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Introduction

Fundamental statements for (associative) rings are that (a) the endo-
morphisms of each commutative group (U, +) form a ring and (b) each
ring may be embedded in such a ring of endomorphisms. In order to
generalise these theorems to groups and rings whose addition may not be
commutative, one has to deal with partial endomorphisms. But these
ring-theoretical Theorems 4a and 4b turn out to be specialisations of similar
ones for semi-near-rings, near-rings and semirings, developed here in
Section 2 after some preliminaries on semi-near-rings in Section 1. A
glance at Definition 1 and the ring-theoretical theorems and remarks at the
end of Section 2 may give more orientation.

As shown by references given in the text, parts of our statements
concerning semi-near-rings and near-rings are known, at least in more
specialised versions. Our emphasis here is with the strong and useful
analogy and relationship. Only for some semirings this analogy is not as
complete as one could wish; we shall discuss this situation dealing with
semirings in Section 2 and give corresponding examples in Section 3. In
this context we obtain some results concerning conditions under which the
set E(S) of all endomorphisms of a semigroup (S, +) is embeddable in a
semiring. This problem, raised by A. H. Clifford and Mrs. M. P. Grillet, has
two different interpretations (see Section 3, Definition 2), leading to diff-
erent answers.

1. Preliminaries

An algebra (S, +, •) with two binary operations is a (left-dis-
tributive) semi-near-ring if (S, +) and (S, •) are semigroups and a(b + c) =
ab + ac holds for all a,b,cG S. This concept (restricted to semi-near-rings
with an annihilating zero) was introduced in (7); see also (6) and (5).
Throughout this paper, neutral elements with respect to an addition or a
multiplication are simply called zero or identity, respectively. If (S, +, •) has
a zero o, an element n G S is called a left-annihilator of (S, +, •) if na = o
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holds for all a G S; the zero o itself need not be a left-annihilator or a
right-annihilator, but the latter follows from left-distributivity if (S, +) is
(left or right) cancellative. In each semi-near-ring, the set 52 defined by

£ a-Jb; | a,, b-, G 5, n = 1, 2,. . .} C 5

forms a subsemigroup (S2, +) of (S, +). Further, we need slight generalisa-
tions of concepts due to (1) and call an element d of a semi-near-ring
( S , + , ) distributive if (a + b)d = ad + bd holds for all a,bG.S. If the
subset DC 5 of all distributive elements of S is not empty, (£), •) clearly is
a subsemigroup of (S, •)• Now let (£)', •) be a subsemigroup of (D, •), in
short a distributive subsemigroup of (5,+, •); then

<£>') = f 2 d, |4,E D',n = 1, 2,. . .} C

forms a subsemi-near-ring of (S, +, •), and we call such a subsemi-near-ring
distributively generated.

Finally, a semi-near-ring (S, +, •) is called a semiring or a near-ring, if
all elements of 5 are distributive or if (S, +) is a group, respectively. If
both hold, we have the concept of an additively not necessarily com-
mutative ring (distributive near-ring), simply called ring in this paper.
Results and examples concerning such generalised rings as well as more
references are given in (8).

2. Partial transformations and endomorphisms of semigroups

Definition 1. Let (G, +) D (U, +) D (W, +) be a chain of semigroups [of
groups]. Then a mapping <p: G -» U -*• W, i.e.

g" G U for all g£G, uv G W for all u G U (2.1)
is called a partial transformation of the semigroups (G, U, W, +) [of the
groups (G, U, W, +)]. In particular, if also

(u + v ) 9 = u* + vv f o r a l l u,v&U (2.2)

is satisfied, we call <p a partial endomorphism of (G, f/, W, -H).

Remark. Throughout this paper, addition will only be needed for
elements from U. Hence we replace (G, +) by a set G containing ((/,+),
using further the expressions "of the semigroups (G, U, W, -)-)" or "of the
groups (G, (7, W, +)".

Theorem la. The set T = T(G, U, W, +) of all partial transformation
<p, if/,... of the semigroups (G, U, W, +) endowed with the usual operations

xv+* = JC" + x* and x"' * = {x9)* for all x G G (2.3)
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is a semi-near-ring (T, + , •).' The subset E = E(G, U, W, +) C T of partial
endomorphisms is either empty or a distributive subsemigroup (E, •) of
(T,+, •)• If G D U, then E coincides with the set DT of all distributive
elements of (T, + , •).

Proof. For each w G W the constant mapping yw defined by xy» = w
for all x G G is an element of T, hence TV 0. The axioms establishing
(T, +, •) as a semi-near-ring including left distributivity follow directly from
the definitions, using the facts that ([/, +) and (W, +) are semigroups.

Further, for each idempotent element w + w = w of (W, +), the constant
mapping yw is even a partial endomorphism of the semigroups (G, U, W, +).
But E may be empty if (W, +) has no idempotent, for instance, if (U, +)
has one. If E^0, clearly (E, •) is a semigroup, and E C DT, i.e. (<p +
<pr} + t/rrj for all <p, ip G T, 17 G E follows from

for all x G G, depending essentially on 17 satisfying (2.2).
Now suppose GOU. Clearly E = DT if E = T. If E C T, let T be any

element out of T\E. Then there exist u,vE.U such that (M + u)V wT + t>T

and clearly partial transformations (even partial endomorphisms if E^ 0)
<p,ipGT such that xv = u and x* = v for some x E.G\U. But then for this x
one has

showing that T is not a distributive element of (T, +, •).

Clearly, commutativity of ((/,+) implies commutativity of (T, +); we
remark that the converse holds if G D (/.

Theorem lb. JEacfr semi-near-ring (5, +, •) /s isomorphic to a subsemi-
near-ring of the semi-near-ring (T ,+ , ) of partial transformations with
T = T(G, S, S2, +), where G is any set properly containing the semigroups
(S, +) 3 (S2, +). The desired monomorphism n:S^>T is given for each
aES by

a if x G S
(2-4)

In particular, /i(d) is a partial endomorphism of (G, S, S2, +) 1/ and only if
d is a distributive element of (S, +, •).

' This statement restricted to G = U = W and a corresponding version of parts of Theorem lb are
given in (5).
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Proof. Clearly each (j,(a) = a is an element of T(G,S,S2,+) and
/*: S^T is injective as G D S.2 For each x G S or JC G G\S one has

b J
xa + xb = x(a + b)]=xli(a+b)

Finally, fi(d) satisfies (2.2) with U = S iff d is distributive since

(x + y )"<d) = (x + y)d = xd + yd = xMd) + y"('0.

In particular if, in Theorem la, the semigroups (U,+)D(W,+) have a
common zero o, the constant mapping yo = u> (already known to satisfy
fljG£CDrCT)is the zero of (T, +, •) and a right annihilator. Moreover,
if (U, +)D(W, +) are groups, each i p6T defines by x"" = -(x(P) again a
partial transformation -<p G T, and clearly <p + (-<p) = co. Conversely, each
near-ring (S, +, •) has a right annihilating zero o. Therefore, the following
theorems essentially known in near-ring theory (for similar results and
some applications see (3), (4)) are simply obtained as specialisations of our
theorems above:

Theorem 2a. The set T = T(G, U, W, +) of all partial transformations
of the groups (G,U,W,+) is a near-ring (T, +, •)• The subset E =
E(G, U, W, +) of partial endomorphisms is a distributive subsemigroup
(E, •) of (T, +, •), containing at least the zero yo = u> of T, and E = DT if
GZ>U.

Theorem 2b. Each near-ring (S, +, •) is isomorphic by (2.4) to a
subnear-ring of the near-ring (T ,+ , ) with T= T(G,S,S2,+), G^S; in
particular one has /n(o) = yo = w.

In order to get similar theorems for semirings, by the results concerning
distributivity in Theorem la and in Theorem lb one has to deal with partial
endomorphisms of semigroups. But such a set E = E(G, U, W, +) is ad-
ditively closed if and only if for all tp, iff G E and all u, v G.U the right hand
sums

(u + vy¥l>'= «* + «'' + «* + v*

Uv+*+ t)"+*= U* + U* + V" + V*

contained in W are equal. Defining a semigroup (W, +) to be sub-
commutative (cf. (2)) if

a + b + c + d = a + c + b + d for all a, b,c,dS W,

2 Choosing G = S, ji is injective iff xa = xb for all x 6 S implies a = b, i.e. iff the semigroup (S, •)
is left reductive.
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we have a sufficient condition which seems to be very natural, and we obtain
from Theorem la:

Theorem 3a. The set E = E(G, U, W, +) of all partial endomorphisms
of the semigroups (G, U, W, +) is a semiring (E, +, •) // E¥ 0 and (IV, +) is
subcommutative.

Now we start with a semiring (S, +, •) and look at E = E(G, S, S2, +).
But even in this case E need not be additively closed, as we shall show by
examples in Section 3. Hence the representation theorem for semirings
obtained by Theorem lb reads as follows:

Theorem 3b. Each semiring (S, +,•) is isomorphic by (2.4) to a sub-
semiring fi(S) of the semi-near-ring (T, +, •) of partial transformations of
semigroups with T = T(G, S, S2, +), G D S. Moreover, /A(S) is contained in
the set E = E(G, S, S2, +) of partial endomorphisms of the semigroups
(G, S, S2, +), itself forming a semiring if (S2, +) is subcommutative, but not
in general.

Clearly, in any case one has /JL^Q EC (E), but also the distributively
generated subsemi-near-ring «£>, +, •) of (T, +, •) need not be a semiring if
(S2, +) is not subcommutative (see Section 3). On the other hand, many
semirings (S, +, •) have this property, and in general (S2, +) is not so far
away from subcommutativity because of

ac + ad + be + bd = (a + b)(c + d) = ac + be + ad + bd.

In particular, (S2, +) is even commutative if it is cancellative. Therefore,
applying our theorems to rings, we obtain:

Theorem 4a. The set E = E(G, U, W, +) of all partial endomorphisms
of groups (G, U, W,+) with commutative (W, +) is a ring (E, +,•), whose
addition is commutative if the group (U,+) is commutative.

Theorem 4b. Each ring (S, +, •) is by (2.4) isomorphic to a subring of
the ring ( £ , + , ) of partial endomorphisms of groups with E =
E(G, S, S2, +), GDS.

Remark. In the additively commutative case Theorem 4a is usually
given with G = U = W, and Theorem 4b holds with S = G = U iff the ring
(S, +, •) is left reductive (cf. footnote 2). If not, the ring can be embedded
in a ring with identity before applying the theorem in this form. But a ring
whose addition is not commutative has nonzero annihilators (cf. (8)), hence
such a ring (S, +, •) is neither left reductive nor embeddable in a ring with
identity. Therefore, in order to get fi: S-*E injective, G D S = U as well
as a commutative subgroup W = S2 are indispensable in our theorems.
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3. Embedding of sets of endomorphisms in semirings

We shall give examples of semirings (S,+,•) such that E(G, S, S2, +)
with respect to the operations (2.3) is not additively closed, hence not a
semiring. Thereby arises the question whether (E, +, •) is at least embed-
dable in a semiring. But this problem has two essentially different in-
terpretations:

Definition 2. Let E = E(G, U, W, +) be the set of all partial endomor-
phisms of the semigroups (G, U, W, +), regarded as a partial subalgebra of
(T, +, •) with T = T(G, U, W, +). Then E is called weakly embeddable in a
semiring (/?,+,•) if there exists a monomorphism / of ( £ , + , ) into
(R, +, •)• Note that in this case only

/(<p + (/O = /(<p) + /(t/r) for all (p, i/f G E such that <p + ip G E (3.1)

is demanded. If it is possible to extend / to a monomorphism / of (E, +, •)
into (R, +,•), E C E C T, such that

f{q> + il>) = f(<p) + /((A) for all <p, ^ G E (3.2)

holds, then E is called strongly embeddable in the semiring (R, +, •)•
The following statement is obvious:

Proposition 1. A set E = E(G, U, W, +) of all partial endomorphisms
of semigroups is strongly embeddable in a semiring if and only if the
distributively generated semi-near-ring ((E), +, •) is a semiring. In this case,
((E), +, •) is the smallest semiring in which E is strongly embeddable.

Now we can summarise the purposes of the following two examples:
(a) As claimed in Section 2, there are semirings (5, +, •) such that

E = E(S, S, S2, +), hence E{G, S, S2, +) for each set CDS, is not additively
closed and ((E), +, •) is not distributive.

(b) By the last statement and Proposition 1 in both cases E is not
strongly embeddable in any semiring. But in the first example E will be
weakly embeddable in a semiring, in the second one not.

(c) We succeed in constructing our semirings (S, +, •) such that 52= S,
so in addition our examples verify (b) also for the set E = E(S, S, S, +) =
E(S) of all endomorphisms of a semigroup (S, +).

Remark. An example of a semigroup (5°, +) such that E(S°) is not
embeddable into a semiring (more precisely: not weakly embeddable) was
constructed in the second part of (2). But we do not see how to add a
suitable semiring-multiplication to it and feel that our examples are sim-
pler.3

3 There are two confusing misprints on page 349 of (2): On line 2 replace "p g 1" by "p & 1", on
line 7 replace "p(n') = 0 if n V 0" by "p(n') = 1 if ri = 0".
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Example 1. The semigroup (S, +) generated by two elements a and b,
subject to the relations 2a = a, 2b = b, a + b + a = b + a + b (= z) is given
by the table

a
b

+

a
b
+
+
2

b
a

b

b

a

a
+
z
+
2

a

a

a

a

b

+
b
+
z
z

b

b

a

a

+

+
z
z
z
2

b

b

b

b

+

z
+
2

2

2

a

a

z

2

2

2

2

2

To illustrate (S, +) not being subcommutative we note

a + a + b + b = a + b^z = a + b + a + b.

It is easily seen that (S, +, •) becomes a semiring with S2 = S if we define

a • a = a, b • b = b, all other products to be z.

Each endomorphism <p of (S, +), i.e. each element of E = E(S, S, S2, +), is
determined by a9 and bv, which have to be idempotent again. Hence E
consists at most of the 3 • 3 mappings <pt,..., <p$ listed in the following
table, and clearly each of them is an endomorphism of (S, +).

<PA

<P6

(Pi

<P9(.= 7z)

<P2+ <P2

<P\ + <P5

a

a
a
a

-a -a .a

2

2

z

a
a + b

b

a
b
z

a
b
z

a
b
2

b
a + b

a + b

a
a + b

2

b + a
b
2

2
Z
2

Z
a + b

b + a

a
b + a

z

a + b
b
z

z
2

2

2

a + b

2

a
2

Z

z

2

2

2

2

2

a + fo

Both last rows show that E is not closed with respect to addition, and for
instance the element <p2+ (f>i= r of the semi-near-ring ({E),+,-)* is not

4We remark that thedistributively generated semi-near-ring ((E), +, •) consists of 41 elementsand
does not contain an isomorphic image of the semiring (S, +, •)•
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distributive (not even with respect to elements contained in E) since

Hence E is not strongly embeddable in a semiring. In order to prove that E
is weakly embeddable, let (R, +, •) be the semiring of all endomorphisms of
the commutative semigroup ([5], +) which is the homomorphic image of
(5, +) defined by

Obviously R consists of the 9 endomorphisms i/», = /(<p,) given in the table
above by identifying the last three columns, formally written as

[JC]*' = [*"], for all x e S. (3.3)

Moreover, / is the desired monomorphism and even from E onto R. This is
clear from our construction, but we give a formal proof of (3.1): If
cpi + q>j = cpk is defined in E, we have by (3.3) for all x G S

Observe that in (R, +, •) we have t/>2+ $i = <l>2 and i/>, + 1A5 = <p9-

Example 2. We obtain a semiring (S, +, •) on S = {a, b, 0} defining

a b o and • a b o or • a b o or

a a a
b b b
a b o

a a o
a b o
0 0 0

a a a
b b b
0 0 0

a
b
0

a

a
a
a

b

b
b
b

0

0

0

0

with each one of the given multiplications. The semigroups used are well
known, and also most of the equations proving distributivity become
trivial. Clearly S2 = S, and a noncommutative semigroup (5, +) with zero is
not subcommutative. Moreover, similar examples are obtained replacing
{a, b} by a set consisting of more elements.

One easily checks that the set E = E(S) of all endomorphisms of (S, +)
has 7 elements and that ((E),+, •) is not distributive. But we do not need
these concrete considerations because of the following

Proposition 2. Let (S, +) be a semigroup with zero o, containing two
idempotents a, b such that a +b and b + a are also idempotent and distinct.
Then the set E = E(S) of all endomorphisms of (5, +) is not even weakly
embeddable in a semiring.

Proof. Suppose that E is weakly embedded in a semiring (R, +, •) and
let us identify the partial algebra (E, +, •) with its image in R. For each
idempotent »v of (S, +) the constant mapping yw is contained in E, and E
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has <o = yo as zero and the identity mapping e as identity. Now we calculate in

o> + ya + Jb + yb = (w + ya)(e + yb) = co + yb + ya + yb,

yb + yb + ya + a = (ya+ <o)(yb + e) = yb + ya + yb + a>,

obtaining ya+b = ya + yb = yb + ya = yb+a in (E, +, •), which contradicts
a + b^b + a.

Corollary. Let (S, +) be an idempotent semigroup with zero. Then the
set E = E(S) of all endomorphisms of (S, +) is weakly as well as strongly
embeddable in a semiring if and only if (5, +) is commutative.
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