H-I \ X x { KH-i} andgn-i (x, KH-I ) = grH (x). This map is clearly continuous 
onii,H-i\Arx{rrfi} and satisfies gH-i|jf2r = gr- (Note thatX2,r C l 2 , r f i \ ^x{ FH-I}.) That 
g,+1 is continuous at any point of F -̂i x { V^\}, follows from the Uniformity Property of 
h. Thus gr+\ is continuous and satisfies the equation g ^ x , Vf) = g;(x) for 0 < / < r + 1. 

Having completed the induction step, we set g = \J{gr \ r = 0,1,2, . . .}. Then, 
because X2 has the weak topology with respect to the family of subspaces X2,r, we see 
that g is continuous. Of course, g satisfies (4.4.1) for all / because eachgr does so for all 
i<r. 

CLAIM. There is a continuous map (p:X—>X2 such that p o ip = idx. 

To see this, let { v?,}/>o be a partition of unity subordinate to the cover I/0 = { Ff }/>o-
For each x G X, define cpx: V(x) —> [0,1] by setting ipx(Vi) = </?/(x). Then (x, ipx) G X2 

and p(x, ipx) — x. Define ip by setting <̂ (x) = (x, (px). 
Next, set g = g o ^: Jf —> G ^ . Let x G Xand let F^i be the set of highest index in 

the support of yx. Theng(x) = g(x,(px) G £(grfi(x, V^\),e). B u t g ^ x , V^x) = grn(x) 
and so d(g(x), g^-i (x)) < e. If x G Vt for some 0 < / < r, then d(g(x),g;(x)) < 2e by 
the triangle inequality. Furthermore, if x G 7 Pi Vt, then by induction g(x, ipx) = g/(x) 
because they all agree and so g(x) = g,(x) for x G Yd Vt, i > 0. 

Finally, in the construction, equation (4.4.2), of g -̂1 \x2r+l\x2r>
 w e m a y a s s u m e induc­

tively that gr(x,fr) C £(x) for any possible/.. In addition, we have gn-i(x) C £(x) by 
hypothesis. Let G*(£(x)) be the subspace of G ^ consisting of ^-dimensional subspaces 
of £(x). Then G^(^(x)) is totally geodesic in G^ with respect to the standard Rieman-
nian metric. (If M is a symmetric space and N is a submanifold of M invariant under any 
symmetry about a point of N, then N is totally geodesic in M.) Consequently, we have 
the relation 

hgr+l(X)(gr,l(x),gr(xMl -f{Vr+l)) G G*(£(*)) 

which implies that we have the inclusion gr+\(x,f) C £(x). • 

THEOREM 4.5 (BUNDLE EXTENSION THEOREM). Let Y be a closed subset of a Eu­
clidean closed space X and let £:X—> ÇE(N) be a left quasibundle with enough sections 
pointwise. Suppose that there is a vector bundle7: Y —> Gkjv such thatliy) C Hy)for all 
j G F . Then there exist an open neighborhood UofY and a vector bundle £: U —> G^N 
such that(\Y = 7 andC^x) C i{x)for allx G U. 

PROOF. Since Xis a Euclidean closed space and since G^ is a compact Riemannian 
manifold, we may cover 7 by interiors of a locally finite family {Vi}i>o of closed subsets 
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of X such that for each / > 0 there is a continuous map gt\ Vt —-> G^ with the following 
three properties: 

i) gi(y) = l(y) for ally eY; 
ii) d(gi(x),gj(pcj) < e for x G ^ H Fy-; 

iii) g/(x) C £(x) for all x G F}. 
Here, e > 0 is a modulus of convexity for G^. To be more specific, for each y G 
Y there exist sections s i , . . . ,s> of 7 such that s\(y),... 9Sk(y) form a basis for 7(y) C 
£(y) and si(x),.. .,sk(x) are linearly independent for x G F/. By the Section Extension 
Theorem, each Sj, 1 <j<k, extends to a section ufX —* |£|. For x G Fi, let g/(x) = 
span{cri (x),. . . , o>(x)}. Set [/ = (J^Q K/. Then by Lemma 4.4 there is a continuous map 
(a vector bundle) (: U —> G ^ such that C\Y — 7, d(((x),g;(x)) < e for x G Vt, and 
C(x)C£(x)forallxG £/. • 

We note that the above theorem implies a dual statement for a right quasibundle. 

COROLLARY 4.6 (THE SECOND BUNDLE EXTENSION THEOREM). Let Y be a closed 
subset of a Euclidean closed space X and let rj:X —• Çr(N) be a right quasibundle. 
Suppose that there is a vector bundle 7: Y —-> Gkjq sucn that 7(y) D ?l(y)for ally G 7. 
77ze« there exist an open neighborhood UofY and a vector bundle £: U —• G ^ ^wc/z 
f/*a* C|r = T tf«d ((x) D r](x)for all x £ U. 

PROOF. Let £ = rj1. Then there exist a neighborhood U of 7 and a vector bundle 
/ ? : [ / - * Gtf_*,tf such that f3(x) C £(x) for all x G t/ and /3|y = 7 1 . Set £ = /31: (7 —• 
G ^ . • 

Now we are ready to prove the converse of Theorem 2.11 when the base space is 
Euclidean closed. 

THEOREM 4.7 (THE PIECING THEOREM). Let X be a Euclidean closed space and let 
Ç'.X—• Çi(N) be a left quasibundle. Then there exists an open cover {U\,..., Ur} ofX 
and vector bundles £,: £/,- —• G^yfori — 1,.. .,rsuch that£(x) = span{£/(x) | x G Ut}. 

PROOF. We prove the theorem by induction on I, the number of nonempty strata. 
When 1=1, thenZ = U, and £ = £i. Assume by induction that the theorem is proved 
for the case of t strata and consider the case of I + 1 strata X = Xkl U • • • U I ^ , with 
0 < k\ < • • • < ki+\. ThenX\X^ is open inXand £,\x\xk is an ^-strata left quasibundle. 
Consequently, there is an open cover {U\,..., Ur} ofX\ Xkl and vector bundles £,: U( —> 
GkiyN so that £(x) = span{£z(x) | x G £/,} for x G X \ A ^ r Because^ is closed and 
because £ |^ is a vector bundle, by the Bundle Extension Theorem (Theorem 4.5) there is 
an open neighborhood U,+\ ofJ^, inXand a vector bundle £^-1- Ur+\ —* G ,̂ ̂  extending 
£\xk with £r+i(x) C £(x) for all x G Ur+\. Then {£/i, . . . , t/^-i} is the desired open cover 
of X and £/: £// —•* G ^ , / — 1, . . . , r + 1, are the desired vector bundles. • 

A glance at the above proof shows that we have in fact proved somewhat more, as 
stated in the following addendum to Theorem 4.7. 
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ADDENDUM, i) If X — XklU- • -UXkr9 then we may assume that each £/, is an open 
neighborhood of Xk. and that £,• is a vector bundle extension to Ut of the vector bundle 

ii) We may assume that there is an open cover {V\9..., Vr} of X with [// C £// C 
Vt and vector bundles £,: Vt —> G^w such that £/(x) C £(x) for x G F/ and £(x) = 
span{£z(x) | x G F/}. 

In order to prove our next result we need the following lemma whose proof may be 
found in [14]. 

LEMMA 4.8. Let X be a metric space of covering dimension < D and let £ be an 
n-dimensional vector bundle over X. Then there exist n(D' + 1) sections s^ for 1 < k < n 
and 1 <j<D+\ such that for each x G X we have Ç(x) = spanjs^x) | 1 < k < n, 
\<j<D+\}. 

LEMMA 4.9. Let X be a Euclidean closed space and let £:X — » Çi(N) be a left 
quasibundle with enough sections pointwise. Then there exist an integer q > N and 
global sections s i , . . . ,sq such thatfor each x G Xwehave^(x) — span{si(x),... ,^(x)}. 

PROOF. By the addendum to Theorem 4.7 there are covers {U\9..., Ur} and 
{Vu...9Vr} of X with Ut C Ut C Vlfor 1 < / < r and vector bundles &: Vt —> Gki,N 

such that £(x) — +{£/(*) I x G V{\. For each i = 1 , . . . , r there exist, by Lemma 4.8, qt 

sections CF\ , . . . , oqi spanning £,-. Extend these to global sections s\9...9sqi which agree 
with the at on £/,- (Proposition 2.9). Then the sections s\9...9sq9 where N <q = £[= 1 g, 
are global sections spanning £. • 

We note that in the above lemma ifXhas covering dimension < D, then qt = &Z(D+1), 
1 < / < r. Hence, we may take q < N(N+ 1)(£>+1)/2. (See the remarks at the beginning 
of this section.) 

COROLLARY 4.10 (THE IMAGE BUNDLE THEOREM). Let Xbe a Euclidean closed 
space and let £,:X—> Qt{N) be a left quasibundle with enough sections pointwise. Then 
there exist an integer q > N and a bundle morphism 0 : l x Rq —> X x Rq such that 
£ = 0(X x R*). 

PROOF. We have global sections s\9... 9sq:X —> |£| with £(x) = span{si(x),..., 
sq(x)} for all x G X. Define the map ®:XxW->\£\ cXxR" cXxWby setting 

0>(x, ^ , . . . , tq) = (x, txsi(x) + • • • + tqsq(x)). m 

A similar result to this corollary is proved in [15] for the special case where X is a 
finite CW-complex and the open sets X \ Xk are subcomplexes. 

We are now ready to prove the final implication in Theorem 3.2. 

THEOREM 4.11 (THE MODULE THEOREM). A left quasibundle £ over a Euclidean 
closed space X has enough sections pointwise if and only if£ results from a Swan con­
struction. 

PROOF. The if part is Theorem 2.13. 
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Conversely, suppose that £ has enough sections pointwise. Then there exist finitely 
many sections s\,...,sq spanning £. If Xis not compact, we may assume that the 57, 
1 < i < q, vanish at infinity so that they span the canonical extension £+ of £ to X \ Thus 
it suffices to prove the assertion for X compact. To this end, let M = {Ef=1 v/57 | v = 
(vi, . . . , vg):X —> Rq is continuous}. Then M is a finitely generated topological module 
over C(X) with the sup metric. For each x G X\et Ix = {f G C(X) \ f(x) — 0} and set 
Jx = {fi £M\ /x(jc) = 0}. Then 7XM = {£f=1 v ^ | v,- G /*} and hence 7XM C Jx. Set 
J = {(x, fi) \ [i £ Jx} and observe that J is closed in X x M because if (xn ,/!,,)—» (*, A0> 
then //«(x„) = 0 —-> /i(x) = 0. Let £ be the result of the Swan construction with respect 
to s\,..., sq. For x G X let ax: R

q —* M/ Jx by setting 

where b = (b\,..., bq) G Rq. Then we have 

Rq-^M/Jx-^ttx). 

The isomorphism follows from the following commutative diagram. 

Jx —> 0 
n n 
M ^U £(x) 

M/Jx 

where ev denotes evaluation. Let rj(x) — {b G Rq \ Ef=1 btSi G Jx} and note that 
£(x) = ^(x)1 by definition. Then the following diagram commutes 

and so Ç = £. • 

Note that the result of a Swan construction is independent of the choice of sections 
because M/Jx depends only on the choice of J but not sections. 

We finish this section by giving a proof of Corollary 3.3. 

PROOF OF COROLLARY 3.3. For q sufficiently large, there exists (Lemma 4.9) a 
continuous map S\ X —» M{N, q) so that £ = coker oS. Define a vector bundle morphism 
¥1 : X x R* —> X x R* by setting ¥1 (x, /) = (x, ̂ (x)/) and observe that 

ker^i = {(x,0 I f JL coker ̂ (x)} 

= {(*,*) | *Érç(x)} 

= M-
We define *¥2:X x R* —• X x R^ by setting *F2(*,") = (x,S(x)w). Finally, we set ¥ = 
¥ 2 ° ^ ! and note that we have kerS^x) = kerS^S^x) implying ker*F = ker^Fi = |r/|.« 
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5. Proof of Theorem 3.4 and Theorem 3.5. 
We begin with the following lemma. 

LEMMA 5.1. Let r\\X—+ Çr(N) be a right quasibundle. Then the partition ofiL(ri) — 
17] | D (X x SN~X) into fibers of the projection E(^) —>Xis upper semi-continuous. 

PROOF. For x G X, let S(x) = {v G RN | v G ry(jc) and ||v|| = 1}. Let e > 0 and 
let U be the e-neighborhood of S(x) in R*. Choose 0 < S < ?r/4 so that 2 sin(<5/2) < e. 
Then V = {y G X \ d(r)(y), r](x) < 5} in an open neighborhood of x in X such that>> G F 
implies ^(y) C U. The lemma is proved. • 

PROOF OF THEOREM 3.4. Recall that L = max{dimr/(x) | x e X}. By the Second 
Bundle Extension Theorem (Corollary 4.6) there exist an open neighborhood VL oïXL 

in Xand a vector bundle li'.Vi —> G/,^ such that 1L\XL — v\xL and 7y(x) C 7L(X) for all 
x e VL. Similarly, there is an open neighborhood V'L_X ofXL-\ i n l a n d a vector bundle 
7'L-\'. V'L-\ -» G i - i ^ such that 7 [_ 1 |L_ I - 77^-1 andr/(x) C 7[_1(x) for all x G F ^ . 
We may assume also that V'L_X DXL — <j>. 

Now for e > 0 set 

U= {x e VL(l F[„, I d(l'L_x{x),lL(x)) < e}. 

We claim that U is open. To see this, consider 

d(l'L_x{y),1L(y)) < d{l[^(y)X-\{x))+d{l[_x{x),lL(x))+d{lL{x),lL(yj). 

If x G U, then the middle term is smaller than e and, by takings sufficiently near x, each of 
the two end terms may be made as small as possible. (This is because d(P, Q) = d(Q, P) 
when dimP = dim Q.) Thus U is open. Then there is a neighborhood VL^\ of X^_i in 
X\XL such that VL^ D VL = £/. This implies that rf^I-iW'^W) < ^ < TT/2 for 
x G FL_! H FL. 

Next, we let 7r(x) denote the orthogonal projection of RN onto 7L(X). Then the function 
x 1—> 7T(JC) is continuous on ^ because 7L is a vector bundle. We may assume Vi is 
contained in a larger neighborhood Wi 0ÎX1 to which the vector bundle 7L extends while 
preserving the property that r](x) C 7L(X). Let h: Vi —» [0,1] be a continuous function 
which is identically equal to 1 on VL-\ H VL and identically equal to zero on VL-\ \ WL. 
Define a vector bundle isotopy O of l'L_x \ VL-\ by setting 

<D(x, v, 0 = (x,h(x)[(l - 0v + tir(x)v]+( 1 - /*(*))v). 

Note that for x G Wi the isotopy O is fixed on r/(x) because r\(x) C 7L(X), x G Wi. We 
let 7i- i be the vector bundle which is the final image of l'L_x under O. That is, we set 
7L_I(X) = {w I (x, u) — <D(x, v, 1) for v G 7^_1(x)}. Then 7L_I is a vector bundle over 
F/,_i with the properties 

a) r/(x) C 7 L - I W forx G TL_i; 
b) 7L-I(X) C 7I(X) forx G FL_i H KL; and 
C) 7 i - ik_ , = 7 / k _ r 
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We observe that in the above argument, once VL and 7i were chosen, we altered nei­
ther. Thus, we may complete the proof by induction on L: Assume that the theorem is 
true for v\(x\xL) with 1L-\ and VL-\ prescribed as above. Then we have vector bundles 
7o, 7 i , . . . , 1L-\ over open subsets V0,V\,..., Vix oîX\XL satisfying the conclusions of 
the theorem. Because^ is closed inX, (77 is a right quasibundle) we may use these for 
77 over all X appending 7L and VL to our list. • 

With Theorem 3.4 available, we give a proof of Theorem 3.5. Observe that this the­
orem may be viewed as a very restricted version for right quasibundles of the Covering 
Homotopy Extension Property for vector bundles. 

PROOF OF THEOREM 3.5. In the proof of Theorem 3.4, we may shrink the set Vk 

and assume that Vk is a closed neighborhood oîXk m)& = \Jj<kXj. The isotopy O of 
f]\xL — l\xL extends to an isotopy Q>L of 7z with start (p \\ VL. Next, the isotopy O^ 
restricted to 77 over XL-\ D Vi extends to an isotopy $>'L_X of rj\xL-i — 7i-iU£_i- Then 
Q>'L_X extends to an isotopy Q>L-\ of 7z,-i, which extends the restriction of <!>/, to 7i- i 
over Vi D VL-U with start cp \\ VL-\. But the restrictions of O^ and 0>L-\ to 77 agree over 
VL U VL~\ and so we may define an isotopy 0>L\v U <!>L-\ |r/ over VL U VL-\. This isotopy 
extends O and has start (p \\ (ViU VL-\). By repeating this procedure L steps, we are 
done. • 

6. An application. Our principal goal in this section is to prove an extension of 
the Hirsch-Smale Immersion Theorem [5, 8,13] to locally compact subsets of Euclidean 
space. The actual work of proving this extension is done in the proof of the Hirsch-Smale 
Immersion Theorem [8]. The material here on quasibundle and in [11] constitute the or­
ganizational work necessary to transfer the effect of this theorem from the category of 
smooth manifolds to the C1 category of locally compact subsets of Euclidean space. We 
first recall that the normal bundle (in the sense of [3, 11]) of an object in this category 
is a left quasibundle with enough sections pointwise; see the remarks following Defini­
tion 2.10. 

THEOREM 6.1. Let Xbe a locally compact subset ofRN and suppose that for some 
n there exists a quasibundle monomorphism 

TX - ^ W1 

I I 
X — > * 

Then there exists an immersion f:X—> W1 with df monotopic to (p. 

For the proof of this theorem we need the following result from [11]. 

THEOREM 6.2 ([11], THEOREM 4.3). Let Xbe a locally compact subset of RN. Then 
there exist C1 submanifolds {A//}/>i ofRN with the following properties: 

i) dim Mi = i 
ii) Xt C Mi 
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iii) TxX=TxMiforxeXi 

iv) MiD(X\Xi) = (t). 

v) For any metric defining the topology of G^, if{xn}n>\ is a sequence from M^ 

with Hindoox„ = x G (X\Xk), then there is a sequence {x'n}n>\ in X^ also 
converging to x with lim^oo d(TXnMk, TX>X) = 0. 

PROOF OF THEOREM 6.1. Let L = max{dim TXX | x e X} and let ML be the C1 

manifold of dimension L containing XL, as provided by Theorem 6.2. Because XL is 

closed in Mi, we may extend <p \\ XL to a quasibundle monomorphism (pi. TMi —» W. 

Then the Hirsch-Smale Immersion Theorem [8] yields a C1 immersion fi'.Mi —> Rn 

with pi monotopic (actually isotopic) to dfi. Because XL is closed inX, we may extend 

fi\XL to a C1 ma$fL'.X —> IR". Then for x £ XL we have d/z,(jt) = dfL(x) so matais 

an immersion on a neighborhood £//,of J^ in X. The bundle monotopy from pi to t% 

restricted to XL yields a monotopy O from </? || A/, to dfi || Ai,. Then, by Theorem 3.5, 

the monotopy O may be extended over all of X. The end of the extended monotopy is a 

quasibundle monomorphism (pi, isotopic to cp, such that (fi \\ XL = dfi || XL. 

Let ML-\ be the structure manifold (Theorem 6.2) for Ai_i. We may extend^ to an 
open neighborhood ofXUMi-\ in RN. By shrinking ML-\ about A ^ - I , we may assume 
that g, the restriction to ML-\ of the extend^,, is an immersion on an open subset U'L_X 

of Mi-\ with UL nXL-[ = U'L nXi-\. Then we may extend yi || XL-\ to a bundle 
monomorphism pi-\\ TMi-\ —> W1 such that ^ _ i || UL_X = dg\\ U'L_X. By applying 
the Hirsch-Smale Immersion Theorem [8], we obtain an immersion^-iiMi-i —» W1 

so that (̂ /,_i is monotopic to dfi-\ mod L^_j. We restrict the monotopy from <pi-\ to 
dfL-\0VQYXL-\ to get a monotopy from <£>£_i || Ai_i to c%_i || XL-\. This monotopy 
may be pasted to the fixed monotopy over UL in order to obtain a monotopy from ipL || 
(f/z, U J i - i ) to ((/9L || UL) U (d/i-i || Xi-y). Again, by Theorem 3.5, this monotopy 
may be extended to one from ipi to a bundle monomorphism <PL-\ such that yi-\ || 
(XL-\ UXL) = dfi-X || (XL-i U Ai,), where fL-\\X -> Rn is a C1 map which is an 
immersion on a neighborhood Ui-\ of A/,_i UXi in X 

In the same way, we construct further monotopies ^ to y>k-\ for fc = L — 2 , . . . , 1 so 

that 

ipk || (Xk U • • • UI L ) = 44 || (Ai U • • • UXL), 

where ̂ A —> IRW is a C1 immersion on a neighborhood £4 of A# U • • • U Ai, in X The 

final monomorphism <̂o is the one sought; completing the proof of the theorem. • 

7. Concluding remarks. If we regard the prospective definition of a quasibundle 
as still unsettled (ours differs from [15], which in turn differs from others in use), the 
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moral of our tale is that perhaps the existence of enough sections pointwise should be 
built into the definition of a left quasibundle. In this connection, we note that the property 
of having enough sections pointwise is equivalent to the following lifting property: 

LIFTING PROPERTY. A left quasibundle £: X —> Çt{N) has enough sections pointwise 
if and only if there exists a continuous map S:X—» 9A. (q, q), for some q > N, so that the 
following diagram commutes. 

^ M(q,q) 

^^^S I coker 

X-^f §m - Çtiq) 

This property may be the natural one for the definition of a stable left quasibundle. The 
corresponding definition for stable right quasibundles is consistent and presents an inter­
esting problem: 

PROBLEM. If a and f3 are equivalent quasibundles, are a1- ® W and (31- ® Rn equiv­
alent for large nl 

An affirmative answer to this problem implies that if £ is a left quasibundle, then for 
large n the left quasibundle £ 0 W1 has enough sections pointwise. 

We note that the extension Theorem 3.5 is a first step towards formulating an ap­
propriate generalization of the classical Covering Homotopy Theorem to quasibundles. 
With such a generalization, perhaps one may be able to extend to quasibundles the link 
between equivalence of vector bundles and homotopy of their classifying maps. 
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