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Abstract
Consumption of ultra-processed food (UPF) has been associatedwith several chronic diseases and poor diet quality. It is reasonable to speculate
that the consumption of UPF negatively associates with flavonoid dietary intake; however, this assumption has not been previously examined.
The present study aims to assess association between the dietary contribution of UPF and flavonoid intake in the US population aged 0 years and
above. We performed a cross-sectional analysis of dietary data collected by 24-h recalls from 7640 participants participating in the National
Health and Nutrition Examination Survey 2017–2018. Foods were classified according to the Nova classification system. The updated
US Department of Agriculture (USDA) Database for the Flavonoid Content of Selected Foods (Release 3.3) database was used to estimate total
and six classes of flavonoid intakes. Flavonoid intakes were compared across quintiles of dietary contribution of UPF (% of total energy intake)
using linear regressionmodels. The total and five out of six class flavonoid intakes decreased between 50 and 70 % across extreme quintiles of the
dietary contribution of UPF (Pfor linear trend< 0·001); only isoflavones increased by over 260 %. Our findings suggest that consumption of UPF is
associated with lower total and five of six class flavonoid intakes and with higher isoflavone intakes, supporting previous evidence of the
negative impact of UPF consumption on the overall quality of the diet and health outcomes.
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Ultra-processed foods (UPF) are defined by the Nova
classification as industrial formulations of food-derived
substances (such as oils, fats, sugars, starch and protein
isolates) that contain little or no whole food and often include
flavourings, colourings, emulsifiers and other additives with
cosmetic functions(1). A considerable number of prospective
observational studies have linked UPF intake with a higher
risk of overweight, obesity, hypertension, diabetes, CVD, all-
cause mortality, cancer as well mental disorders such as
depression or cognitive decline(2–9).

A possible mechanism linking UPF with chronic diseases is
its impact on diet quality. In fact, studies have shown an inverse
association between dietary contribution of UPF and diet
quality(10,11), which may be explained by the lower quality
macro- and micronutrient profile of UPF and partitioning of
higher-quality unprocessed/minimally processed foods.

Dietary flavonoids represent a diverse range of polyphenolic
compounds present in fruits, vegetables, grains, herbs and tea(12)

that have significant antioxidant protective effects against
various pathologies such as obesity, cancer, CVD, hyper-
tension, atherosclerosis, diabetes, dementia and Alzheimer’s
disease(13–16). Mechanistic studies have suggested various
plausible means by which flavonoids may impact body
fatness, such as decreasing energy intake, increasing energy
expenditure and fat oxidation, influencing macronutrient
absorption and uptake, and inhibiting adipogenesis(17–21).
Evidence exists that the significant reduction in the incidence of
chronic and degenerative diseases among those whose diets are
high in cereals, fruits and vegetables may be, at least partially,
explained by the higher intake of phenolic antioxidants(16).

Flavonoids have been classified into the following classes
according to the position of the carbon in the chemical structure:
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flavan-3-ols (including catechins), flavanones, flavonols, antho-
cyanidins, flavones and isoflavones (Fig. 1). Though few studies
have analysed the health effects of each class separately, available
evidence(13) suggests that flavonols regulate systolic blood
pressure, glycemic levels, and BMI, flavones regulate blood
glucose levels, flavanones lower risk of ischemic stroke, flavanols
reduce mean arterial pressure and improve insulin resistance and
LDL-cholesterol, HDL-cholesterol levels, anthocyanidins and
catechins lower risk of myocardial infarctions, and isoflavones
are beneficial for type 2 diabetes and menopause symptoms.

As flavonoids typically occur in unprocessed or minimally
processed foods, it is reasonable to suggest that diets higher in
UPFwould be associated with lower consumption of flavonoids.
To our knowledge, no previous studies have assessed the
association between UPF consumption and flavonoid intakes.
The present study aimed to assess possible associations between
dietary relative contribution of UPF to total energy and flavonoid
intake (total and six classes) in a representative sample of the US
population.

Methods

Data source and dietary assessment

For this cross-sectional study, we used publicly available
data from the 2017–2018 National Health and Nutrition
Examination Survey (NHANES). NHANES is a nationally
representative, multistage, complex survey of the civilian,
non-institutionalised US population providing health and
nutrition data, conducted by the National Center for Health
Statistics (NCHS), CDC. Study protocols for NHANES were
approved by the NCHS ethics review board. Signed informed
consent was obtained from all participants; parents or guardians
provided consent for participants< 18 years of age. Detailed
descriptions of NHANES methods are published elsewhere(22).
Participants were first interviewed in their homes to
collect background information, such as socio-demographic,
medical and family histories. Participants subsequently visited a
mobile examination centre where a health examination and a
dietary recall interview were performed. A second dietary recall

Fig. 1. Classes of flavonoids and dietary sources.
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was collected by telephone 3–10 d later in a different day of
the week.

This study used dietary data obtained via the first of the two
24-h dietary recalls administered in-person by trained inter-
viewers using the validated automated multi-pass method(23).
Because the mean of a population’s intake can be appropriately
derived from a sample of 1 d individuals’ 24-h recalls (provided
the data are collected evenly throughout the year and the days
of the week are evenly represented as is the case of NHANES),
only the first dietary recall was used in the current study. For
participants aged 5 years or younger, proxies/assistants familiar
with the usual dietary intake of the child responded to the 24-h
dietary recall. Participants aged 6–11 years were assisted by a
proxy/assistant, and the participants aged≥ 12 years completed
the 24-h dietary recall interview on their own.

During the 2017–2018 NHANES cycle, 16 211 participants
aged≥ 0 year were screened; of those, 7640 had a complete first
24-h dietary recall. We sequentially excluded 159 infants
breastfed on any of the 2 d (due to lack of data on the amount
of breast milk consumed), leaving 7481 participants for analysis
(Fig. 2). The socio-demographic distribution did not change
between participants completing the first 24-h dietary recall and
the final sample.

Food classification according to processing and
assessment of ultra-processed food intake

We used the Nova system(1) to classify all foods and beverages
(food codes) into four groups on the basis of nature, extent and
purpose of industrial food processing. Nova includes four

groups: ‘unprocessed or minimally processed foods’ (such as
fresh, dry or frozen fruits or vegetables; packaged grains and
pulses; grits, flakes or flours made frommaize, wheat or cassava;
pasta, fresh or dry, made from flours and water; eggs; fresh or
frozen meat and fish and fresh or pasteurised milk), ‘processed
culinary ingredients’ (including sugar, oils, fats, salt, and other
substances extracted from foods or nature and used in kitchens
to season and cook unprocessed or minimally processed
foods and to make culinary preparations), ‘processed foods’
(including canned foods, salted meat products, cheeses and
other products manufactured with the addition of salt or sugar
or other processed culinary ingredients to unprocessed or
minimally processed foods) and ‘UPF’ (defined as food
formulations made up from several ingredients including
sugar, oils, fats, and salt and food substances that are rarely
used in homemade recipes such as high-fructose corn syrup,
hydrogenated oils and protein isolates). Industrial techniques
used to manufacture UPF include extrusion, moulding and
pre-frying; application of additives including those whose
function is to make the final product palatable or hyper-
palatable such as flavours, colorants, non-sugar sweeteners
and emulsifiers; and sophisticated packaging, usually with
synthetic materials. This category includes soft drinks, sweet
or savoury packaged snacks, confectionery, and industrialised
desserts, mass-produced packaged bread and buns, poultry
and fish nuggets and other reconstituted meat products,
instant noodles and soups, and many other ready-to-consume
formulations of several ingredients.

For food codes judged to be handmade recipes, the
classification was applied to the underlying ingredient codes
obtained from the US Department of Agriculture (USDA) Food
and Nutrient Database for Dietary Studies (FNDDS) 2017–
2018(24).

Energy valueswere assigned to food codes byNHANES using
the USDA FNDDS (2017–2018)(24). For potential handmade
recipes, we calculated the underlying ingredient code energy
values using variables from both FNDDS 2017–2018 and
USDA National Nutrient Database for Standard Reference,
Release 28 (SR28)(25). The detailed procedures to classify
food items according to Nova and estimate Nova energy
contributions have been described elsewhere(26). The relative
contribution of UPF to total daily energy intake was calculated
for each participant.

Flavonoid intake assessment

We used the Database of Flavonoid Values for USDA Food
Codes 2017–2018(27) which provides twenty-nine flavonoid
values (in mg) in six flavonoid classes (flavan-3-ols (including
catechins), flavanones, flavonols, anthocyanidins, flavones and
isoflavones) present in 100 (edible) grams of each food code
included in FNDDS 2017–2018, to estimate the total and six
classes of flavonoid daily intakes (mg) for each participant.
Further details are provided in online Supplementary Tables 1–3.

Covariates

Potential confounders were identified from the literature. Socio-
demographic covariates included sex, age, race/ethnicity, family

16,211 aged 0 years or above screened 
in NHANES 2017–2018

9,254 also participated in the 
household interview

8,704 also participated in the MEC 
health examination

6,957 did not participate 
in the household interview

550 did not participate in 
the MEC health 

examination

7,640 with day 1 dietary data

7,481 participants with day 1 dietary data and 
complete information on all covariates (final 

sample)

1,064 no day 1 dietary 
data

159 breastfed on any of 
the 2 d

Fig. 2. Study flow chart. NHANES 2017–2018. NHANES, National Health and
Nutrition Examination Survey.
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income and education. Sex was coded as male or female. Age
was grouped into three categories (0–11 years, 12–19 years, and
20 years of age and over). Race/ethnicity was categorised as
Mexican American, Other Hispanic, Non-Hispanic White, Non-
Hispanic Black and Other Races including Multi-Racial. In
regard to family income, ratio of family income to poverty was
established and categorised based on Supplemental Nutrition
Assistance Program (SNAP) eligibility as 0·00–1·30, > 1·30–
3·50, 3·50 and above, and missing(28). Education attainment
was categorised into four categories (< 12 years, 12 years, > 12
years of education and missing); household reference person
education was used for participants aged 20 years or below.

Data analysis

First, we evaluated mean daily dietary contribution of UPF (% of
total energy), and total and classes of flavonoid intakes (mg)
overall and across socio-demographic characteristics. Wald test
with Bonferroni inequality adjustment for multiple comparisons
was used to determine differences across categorical variables.

As flavonoid intakes had skewed distributions, variableswere
log-transformed using natural logarithms and geometric means
were presented. Flavonoid intakes were compared across
quintiles of dietary contribution of UPF (% of total energy
intake) using linear regression models. Tests of linear trend
were performed to evaluate the effect of quintiles as a single
continuous variable. These associations were explored using
two models: (1) crude (mg) and (2) adjusted for socio-
demographic variables: sex, age group, race/ethnicity, ratio of
family income to poverty and educational attainment. Results
were shown as geometric means and standard errors. We
performed additional analyses to test the association between
quintiles of dietary energy contribution of unprocessed/
minimally processed foods and flavonoid intakes.

Effect modification by sex and age group was tested by
including a one-by-one multiplicative interaction term in
the multivariable socio-demographic adjusted model. Analyses
were stratified according to sex and age group.

We also used the restricted cubic spline in the multivariable
linear regression models with five knots (5th, 27·5th, 50th, 72·5th
and 95th) following Harrell’s recommendations(29) to examine
the shape of the dose–response relationship curve between daily
percent of energy from UPF and total and each class flavonoid
intakes.

Statistical hypotheses were tested using a two-tailed P< 0·05
level of significance. Data were analysed using Stata statistical
software package version 14.

Results

Mean dietary energy contribution of UPF and flavonoid intakes,
overall and according to characteristics of respondents of the US
population aged 0 years and above in 2017–2018, are displayed
in Table 1. Mean daily energy contribution of UPF was 58 % and
was higher among men, Non-Hispanic Black, lower income
level and younger age groups.

The geometricmean intake of total flavonoids was 45·7mg/d.
Total flavonoids intake was higher among women, adults, other
races, highest income and highest education level.

Geometric mean flavonoid intakes (mg/d) according to
quintiles of dietary contribution of UPF are presented in Table 2.
In both crude and adjusted models, total flavonoid intakes
decreased by 70 % across extreme quintiles (Pfor linear trend<
0·001). Decreases were also observed in five out of six classes of
flavonoid intakes (P

for linear trend
< 0·001), with decreases across

extreme quintiles of UPF intake ranging between 50 and 70 %.
The consumption of isoflavones was positively associated with
quintiles of UPF consumption (Pfor linear trend< 0·001), with an
increase of more than 260 % observed across extreme quintiles.

Curves using restricted cubic splines showed no evidence of
a linear dose–response association between dietary contribution
of UPF and flavonoid intakes (online Supplementary Fig. 1).

Opposite trends were observed for the association between
quintiles of unprocessed/minimally processed foods and total
and classes of flavonoid intakes (online Supplementary Table 1).
Thus, total and class flavonoid intakes increased across quintiles
of unprocessed/minimally processed foods (Pfor linear trend<
0·001) except for isoflavone, with increases ranging between
180 and 270 % across extreme quintiles. Isoflavone intakes
decreased by 60 % between the first and fifth quintiles.

The association between total flavonoid intake and
quintiles of UPF consumption were not modified by sex
or age group (Pfor interaction > 0·05) (Table 3). The associations
with isoflavone and flavonol intakes were both slightly
stronger among women when compared with men
(Pfor interaction < 0·05). For isoflavone intakes, 270 % and
450 % increases across extreme quintiles of UPF consumption
were observed for men and women, respectively. As for
flavonol, 57 % and 59 % decreases were observed for men and
women, respectively (Table 3).

Discussion

In this nationally representative US study, a strong inverse
association was observed between dietary contribution of UPF
and total and six class flavonoid intakes. Isoflavones, however,
showed a strong positive association with UPF intake. Opposite
trends were observed for the association between unprocessed/
minimally processed foods and total and class flavonoid intakes.

The inverse association betweenUPF and flavonoid intakes is
likely explained by the fact that UPF are devoid of flavonoids
(because UPF are formulations with minimal amounts of fruits,
vegetables, grains, herbs and tea) and because the consumption
of UPF likely implicates in partitioning of the consumption of
flavonoid-rich unprocessed or minimally processed foods. As a
matter of fact, a previous study carried out in the US population
observed that across extreme quintiles of UPF consumption,
both unprocessed/minimally processed fruit and vegetable
consumption decreased by over 70 % each(30). Besides this,
these compounds tend to be unstable due to interference with
other compounds and sensitivity to heat, light, pH, or temper-
ature, and metabolic transformations (methylation, glucuroni-
dation and sulfation), which will result in a loss of their efficiency
and effectiveness when consumed as part of UPF(31).

Studies suggest that flavonoids have beneficial anti-inflam-
matory effects, protecting cells from oxidative damage that can
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Table 1. Dietary contribution of ultra-processed foods and flavonoid intakes according to characteristics of respondents. US population aged 0 years and above (NHANES 2017–2018) (n 7481) (using day 1
dietary data)

Flavonoids (mg/d)

Dietary contribution
of ultra-processed
foods (% total daily

energy intake) ΣTotal flavonoids ΣIsoflavones ΣAnthocyanidins
ΣFlavan-3-
ols (total)

ΣCatechin
[Flavan-3-ols]
(subtotal) ΣFlavanones ΣFlavones ΣFlavonols

Mean SE GM* GSE GM GSE GM GSE GM GSE GM GSE GM GSE GM GSE GM GSE

Sex† Men (n 3676) 59·3 0·9A 42·7 1·1A 0·4 1·9A 1·9 1·1A 12·2 1·1A 9·2 1·1A 1·4 1·0A 0·4 1·1A 8·7 1·0A

Women (n 3805) 57·5 0·9B 48·8 1·1B 0·4 1·1A 2·3 1·1B 13·7 1·1B 9·8 1·1A 1·3 1·1A 0·4 1·1A 8·6 1·0A

Age groups (years)† 0–11 (n 1695) 64·7 0·7A 27·3 1·1A 0·5 1·1AB 2·1 1·1A 8·8 1·1A 7·7 1·1A 1·5 1·1A 0·3 1·1A 4·1 1·1A

12–19 (n 1045) 67·7 0·7B 25·3 1·1A 0·6 1·1A 1·3 1·1B 7·7 1·1A 5·6 1·1B 1·3 1·1A 0·3 1·1A 5·2 1·1B

20 or above (n 4741) 55·8 1·0C 54·8 1·1B 0·4 1·1B 2·3 1·1A 15·0 1·1B 10·7 1·1C 1·3 1·0A 0·4 1·1B 10·7 1·0C

Race/ethnicity† Mexican American
(n 1087)

57·7 1·0B 36·5 1·1AB 0·4 1·1A 1·8 1·1A 8·2 1·1A 7·0 1·1AB 2·0 1·1C 0·5 1·1C 7·4 1·1AB

Other Hispanic (n 628) 53·0 1·8A 40·9 1·1AB 0·5 1·1A 2·4 1·1A 10·4 1·1AB 8·4 1·1BC 1·8 1·1BC 0·4 1·1ABC 8·4 1·1BC

Non-Hispanic White
(n 2632)

59·5 1·1B 49·6 1·1B 0·4 1·1A 2·2 1·1A 15·0 1·1BC 10·6 1·1CD 1·2 1·1AB 0·4 1·1AB 9·1 1·1CD

Non-Hispanic Black
(n 1745)

63·1 1·2C 28·4 1·1A 0·5 1·1A 1·7 1·1A 7·5 1·1A 5·7 1·1A 1·3 1·1A 0·3 1·1A 6·4 1·1A

Other Race (including
Multi-Racial) (n 1389)

51·1 1·2A 65·4 1·1C 0·4 1·1A 2·6 1·1A 18·8 1·1C 13·2 1·1D 1·3 1·1ABC 0·5 1·1BC 10·5 1·1D

Income to poverty† 0·00–1·30 (n 2190) 59·9 1·2B 34·7 1·1A 0·5 1·1A 1·7 1·1A 10·5 1·1A 7·8 1·1A 1·2 1·1A 0·3 1·1A 7·0 1·1A

>1·30–3·50 (n 2667) 59·8 0·8B 37·8 1·1A 0·4 1·1A 1·8 1·1A 10·2 1·1A 7·8 1·1A 1·3 1·0A 0·4 1·1AB 7·7 1·0A

>3·50 and above
(n 1796)

56·6 1·1A 64·5 1·1B 0·4 1·1A 2·9 1·1B 18·6 1·1B 12·9 1·1B 1·4 1·1A 0·5 1·1B 11·1 1·0B

Missing (n 828) 56·2 (1·2A 43·9 1·2AB 0·4 1·2A 2·0 1·1AB 12·0 1·2AB 9·1 1·2AB 1·5 1·1A 0·4 1·1AB 8·0 1·1A

Educational
attainment†

<12 years (n 1341) 57·8 1·2AB 33·7 1·1A 0·5 1·1AB 1·7 1·1A 9·9 1·1A 7·9 1·1A 1·6 1·1A 0·4 1·1B 6·7 1·1A

12 years (n 2732) 62·2 0·8C 33·3 1·1A 0·5 1·1B 1·6 1·1A 9·3 1·1A 7·1 1·1A 1·3 1·1A 0·3 1·0A 6·8 1·1A

>12 years (n 3255) 55·9 0·9A 60·9 1·1B 0·4 1·1A 2·7 1·1B 17·3 1·1B 12·2 1·1B 1·3 1·1A 0·4 1·1B 10·9 1·0B

Missing (n 153) 62·7 2·5BC 30·3 1·2A 0·4 1·2AB 1·7 1·5AB 8·1 1·3AB 6·5 1·3AB 2·4 1·3A 0·4 1·2AB 5·3 1·2A

Total 58·3 0·9 45·7 1·1 0·4 1·1 2·1 1·1 12·9 1·1 9·5 1·1 1·4 1·0 0·4 1·0 8·6 1·0

GM, geometric means; GSE, geometric standard error.
* GM.
† Values sharing a letter in the group label are not significantly different at the P< 0·05 level (using Bonferroni inequality adjustment for multiple comparisons).
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lead to disease(32). These dietary antioxidants can prevent the
development of CVD, diabetes, cancer, and cognitive diseases
like Alzheimer’s and dementia(13–16). A meta-analysis performed
on eight cohorts showed a linear decreased risk of CVD as a
function of increased intake of flavonoid, with intakes of up to
500 mg/d of total flavonoids being associated with a 27 % lower

risk of CVD(14). On the other hand, prior studies have associated
high UPF consumption with an increased risk of several chronic
diseases, including CVD, diabetes, cancer, depression and
cognitive decline(4,5,7–9). Our analysis revealed a negative
association between UPF and total and five out of six classes
of flavonoid intakes, indicating that decreased flavonoid intake

Table 2. Flavonoid intakes (mg per d) according to the quintiles of the dietary share of ultra-processed foods. US population aged 0 years and above
(NHANES 2017–2018) (n 7481)

Quintile of dietary share of ultra-
processed foods (% of total energy intake)*

Q1 Q2 Q3 Q4 Q5 Pfor trend

ΣTotal flavonoids (GM†) Crude (mg) 72·0 57·9 52·4 44·0 20·7 <0·001
Adjusted for socio-demographic variables (mg)‡ 64·8 55·2 51·5 45·6 23·7 <0·001

ΣIsoflavones (GM) Crude (mg) 0·3 0·3 0·4 0·5 0·9 <0·001
Adjusted for socio-demographic variables (mg)‡ 0·3 0·3 0·4 0·5 0·8 <0·001

ΣAnthocyanidins (GM) Crude (mg) 3·8 2·7 1·9 1·9 1·2 <0·001
Adjusted for socio-demographic variables (mg)‡ 3·6 2·7 1·9 1·9 1·3 <0·001

ΣFlavan-3-ols (total) (GM) Crude (mg) 19·1 13·6 14·6 13·8 6·9 <0·001
Adjusted for socio-demographic variables (mg)‡ 17·5 13·1 14·4 14·1 7·8 0·001

ΣCatechin [flavan-3-ols] (subtotal)
(GM)

Crude (mg) 14·2 10·5 10·7 9·9 4·9 <0·001

Adjusted for socio-demographic variables (mg)‡ 13·3 10·2 10·5 10·0 5·5 <0·001
ΣFlavanones (GM) Crude (mg) 1·7 1·8 1·5 1·1 0·9 <0·001

Adjusted for socio-demographic variables (mg)‡ 1·7 1·8 1·5 1·1 0·9 <0·001
ΣFlavones (GM) Crude (mg) 0·6 0·5 0·4 0·3 0·2 <0·001

Adjusted for socio-demographic variables (mg)‡ 0·6 0·5 0·4 0·3 0·2 <0·001
ΣFlavonols (GM) Crude (mg) 13·3 10·2 9·8 8·0 4·5 <0·001

Adjusted for socio-demographic variables (mg)‡ 12·0 9·8 9·8 8·4 5·0 <0·001

NHANES, National Health and Nutrition Examination Survey; GM, geometric means.
* Mean (range) dietary share of ultra-processed foods per quintile: 1st= 26·8 (0 to 39·3); 2nd= 46·3 (39·3 to 53·0); 3rd= 59·1 (53·0 to 65·2); 4th= 71·1 (65·3 to 78·0); 5th= 88·1 (78·0 to 100).
† GM presented in all cases.
‡ Adjusted for sex, age group (0 to 11, 12 to 19, þ20), race/ethnicity (Mexican American, Other Hispanic, Non-Hispanic White, Non-Hispanic Black and Other Race), ratio of
family.

Table 3. Flavonoid intakes (mg) according to the quintiles of the dietary share of unprocessed/minimally processed foods. US population aged 0 years and
above (NHANES 2017–2018) (n 7481)

Quintile of dietary share of ultra-
processed foods (% of total energy intake)*

Q1 Q2 Q3 Q4 Q5 Pfor trend

ΣTotal flavonoids (GM†) Crude (mg) 23·4 40·0 60·5 54·0 64·9 <0·001
Adjusted for socio-demographic variables (mg)‡ 25·9 40·2 59·8 51·9 61·6 <0·001

ΣIsoflavones (GM) Crude (mg) 0·7 0·5 0·4 0·3 0·3 <0·001
Adjusted for socio-demographic variables (mg)‡ 0·7 0·5 0·4 0·3 0·3 <0·001

ΣAnthocyanidins (GM) Crude (mg) 1·2 1·7 2·4 2·7 3·3 <0·001
Adjusted for socio-demographic variables (mg)‡ 1·2 1·7 2·4 2·6 3·2 <0·001

ΣFlavan-3-ols (total) (GM) Crude (mg) 7·9 12·4 16·8 13·2 16·6 0·002
Adjusted for socio-demographic variables (mg)‡ 8·7 12·3 16·6 12·8 16·0 0·007

ΣCatechin [flavan-3-ols]
(subtotal) (GM)

Crude (mg) 5·5 9·2 12·4 9·8 12·6 <0·001

Adjusted for socio-demographic variables (mg)‡ 6·0 9·2 12·2 9·5 12·2 0·001
ΣFlavanones (GM) Crude (mg) 0·8 1·0 1·7 1·8 1·7 <0·001

Adjusted for socio-demographic variables (mg)‡ 0·9 1·0 1·7 1·8 1·7 <0·001
ΣFlavones (GM) Crude (mg) 0·3 0·3 0·4 0·5 0·6 <0·001

Adjusted for socio-demographic variables (mg)‡ 0·3 0·3 0·4 0·4 0·6 <0·001
ΣFlavonols (GM) Crude (mg) 5·2 8·1 9·9 10·3 11·1 <0·001

Adjusted for socio-demographic variables (mg)‡ 5·6 8·2 9·8 10·0 10·6 <0·001

NHANES, National Health and Nutrition Examination Survey; GM, geometric means.
* Mean (range) dietary share of unprocessed/minimally processed foods per quintile: 1st= 5·1 (0 to 11·5); 2nd= 15·8 (11·5 to 20·2); 3rd= 25·0 (20·2 to 29·8); 4th= 35·6 (29·8 to 42·4);
5th= 55·9 (42·4 to 100).

† GM presented in all cases.
‡ Adjusted for sex, age group (0 to 11, 12 to 19,þ20), race/ethnicity (Mexican American, Other Hispanic, Non-HispanicWhite, Non-Hispanic Black andOther Race), ratio of family income to
poverty (Supplemental Nutrition Assistance Program 0·00–1·30,> 1·30–3·50 and> 3·50 and over, missing) and educational attainment (< 12, 12,> 12 years, missing).
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Table 4. Adjusted* flavonoid intakes (mg per d) according to the quintiles of the dietary share of ultra-processed foods, stratified by covariates with statistically
significant interaction. US population aged 0 þ years (NHANES 2017–2018) (n 7481)

Quintile of dietary share of ultra-processed foods
(% of total energy intake)‡

Q1 Q2 Q3 Q4 Q5 Pfor trend Pfor interaction

ΣTotal flavonoids (mg/d)† Sex
Men 59·3 48·2 50·8 44·5 21·9 <0·001 0·427
Women 71·1 61·1 51·5 49·5 24·9 <0·001
Age group
0–11 30·1 38·4 25·6 31·8 16·2 0·001
12–19 38·6 35·0 31·7 24·4 9·9 <0·001 0·674
20 or above 79·4 64·6 64·2 49·8 30·1 <0·001

ΣIsoflavones (GM) Sex
Men 0·3 0·4 0·4 0·4 0·8 0·001 0·036
Women 0·2 0·2 0·4 0·5 0·9 <0·001
Age group
0–11 0·3 0·3 0·5 0·6 0·9 <0·001 0·877
12–19 0·4 0·4 0·5 0·8 1·0 <0·001
20 or above 0·3 0·3 0·4 0·4 0·7 <0·001

ΣAnthocyanidins (GM) Sex
Men 2·6 2·3 1·9 1·9 1·2 <0·001 0·12
Women 4·3 3·1 2·1 1·9 1·3 <0·001
Age group
0–11 2·5 2·7 2·0 1·7 1·8 0·062 0·532
12–19 2·2 1·8 1·3 1·0 0·9 0·001
20 or above 4·0 2·7 2·1 2·0 1·3 <0·001

ΣFlavan-3-ols (total) (GM) Sex
Men 15·9 11·3 14·0 14·0 7·6 0·044 0·32
Women 19·9 14·8 14·4 14·2 8·0 <0·001
Age group
0–11 7·8 10·8 8·8 11·0 6·3 0·113 0·213
12–19 11·8 9·7 7·6 8·1 3·9 <0·001
20 or above 22·0 14·4 16·7 15·3 9·3 0·004

ΣCatechin [flavan-3-ols] (subtotal) (GM) Sex
Men 12·2 9·2 10·7 10·0 5·4 0·01 0·274
Women 15·0 10·9 10·1 10·3 5·4 <0·001
Age group
0–11 7·3 9·9 8·1 8·8 5·4 0·011 0·218
12–19 9·5 7·0 6·2 4·6 2·9 <0·001
20 or above 16·3 10·3 11·8 11·0 6·3 0·001

ΣFlavanones (GM) Sex
Men 2·0 1·9 1·6 1·0 0·9 <0·001 0·663
Women 1·5 1·6 1·5 1·2 0·8 0·001
Age group
0–11 1·7 1·9 1·3 1·5 1·2 0·068 0·393
12–19 1·4 1·9 1·4 0·9 1·1 0·068
20 or above 1·6 1·9 1·6 1·1 0·8 <0·001

ΣFlavones (GM) Sex
Men 0·6 0·5 0·4 0·3 0·2 <0·001 0·621
Women 0·5 0·5 0·3 0·4 0·2 <0·001
Age group
0–11 0·3 0·3 0·3 0·2 0·2 <0·001 0·115
12–19 0·6 0·4 0·3 0·3 0·2 <0·001
20 or above 0·6 0·6 0·5 0·4 0·3 <0·001

ΣFlavonols (GM) Sex
Men 11·9 8·9 10·0 9·0 5·1 <0·001 0·022
Women 12·0 10·7 9·1 8·3 4·9 <0·001
Age group
0–11 4·8 5·3 4·0 4·3 2·7 <0·001 0·815
12–19 8·3 6·1 6·1 4·6 2·7 <0·001
20 or above 14·5 12·6 11·9 9·8 6·5 <0·001

NHANES, National Health and Nutrition Examination Survey; GM, geometric means.
* Adjusted for sex, age group (0 to 11, 12 to 19,þ20), race/ethnicity (Mexican American, Other Hispanic, Non-HispanicWhite, Non-Hispanic Black andOther Race), ratio of family income to
poverty (Supplemental Nutrition Assistance Program 0·00–1·30,> 1·30–3·50 and> 3·50 and over, and missing) and education (< 12 years, 12 years,> 12 years and missing).

† GM.
‡Mean (range) dietary share of ultra-processed foods per quintile in men: 1st= 28·3 (0 to 40·6); 2nd= 47·3 (40·6 to 54·0); 3rd= 59·6 (54·0 to 65·9); 4th= 72·5 (65·9 to 79·0); 5th= 88·8
(79·0 to 100).

Mean (range) dietary share of ultra-processed foods per quintile in women: 1st= 25·6 (0 to 38·0); 2nd= 45·3 (38·0 to 51·9); 3rd= 58·5 (51·9 to 64·9); 4th= 70·7 (64·9 to 77·0); 5th= 87·3
(77·0 to 100).
Mean (range) dietary share of ultra-processed foods per quintile in age group 0 to 11 years: 1st= 35·6 (1·0 to 48·3); 2nd= 55·0 (48·3 to 60·8); 3rd= 66·3 (60·8 to 71·7); 4th= 76·4 (71·7
to 81·6); 5th= 90 (81·7 to 100).
Mean (range) dietary share of ultra-processed foods per quintile in age group 12 to 19 years: 1st= 35·4 (0 to 49·6); 2nd= 56·5 (49·8 to 63·9); 3rd= 70·7 (64·0 to 76·2); 4th = 81·5 (76·2 to
86·9); 5th= 94·5 (87·0 to 100).
Mean (range) dietary share of ultra-processed foods per quintile in age group 20 years and above: 1st= 25·0 (0 to 36·8); 2nd= 43·5 (36·8 to 50·1); 3rd= 56·1 (50·1 to 62·2); 4th= 68·6
(62·2 to 75·0); 5th= 85·8 (75·0 to 100).
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may be a potential mechanism to explain the positive association
between UPF and several chronic diseases.

A positive association was observed between UPF and
isoflavone intakes. This is likely explained by the fact that the
main sources of isoflavones are soy-based products, milk
substitutes, processed soya products, snack/meal bars, and
beans, peas, and legumes(33), many of which are likely to be
part of UPF. Isoflavones are phytoestrogens associated with
diverse positive outcomes for human health(34,35). They are used
as alternative therapies for a range of hormone-dependent
conditions, such as cancer, menopausal symptoms, CVD and
osteoporosis(36). However, in most of UPF soybean products, the
isoflavones are conjugated with sugars or sweeteners and other
flavour enhancers and/or food preservatives, minimising the
protective action of this phytoestrogen(36). Interestingly, a
previous US study that observed an inverse association between
UPF consumption and urinary enterodiol concentrations
failed to observe any significant associations with isoflavone
concentrations(37). If urinary concentrations of isoflavones reflect
both their food content (as measured in the current study) and
bioavailability after gut microbiota metabolisation (not captured
in the current study), we might speculate that food processing
may affect how food isoflavones are metabolised by the gut
microbiota, potentially decreasing their bioavailability. Evidence
exists that the final flavonoid content and bioavailability in
processed foods depend on factors such as the nature of the
process, duration of treatment and food matrix(38).

The associations of UPF with isoflavone and flavonol intakes
were both slightly stronger among women when compared
with men. Women in the lowest UPF quintile consumed less
isoflavones and more flavonols when compared with men,
whereas women in the highest UPF quintile consumed more
isoflavones and less flavonols. The reason for these differences
by sex remains unclear.

There are several strengths of this study. First, the use of
the Flavonoid Database for USDA Food Codes which is a
comprehensive database that includes flavonoid values on a
large number of foods derived from both the most (e.g. tea,
fruits, vegetables) and the less obvious sources (e.g. amounts
consumed as ingredients of mixed dishes) permitted a
comprehensive estimation of flavonoid intake with minimal
imputations of missing food flavonoid profiles(27). Second, the
study used a nationally representative sample, increasing the
external validity of the results.

Our study had some limitations. Though dietary data
obtained through 24-h recalls are considered the least biased
self-report instrument available, they can suffer from measure-
ment error(39). Additionally, while NHANES collects some
information about food processing (such as the place of meals
and product brands), these data are not consistently available
for all food items and may not provide up-to-date nutrient
information that accurately reflects market conditions, which
may over- or underestimate the dietary contribution of UPF or
dilute the studied association towards the null. The fact that
NHANES was not specifically designed to capture flavonoid
intake may have led to the assignment of the same food code,
and thus flavonoid composition, to foods that vary significantly
in flavonoid content. In addition to this, the Flavonoid Database

for USDA Food Codes imputed the flavonoid values for most of
its foods because of missing analytical data. Logical zeros,
however, were the most imputed values and the foods/
beverages that did have analytical values accounted for a large
proportion of flavonoid intake overall(27). Furthermore, the
application of retention factors according to processing
(cooking, storage, etc.) and flavonoid classes across all foods
in the Flavonoid Database for USDA Food Codes likely fails to
account for variations across specific flavonoids and particular
foods(27). All the aforementioned limitations may contribute to
under- or overestimation of flavonoid intakes or may bias their
association with UPF consumption towards the null. On the
other hand, the conservative approach used in the Flavonoid
Database for USDA Food Codes of setting to zero the non-zero
isoflavone values provided by a functional ingredient
that may not be present in all brands or types of a certain
food code(27) may have underestimated isoflavone intakes
and their positive association with UPF intakes. Lastly, the
calculated flavonoid intakes estimated using the Flavonoid
Database for USDA Food Codes could have different
bioavailability depending on the food matrix, the dietary
pattern and how they both impact the microbiota(40). Thus,
based on the results from this study, no conclusions can be
drawn regarding the association between UPF consumption
and flavonoid bioavailability.

Conclusion

Total and five classes of flavonoid intakes were inversely
associated with UPF consumption. Conversely, isoflavones
intake was positively associated with UPF consumption. This
finding reinforces the existing evidence regarding the
negative impact of UPF consumption on the overall quality
of the diet(10,11).

Further research is warranted to investigate the association
between UPF consumption and flavonoid bioavailability and the
long-term impact of this association on health outcomes.
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