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Abstract. This is an extended report on a problem session about geodesic flows held
on May 30, 1984 at MSRI, Berkeley. The list of six authors reflects the principal
participants in the discussion. Contributions of other participants are mentioned in
the text. The session was chaired by A. Katok; this report was prepared by K. Burns
in collaboration with A. Katok.

0. Notation and definitions
M is a connected C* Riemannian manifold with sectional curvature K,, and
curvature tensor R. Unless otherwise stated, it is assumed that K, =< 0. Also geodesics
have unit speed.

I(M) is the isometry group of M.

M is the universal cover of M.

M (o) is the sphere of points at infinity for M.

SM is the unit tangent bundle of M.

g' is the geodesic flow on SM or SM.

u is the Liouville measure on SM, normalized so that u(SM)=1.

h is the topological entropy of g"

h, is the measure theoretic entropy of g’ with respect to an invatiant probability
v. The metric entropy h, is especially important.

v, is the geodesic defined by a vector ve SM (or SM).

v is a periodic vector if vy, is closed.
The rank of ve SM is the dimension of the space of parallel Jacobi fields along
¥,. The rank of M is the minimum rank of a vector in SM. This agrees with the
usual definition when M is locally symmetric. If rank (v) =rank (M), then v and
v, are called regular. A k-flat in M is a k-dimensional Euclidean space totally
geodesically and isometrically immersed in M. A k-flat F is regular if k = rank (M)
and F contains a regular geodesic.

1. Some recent results
Suppose M has finite volume, rank k, and curvature bounded below.

(1.1) The set of regular vectors is open and dense in SM, and every regular vector
is tangent to a unique k-flat. This holds even without the curvature bound. [5].
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(1.2) Periodic regular vectors are dense in SM, and if M is compact the k-flat to
which such a vector is tangent is compact. [6].

(1.3) Dichotomy. If M is compact, the geodesic flow g’ is ergodic if and only if M
has rank 1. [11], [4], [S].

(1.4) Classification in higher rank. If k=2, the de Rham factors [28] of M are
(i) Euclidean;
(ii) of rank 1, or
(iii) symmetric spaces.
(1.4") If in addition M has no Euclidean factor, M has a finite cover M’ which is
a product of locally symmetric spaces and rank 1 manifolds.

(1.4) and (1.4') have been proved by Ballmann [47]. Spatzier and Burns also have
a proof for compact M ; their manuscript is in preparation.

(1.5) Rigidity for locally symmetric spaces. Suppose M is compact and 7 (M)=
a(M?*), where M* is a compact irreducible locally symmetric manifold of rank = 2.
Then M and M* are isometric provided the metric of one of them is multiplied by
a suitable constant.

This is due to Eberlein and Gromov. See [15] and [38].

(1.6) [36] is a comprehensive survey of results up to 1981. Also [40] surveys the
results in [S] and [6].

2: Possible generalizations
(2.1) (Eberlein). Let I" be a (not necessarily discrete) subgroup of I(M).

(2.1.1) Definition. The non-wandering set of g' mod T is Q(I') ={ve SM: if Oc SM
is any neighbourhood of v, then there exist sequences {¢,} =T and ¢, > +00 such
that (de, ° g)(0) O # O for all n}.

Consider groups I' with Q(I') = SM. This property holds when M/F is a smooth
manifold with finite volume, and also more generally (see remark (2) on p. 163 of
[13]). It is equivalent to the duality condition of [12] Note that:

(i) If T preserves any Riemannian splitting M= MI - X M,, then Q(p:()) =
SM,, for 1=i<k, where p;:I'> I(M) is the projection homomorphlsm

(i) If Q(T') = SM, then Q(I'*) = SM for any finite index subgroup I'*c<T.

(iii) If Q(I(M)) = SM, then M =RF x symmetry space X B, where I(B) is discrete
and Q(I(B))=SB.

Can one give a better description of I' if Q(T") = SM? By (i) it suffices to consider
M Euclidean or irreducible (not a product) It follows from (iii) that if M is
irreducible, then either I is discrete or M is symmetric and (I'),= IO(M)

(2.1.2) Conjecture (Eberlein). If Mis irreducible, rank (M) =2 and Q(I(M)) = SM,
then M is a symmetric space. This would generalize (1.4). In particular it would
mean that (1.4) holds without the lower bound on K.

(2.1.3) Conjecture (Eberlein). If M is symmetric of rank=2 and Q(T") = SM with
I'c I(I\7I) discrete, then I is a lattice (i.e. I' has a torsion free subgroup I'; of finite
index such that 1\7!/1’0 has finite volume).
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(2.2) Problem. Is g’ ergodic if M has rank 1, finite volume and bounded curvature?
If the lower bound on the curvature is dropped?

(2.3) It should be easy to extend (1.4) to manifolds with no focal points.

(2.4) (Spatzier). It follows from (1.4) that there is an R* action on SM, where
k=rank (M). Can (1.4) be generalized to a rigidity result for (non-uniformly)
hyperbolic R* actions?

(2.5) (Hurder). Let M be a C* manifold and m a finite measure on M. Let % be
a measurable foliation of M with C* leaves. Let g be a Riemannian metric on the
leaves of % which is smooth on each leaf and measurable on M. Denote the
Riemannian volume on leaves by A, and define the transverse measure mr by
m=mr XA,

(2.5.1) Conjecture. Suppose
(i) g has non-positive curvature and every leaf is irreducible and has rank k=2,
(il) & is ergodic with respect to my-.
Then there is a symmetric space S of rank k such that almost every leaf of % is
modelled on S.

(2.5.2) This reduces to (1.4) when & has just one leaf. The point is to extend (1.4)
to manifolds of infinite volume which are leaves in foliations with finite total volume.

(2.5.3) For a related question, see {23, § 3].

3. The length spectrum

It is well known that any Riemannian metric o of negative curvature on a compact
manifold has a unique closed geodesic in every free homotopy class vy. Let I, ()
be the length of this geodesic. Equivalently I,(y) is the minimum length of a smooth
loop representing y. We call the function [, the length spectrum of o.

(3.1) Conjecture. Let o and o* be two metrics of negative curvature on the same
compact manifold M. If ¢ and o* have the same length spectrum, there is a
diffeomorphism of M which carries o to o*.

Note that the set of lengths of closed geodesics does not determine the isometry
type of M, even if M is a surface of constant negative curvature; see [44].
We now discuss some partial results in the direction of the conjecture.

(3.2) Fricke and Klein [18] showed that the assertion of the conjecture holds if M
is a surface and o and o™ both have constant negative curvature. For an outline of
the argument, see [30].

(3.3) Guillemin and Kazhdan [22] have shown that for a surface of genus =2 the
assertion of the conjecture holds provided the two metrics can be joined by a smooth
path of metrics along which the length spectrum is constant. They also have a similar
result in higher dimensions with some pinching conditions on the metric.

(3.4) Katok has shown that if the two metrics are conformally equivalent and have
the same length spectrum, then the assertion of the conjecture holds. This can be
extracted from the results of [25]. Since for surfaces the space of conformal
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equivalence classes of metrics (Teichmuller space) is finite dimensional, this strongly
suggests that the conjecture is true for surfaces.

(3.5) (cf. 10.3) Two metrics on a surface which have the same length spectrum have
their geodesic flows conjugate by a C' diffeomorphism of the unit tangent bundle.
The proof relies on the fact that the set of all metrics of negative curvature is
connected, and first establishes the existence of a Hélder conjugacy. Then it follows
from [17] that the conjugacy is actually C'. The connectedness of the set of negatively
curved metrics is not known at present in higher dimensions; see (7.1) below.
(3.6) We can see from (3.2) and (3.5) together with [25] that the conjecture holds
if the manifold is a surface and one of the metrics has constant negative curvature.
For the length spectrum determines the topological entropy h, and by (3.5) it also
determines the metric type of the geodesic flow with respect to the Liouville measure
u, and hence h,. By [25] h = h,, if and only if the metric on the surface has constant
negative curvature. Thus both metrics have constant curvature and (3.2) applies.

(3.7) Conjecture (3.1) can be extended to the case where M has rank 1. It is no
longer true that a free homotopy class ¥ must contain a unique closed geodesic,
but any two closed geodesics in y will have the same length.

(3.8) The length spectrum is intimately connected with the spectrum of the
Laplacian. Results about the latter are surveyed in [7], [41].

4. Statistics of closed geodesics in rank 1

The hope here is to extend the results for negative curvature to the rank 1 case.
(4.1) Definitions. For T =0, let P(T) be the number of free homotopy classes which
contain a closed geodesic of length =T, In the negative curvature case, P(T)=
#P(T), where P(T) is the set of closed orbits of g' with period =T (we allow
multiply-traversed orbits). In the rank 1 case, let 2,.,(T) be the set of orbits from
P(T) which lie inside the set of regular vectors.

(4.2) For a compact manifold with negative curvature, the following results are
known.

(4.2.1) P(T)~(hT) 'e"™ as T->o0; (a(T)~b(T) means a(T)/b(T)~1). See
[33], [43], [35].

(4.2.2) The geodesic flow g’ has a unique invariant probability measure g max
such that h, = h. See [8] for existence, [9] for uniqueness.

(4.23) pmax=lim o L(T)"' T, 51, length (0)5,,
where L(T)=}__, length (o) and §, is the invariant probability concentrated
on the closed orbit of g’ corresponding to o. See [8].
(4.3) Now consider a compact manifold M with rank 1.
(4.3.1) Knieper [27] has proved that

h= %im T 'log P(T)= }im T ' log # Pee(T).

He uses Manning’s result [31] that h is the exponential growth rate of volume of a
ball in M.
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(4.3.2) Conjecture (Katok). (i) g’ has a unique measure of maximal entropy, tmax-
(ii) pmax=limr,eo L(T)™! Loea . m length (0)8,, where 8, is as in (4.2.3) and
now L(T)=% .5 _ (1 length (o).
(iii) The restriction of g’ to the non-regular vectors has entropy <h.

5. Equality of the topological and metric entropies
In this section M is compact and has negative curvature.
(5.1) Conjecture (25, p. 347]. h=h, if and only if M is locally symmetric.

(5.2) There are some partial results.
(5.2.1) h=h, when M is locally symmetric [25, p. 346].
(5.2.2) The conjecture is true when M is a surface. This follows from results in [25].
(5.2.3) If the metric on M is conformally equivalent to a locally symmetric metric
and h, = h, then M actually is locally symmetric. See [25].

(5.3) (Katok). One approach is to recall [39] that two functions ¢ and ¢ have the
same equilibrium state with respect to g’ if and only if ¢ —¢ is cohomologous to
the constant function Pressure (¢)—Pressure (¢). It is known [9] that u is the
equilibrium state of ¢"“)(v)=—d/dt log A{(v)],_, where AY(v) is the Jacobian of
the restriction of dg' to the expanding subspace in T,SM. The pressure of ¢ is
0. Also p.,,,, 1s by definition the equilibrium state of the constant function 0, whose
pressure is h. If h = h,, then i = .., and it follows that there is a function f: SM >R
with

log A}(v) = ht+f(g'v) — f(v).
Is it possible to show that f is constant and then that M is locally symmetric? When
M is a surface this programme can be carried through using the results of [19].
(5.4) Conjecture (Osserman). Let 0=k ,(v)=k,(v)=" " -=k,_,(v) be the eigen-
values of the symmetric map w— R(w, v)v on {w: wLlv}. Then

h, = "il [LM —ki(v) d,u]ZE A(M),

i=1
with equality if and only if M is locally symmetric.
Conjecture (5.1) would follow if A(M) were also a lower bound for A. It is known
[25, theorem B] that h, < A(M) = h when M is a surface. Conjecture (5.4) is related

to the inequality
1

J‘SM i=1

Y (~k(0)) du<h,,

(with equality if and only if M is locally symmetric) proved for negatively curved
manifolds by Osserman and Sarnak [34], and extended to rank 1 manifolds indepen-
dently by Wojtkowski and Ballmann.

(5.5) Green has a conjecture related to (5.1).

(5.5.1) Conjecture [19]. If the mean curvatures of the horospheres through each
point of M depend only on the point, then M is locally symmetric.

(5.5.2) Itisstill unknown whether M must be locally symmetric if all the horospheres
have the same mean curvature.

https://doi.org/10.1017/50143385700002935 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700002935

312 K. Burns and A. Katok

6. Problems about rank 1 manifolds

The idea behind most of these problems is that the fundamental group of a manifold
with non-positive curvature and rank 1 should have a strong influence on the
geometry and topology of the manifold. Note that if M has rank 1, every metric
on M of non-positive curvature also has rank 1 [14].

(6.1) (Eberlein). Let M and M* be compact manifolds with negative curvature.
Suppose 7, (M) = 7,(M*). Are M and M* homeomorphic? diffeomorphic?

Note that M and M™ are homotopy equivalent since their universal covers are
contractible; see e.g. [14, pp. 416-417].

(6.1.1) Partial result. Gromov [21] showed that there is a homeomorphism between
SM and SM™ which conjugates the two geodesic flows.

(6.2) Let M be compact with rank 1. Recall [20], [29] that (M) contains an
abelian subgroup of rank k if and only if M contains a compact k-flat. Since all
elements of 7,( M) have infinite order, this implies Preissmann’s theorem that if M
has negative curvature, then 7 (M) has the property (P) that every abelian subgroup
is isomorphic to Z.

(6.2.1) Question (Eberlein). If 7,(M) has property (P), does M admit a metric of
negative curvature?

7 (M) also has property (P) if M satisfies the axiom of uniform visibility
introduced in [16], [13]. This follows since M satisfies uniform visibility if and only
if it contains no 2-flat [13, theorem 4.1]. Note that uniform visibility implies rank
1 [11, lemma 2.1]. Heintze and Gromov have constructed rank 1 manifolds whose
fundamental groups contain copies of Z> [3]. Here is a weaker form of the previous
question.

(6.2.2) Question (Eberlein). If 7;(M) has property (P), is M a uniform visibility
manifold?

This can be restated as
(6.2.2) Question (Eberlein). Can M contain a 2-flat without containing a compact
2-flat?
(6.3) (Eberlein). Suppose M is compact and has rank 1. What does the distribution
of free subgroups in (M) say about the structure of M?

(6.4) (Ballmann). Suppose M is simply connected and homogeneous. Show that a
de Rham factor {28] of M is either symmetric or satisfies uniform visibility.

7. Structure of the space of metrics of non-positive curvature on rank 1 manifolds

Again M is compact and has rank 1.

(7.1) Question. Is the space of metrics on M with negative curvature connected?
When M is a surface, there is an easy argument using the fact that the metric is

conformally equivalent to one of constant curvature. But what about higher

dimensions?

(7.2) Consider the examples of Heintze and Gromov [3]. Their fundamental groups

contain copies of Z*, so any metric of non-positive curvature on them must have
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compact 2-flats. Are there any stronger restrictions? V. Schweder showed recently
that any metric of non-positive curvature on Gromov’s example is locally isometric
to a product.

(7.3) Let (M, o) be a locally symmetric manifold with non-constant negative cur-
vature. Then the curvature of g is 1/4-pinched. Suppose o* is another metric on
M with 1/4-pinched negative curvature. Is (M, ¢*) locally symmetric?

(7.3.1) Recently this question was answered positively by M. Ville in the case of a
compact or finite volume quotient of C H?, the complex hyperbolic phase.

(7.3.2) Idea of Gromov. Studying the ratios of different characteristic exponents for
the geodesic flow of o* should help in comparing the curvature of o* in different
directions. The Ruelle inequality relates a global quantity, entropy, to sums of
characteristic exponents. Is there a global quantity related to ratios of exponents?

8. Compact flats in higher rank
This section is based on [6, § 5]. Let M be compact with rank = 2. Consider compact
regular flats in M. These are the analogues of closed geodesics in rank 1. Are there
appropriate generalizations of the exponential growth of closed geodesics (4.3.1)?
There are several ways to measure the size of a compact flat F: its volume V(F);
it systol sys (F), which is the length of the shortest closed geodesic on F; and its
regular systol rsys (F), which is the length of the shortest regular closed geodesic
on F. Let:

Ny (t) = #{compact regular flats F: V(F) =1}

Ns(t) = #{compact regular flats F:sys (F)=<1t}

Ngs(t) = #{compact regular flats F: rsys (F)=t}.
There are examples where Ng(t) is infinite, but Ny (7) and Ngg(t) are always finite.
(8.1) Question. Do Ny (t) and Ngs(t) grow exponentially with ¢? If so, what are
their growth rates?

(8.2) Partial answer. [6, § 5] Let

VRS(t)= Y V(F).

rsys(F)=t
Then VRS(t) is always finite and

liminf ' log VRS(t)=h,.>0,
t->00
where ' is the restriction of the Liouville measure to the regular vectors.

9. Structure on the sphere at infinity
Unless otherwise stated, H is simply connected and —b*=< K < —a’<0.

(9.1) C“-structure [2, proposition 2.1]. H(o0) has a well defined C*-structure where
a=a/b.

(9.1.1) Question (Brin). Does H(0) still have a C*-structure for some a € (0, 1) if
H has rank 1 and K, is bounded below?
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(9.2) Geodesic measures. For pe H, let 6,: S,H > H(0) be the map which sends v
to the end point of vy, Use 6, to transport Lebesgue measure on S,H to a measure
up on H(00). We call u, a geodesic measure on H(0). If H = M for a compact
M, it follows from the absolute continuity of the stable foliations of the geodesic
flow in SM that y, and u, are equivalent for any p, g € H. The same claim is true
if M is compact and has rank 1.

(9.2.1) Question (Brin). Are all geodesic measures on H{(o0) equivalent if H =M
where M has finite volume, rank 1 and curvature bounded from below?

(9.3) Harmonic measures. Consider Brownian motion starting from p € H. Almost
every path converges to a point in H(c0). If B< H(0) is a Borel set, let P(p, B)
be the probability that a Brownian path from p converges to a point of B. The
measures P(p, -) for pe H are called harmonic measures.

(9.3.1) TueoreM [26], [42]. (i) P(p, ) and P(q,-) are equivalent for any p, qc H.
(ii) For any B, p~ P(p, B) is a harmonic function on H.
(iii) If {p.} = H converges to p € H(0), the measures P(p,, ) converge weakly to
the probability concentrated at p.
(iv) Solution of the Dirichlet problem. Suppose f: H(0) > R is continuous. Let

J flq)dP(p,q) ifpeH,
F(p)=(-acH

f(p) if pe H(0).
Then F is continuous on H u H(00) and harmonic on H.
The Dirichlet problem is also solved in [1] and [2].
(9.3.2) Question (Brin). What happens to this theory if H has rank 1 and curvature
bounded below?
(9.4) Suppose H = M for compact M, so the geodesic and harmonic measure classes
are well defined. They are obviously equal if M has constant curvature. However,
Sullivan [42, p. 724] suggests that they are not equal in general.

Sullivan’s question has been answered in dimension two. For, every Riemannian

metric o on a surface is conformally equivalent to a metric o, of constant negative
curvature and the Laplacian of the metric o is a scalar multiple of the Laplacian
for o,. Thus, harmonic measures for the two metrics lifted to the universal cover
are the same. This reduces the problem to the following question posed by Schoen
in connection with the work in [2].
(9.5) Consider the disc D={zeC:|z|=<1} and S={zeC: |z| =1}. Let o be a metric
on D with ~b*>= K (5, ,y= —a’ < 0. For 6 € S, let ¢(8) be the endpoint of the geodesic
ray in (D, o) which is tangent at 0 to the Euclidean ray from 0 to e’®. When is the
map ¢ singular?

T. Wolff constructed an example of a metric on D with arbitrary sharp pinching
for which the map ¢ is singular (personal communication). This metric does not
allow a compact quotient. Katok proved recently that the map ¢ is always singular
for a metric of non-constant negative curvature with compact quotient (manuscript
in preparation).
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In higher dimension conformal equivalence of metrics does not always take place.
Furthermore, it does not guarantee the coincidence of harmonic measures. Thus,
both the Sullivan question and the counterpart of (9.5) remain open for manifolds
of higher dimension if the metric has compact quotient. However Wolff’s construc-
tion works in all dimensions.

10. Time preserving conjugacy of geodesic flows of surfaces

Let M, and M, be compact surfaces with negative curvature. Let g; be the geodesic
flow on SM,, i=1,2, and h; the expanding horocycle flow with the uniform para-
metrization [32]. Let v; be the measure of maximal entropy for gi. Recall that v, is
the unique ergodic measure for h; [32].

(10.1) Problem. Suppose there is a C° time-preserving conjugacy ¢ between g{ and
g5 Show that M, and M, are isometric. For surfaces of constant curvature this
follows from [37].

(10.2) Feldman and Ornstein [17] have shown that ¢ must be C'.

(10.3) The following are equivalent.

(i) There is a C° time-preserving conjugacy ¢ between g} and g5.

(ii) h3 and h; are measurably conjugate, i.e. there is a measure-preserving map
:(SM,, v|) > (SM,, v,) such that for v,-a.e. ve SM, we have yh{(v)= hiy(v) for
all teR.

(iii) M, and M, have the same length spectrum; see (3.1).

Proof. (ii)=>(i). This is a recent result of Feldman and Ornstein [17].

(iii)=>(i). See (3.5).

(i)=>(ii). Clearly ¢ is a bijection between orbits of h; and hj. The uniqueness of
the uniform parametrization shows that ¢h] = hy¢ for all ¢, and unique ergodicity
of h; shows that ¢ is measure preserving.

(i)=>(iii). Let y; be the element of 7,(SM;) determined by one of the fibres of SM,.
Then vy, generates the centre Z, of 7 (SM;), and = (M,)=m,(SM;)/Z. Since
byt 7 (SM)) > 7,(SM,) is an isomorphism, ,(M,)=m(M,). Since ¢ is time-
preserving, it is not difficuit to show that this isomorphism matches up free homotopy
classes containing closed geodesics of the same length. This argument was shown
to us by Feldman.

(10.4) Question. What does time-preserving conjugacy of geodesic flows imply in
higher dimensions?

11. General problems

(11.1) Is there a smooth Riemannian metric on S> with ergodic geodesic flow?
(11.1.1) There is a smooth Finsler metric with ergodic geodesic flow [24]; see also
[46].

(11.1.2) R. Osserman (oral communication) constructed an example of a C' metric
on S’ with ergodic geodesic flow. In that example the curvature is bounded but is
discontinuous along several curves. As a next step toward (11.1) it may be interesting
to try to construct a metric on S> which is C? everywhere except for finitely many
points, and which has ergodic geodesic flow.
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(11.2) (Katok). Are there general mechanisms in Hamiltonian dynamics other than
scattering that create ergodicity and positive entropy? For example, are there
analogues of the stadium billiard of Bunimovich [10] and more general convex
billiards with hyperbolic behaviour recently found by Wojtkowski [45].
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