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Abstract. The notion of a completely hyperexpansive operator has been
introduced in [1] by Athavale. In this paper hyperexpansive operator valued unilateral
weighted shifts are investigated. A unique semispectral measure is associated with a
bounded completely hyperexpansive operator valued unilateral weighted shift with
invertible weights. Examples of bounded and unbounded hyperexpansive operator
valued unilateral weighted shifts with invariant domains are given.
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Introduction. It is well known that subnormal operators are closely related to
the theory of positive definite functions on the abelian semigroup (N,+, n∗ = n), and
completely hyperexpansive operators to negative definite functions on (N,+, n∗ = n)
(cf. [1]). More precisely, a bounded operator T is a subnormal contraction (resp.
a completely hyperexpansive operator) if and only if {‖Tnf ‖2}∞n=0 is a completely
monotone (resp. completely alternating) sequence for all f ∈ H.

Notice also that the class of 2-hyperexpansive operators has “small” intersections
with some other known classes of operators. Its intersection with the class of
paranormal operators is equal to the class of isometries. Also, the intersection of the
classes of 2-hyperexpansive operators and the Toeplitz operators on the Hardy space
is the class of isometrics, see [4, 5]. Recall that if T is a k-isometric (resp. completely or
k-hyperexpansive) operator, then so are all its power Tn, for n � 1 (cf. [5, Theorem 2.3]).

The aim of the present paper is to show that there exist bounded and unbounded
densely defined hyperexpansive operator valued unilateral weighted shifts with
invariant domains that form an essentially new class of hyperexpansive operators
(cf. Section 5).

In Section 2 we consider bounded and unbounded 2-isometric and hyperexpansive
operator valued unilateral weighted shifts and characterize the hyperexpansive ones. In
Section 3 we give a useful description of 2-isometric operator valued unilateral weighted
shift with invertible weights. In Section 4 we describe the CH-minimal spectral dilation
of a bounded completely hyperexpansive operator valued unilateral weighted shift
with invertible weights. In this section we also consider the problem of hyperexpansive
completions. Finally, Section 5 contains various examples of hyperexpansive operator
valued unilateral weighted shifts.
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406 ZENON JAN JABŁOŃSKI

1. Hyperexpansive operators. All operators taken into consideration in this paper
are assumed to be linear. Let H be a (complex) Hilbert space. Given a family {X }∈J

of subsets of H we denote by
∨

∈J X the closed linear span of
⋃

∈J X . From now
on B(H) stands for the C∗-algebra of all bounded operators on H; IH stands for
the identity operator on H. By an operator in H we understand a linear mapping
T : H ⊃ D(T) →H defined on a linear subspace D(T) of H which is called the domain
of T . Denote by R(T) the range of the operator T .

For an operator T in H we set

ΘT,n( f ) :=
∑

0≤p≤n

(−1)p
(

n
p

)
‖Tpf ‖2 ( f ∈ D(Tn), n � 1).

Let us recall that an operator T in H is (cf. [1], [5], [9], [12])
(a) k-isometry (k � 1) if ΘT,k( f ) = 0 for f ∈ D(Tk),
(b) k-expansive (k � 1) if ΘT,k( f ) ≤ 0 for f ∈ D(Tk),
(c) k-hyperexpansive (k � 1) if ΘT,n( f ) ≤ 0 for f ∈ D(Tn) and n = 1, . . . , k,
(d) completely hyperexpansive if ΘT,n( f ) ≤ 0 for f ∈ D(Tn) and n � 1.

According to Richter’s result (cf. [9, Lemma 1]) the notions of 2-expansivity and 2-
hyperexpansivity coincide in the case of bounded operators. Moreover, in the bounded
case the inclusion relations among the classes defined above are as follows:

2 − isometry ⊂ completely hyperexpansive ⊂ . . . ⊂ (k + 1) − hyperexpansive

⊂ k − hyperexpansive ⊂ . . . ⊂ 1 − hyperexpansive,

and all these inclusions are proper (cf. [9] and [12]).
Denote by B([0, 1]) the σ -algebra of all Borel subsets of [0, 1]. By a semispectral

measure on [0, 1] we understand a positive operator valued Borel measure G :
B([0, 1]) → B(H) that is σ -additive in the weak operator topology (we do not assume
that G([0, 1]) = I). By the Naimark dilation theorem (cf. [8, Theorems 4.1 and 6.4])
every semispectral measure has a minimal spectral dilation. Moreover, if (K1, R1, E1)
and (K2, R2, E2) are minimal spectral dilations of G, then there is a (unique) unitary
isomorphism U : K1 → K2 such that

UE1(σ ) = E2(σ )U, σ ∈ B([0, 1]),

UR1 = R2.

We say that G is commutative if G(σ )G(τ ) = G(τ )G(σ ), (σ, τ ∈ B([0, 1])). If moreover
G([0, 1]) = I and G(σ ) is an orthogonal projection for every σ ∈ B([0, 1]), then G is
called a spectral measure. We say that a triplet (K, R, E) is a minimal spectral dilation of
a semispectral measure G : B([0, 1]) → B(H), if K is a Hilbert space, R ∈ B(H,K),
where B(H,K) is the algebra of bounded linear operators from H into K, and
E : B([0, 1]) → B(K) is a spectral measure such that

G(σ ) = R∗E(σ )R, σ ∈ B([0, 1]),

K =
∨

σ∈B([0,1])

E(σ )R(H).
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Our first observation follows from the Stone-Weierstrass approximation theorem
and (automatic) regularity of a semispectral measure on the interval [0, 1].

LEMMA 1.1. Let K be a Hilbert space, R ∈ B(H,K) and E : B([0, 1]) → B(K) a
spectral measure. Then (K, R, E) is a minimal spectral dilation of a semispectral measure
G : B([0, 1]) → B(H) if and only if∫

[0,1]
xnG(dx) = R∗

∫
[0,1]

xnE(dx)R (n � 0),

K =
∨
n�0

∫
[0,1]

xnE(dx)R(H).

It is shown in [5] that an operator T ∈ B(H) is completely hyperexpansive if and
only if there exists a unique semispectral measure G : B([0, 1]) → B(H) such that

T∗nTn = I +
∫

[0,1]
(1 + · · · + xn−1)G(dx), n � 1. (1.1)

Recall that a triplet (K, R, A) is a CH-minimal spectral decomposition of T if K is a
Hilbert space, R ∈ B(H,K), A ∈ B(K) is an operator such that 0 ≤ A ≤ I and

T∗nTn = I + R∗
n−1∑
j=0

AjR (n � 1),

∨
n�0

AnR(H) = K.

It is also shown in [5] that an operator T ∈ B(H) is completely hyperexpansive if and
only if it has a CH-minimal spectral decomposition (which is unique up to unitary
equivalence).

Let φ be a real-valued function on the additive semigroup N of all non-negative
integers. We let the difference operator ∇ act on φ through the formula

(∇φ)(s) = φ(s) − φ(s + 1).

The relations ∇0φ = φ and ∇nφ = ∇∇n−1φ inductively define ∇n for all n � 0. A real-
valued function ψ on N is said to be completely alternating if (∇nψ)(s) ≤ 0 for all s � 0
and n � 1. A sequence of operators {An}∞n=0 ⊆ B(H) is said to be completely alternating
if for all f ∈ H the scalar sequence {〈Anf, f 〉}∞n=0 is completely alternating.

The following result may be proved in much the same way as [5, Theorem 4.2].

THEOREM 1.2. A sequence of operators {An}∞n=0 ⊆ B(H) is completely alternating if
and only if there exists a semispectral measure F on [0, 1] such that

An = A0 +
∫

[0,1]
(1 + · · · + xn−1)F(dx) (n � 1). (1.2)

Moreover, a semispectral measure F is uniquely determined by (1.2).

2. Hyperexpansive operator valued unilateral weighted shifts. In this section we
give a characterization of hyperexpansive unilateral weighted shifts.
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Let l2(H) = ⊕∞
n=0 H be the orthogonal sum of ℵ0 copies of the Hilbert space H

with a scalar product defined by

〈 f, g〉 =
∞∑

i=0

〈 fn, gn〉, f = ⊕∞
n=0 fn ∈ l2(H), g = ⊕∞

n=0gn ∈ l2(H),

and let {Ti}∞i=0 be a sequence of bounded linear operators on H. The operator T in
l2(H) defined by

D(T) =
{

f ∈ l2(H) :
∞∑

n=0

‖Ti fi‖2 < ∞
}

,

T( f0, f1, f2, . . .) = (0, T0 f0, T1 f1, T2 f2, . . .), f ∈ D(T),

is called an operator valued unilateral weighted shift with weights {Ti}∞i=0. The operator
valued unilateral weighted shift T is closed and T is bounded if and only if the sequence
{‖Tn‖}∞n=0 is bounded; if this happens, then ‖T‖= supn�0 ‖Tn‖. If all operators Tn,
n � 0 are invertible and the sequence {‖Tn‖}∞n=0 is bounded, then we shall say that T is
an invertibly weighted shift (cf. [7]). The set of all invertibly weighted shifts on l2(H) is
denoted by l2

IW (H).
The following lemma is stated without proof, as it differs only in notation from the

proofs in [6, 7] of the corresponding results for scalar matrices and invertibly weighted
shifts.

LEMMA 2.1. Let T, S ∈ B(l2(H)) be operator valued weighted shifts with weights
{Tn}∞n=0 and {Sn}∞n=0, respectively, and suppose that the operators Tn and Sn have dense
ranges for all n � 0. Then the following are equivalent.

(i) US = TU, for some unitary operator U.
(ii) U is diagonal with entries {Un}∞n=0 and Ui+1Si = TiUi, for all i � 0.

It is well known (cf. [7, Theorem 3.4]) that if T is an invertibly weighted shift,
then T is unitarily equivalent to a weighted shift with positive weights. The following
result enables us to characterize 2-isometric and completely hyperexpansive invertibly
weighted shifts.

PROPOSITION 2.2. Let T ∈ l2
IW (H) be an operator valued weighted shift with weights

{Tn}∞n=0. Then T is unitarily equivalent to an operator valued weighted shift T ′ ∈ l2
IW (H)

with weights {T ′
n}∞n=0, where T ′

n . . . T ′
0 are positive, for all n � 0.

The set of all invertibly weighted shifts S on l2(H) with the property that all
products Sn . . . S0, n � 0, are positive, is denoted by l2

IWP(H).

Proof. Let T0 = U0P0 be the polar decomposition of T0. Then S0
df= U∗

0 T0 = P0 is
positive and invertible and U0 is unitary. Now we proceed by induction. If the invertible
operators S0, . . . , Sn−1 and the unitary operators U0, . . . , Un−1 are defined, let

VnPn = TnUn−1Sn−1 . . . U0S0 (2.1)

be the polar decomposition of the operator TnUn−1Sn−1 . . . U0S0, and let

Un
df= Vn(Un−1 . . . U0)∗. (2.2)
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Then Pn is positive and invertible, Un is unitary and Sn
df= U∗

n Tn is invertible. Let us
define S df= ⊕∞

n=0Sn and let U df= ⊕∞
n=0Un. If U+ denotes the unilateral shift given

by U+(h0, h1, . . .) = (0, h0, h1, . . .), then U+ ∈ l2
IW (H) and T = U+US. Let us define

the unitary operator W with diagonal weights {Wn}∞n=0 by W0
df= I and Wn

df=
Un−1Un−2 . . . U0 for n � 1. An easy calculation shows that U+U = WU+W ∗, and
so we have

T = U+US = WU+W ∗S = W (U+W ∗SW )W ∗.

Hence T is unitarily equivalent to U+W ∗SW . Since U+W ∗SW is the operator valued
weighted shift with weights {W ∗

n SnWn}∞n=0, by the definitions of W and Sn, (2.2) and
(2.1) we obtain

W ∗
n SnWnW ∗

n−1Sn−1Wn−1 . . . W ∗
1 S1W1W ∗

0 S0W0 = (Un−1 . . . U0)∗SnUn−1Sn−1 . . . U0S0

= V∗
n TnUn−1Sn−1 . . . U0S0 = Pn,

for all n � 0; that is, U+W ∗SW ∈ l2
IWP(H). �

COROLLARY 2.3. If T ∈ l2
IW (H) is a 2-isometric (resp. completely hyperexpansive,

k-hyperexpansive) operator valued weighted shift, then T is unitarily equivalent to a 2-
isometric (resp. completely hyperexpansive, k-hyperexpansive) operator valued weighted
shift T ′ ∈ l2

IWP(H).

REMARK 2.4. Let T ∈ B(l2(H)) be an operator valued weighted shift with weights
{Tn}∞n=0 satisfying R(Tn) = H, for all n � 0, and suppose that there exists i0 � 0 such
that Ti0 is not injective. Then T is not unitarily equivalent to any operator valued
weighted shift T ′ with weights {T ′

n}∞n=0 satisfying T ′
n . . . T ′

0 are positive (even self-
adjoint) for all n � 0. Indeed, suppose contrary to our claim, that such an operator T ′

exists. An easy calculation shows that R(T ′
n) = H for all n � 0 and R(T ′

0 . . . T ′
i0 ) = H.

Consequently, T ′
0 . . . T ′

i0 is injective. But, by Lemma 2.1, there exist unitary operators
U0 and Ui0+1 such that Ui0+1T0 . . . Ti0 = T ′

0 . . . T ′
i0 U0, which is impossible because Ti0

is not injective. In the same way we can prove that T is not unitarily equivalent to any
operator valued weighted shift with positive (or self-adjoint) weights.

For an operator valued unilateral weighted shift T with weights {Tn}∞n=0 in H we
set

T[m,n]
df=

{
Tm−1Tm−2 · · · Tn if m > n,

I if m = n.

Let us define

�k,s( f )
df=

∑
0≤p≤k

(−1)p
(

k
p

)∥∥T[s+p,s] f
∥∥2

(k � 1, s � 0).

Since the proof of the following fact is similar to the proof of [4, Lemma 6.1] and
[5, Proposition 1.3], we leave it to the reader.

PROPOSITION 2.5. Let T be an operator valued unilateral weighted shift with weights
{Tn}∞n=0 and fix k � 1.

(i) T is a k-isometry if and only if �k,s( f ) = 0, for all s � 0 and f ∈ H.
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(ii) T is k-expansive if and only if �k,s( f ) ≤ 0, for all s � 0 and f ∈ H.
(iii) T is k-hyperexpansive if and only if �n,s( f ) ≤ 0, for all s � 0, f ∈ H and n =

1, . . . , k.
(iv) T is completely hyperexpansive if and only if �n,s( f ) ≤ 0, for all s � 0, f ∈ H

and n � 1.
Moreover, if all operators Ti, where i � 0, are invertible, then the statement “s � 0” in
condition (iv) can be replaced by “s = 0”.

PROPOSITION 2.6. If T is a 2-expansive operator valued unilateral weighted shift with
weights {Tn}∞n=0, then T leaves its domain invariant.

Proof. Take a vector f ∈ D(T). Then f = ⊕∞
n=0fn with fn ∈ H and

∑∞
n=0 ‖Tn fn‖2 <

∞. Since T is 2-expansive and

gn
df=(0)

0 ⊕ (1)
0 ⊕ . . . ⊕ (n−1)

0 ⊕
(n)
fn ⊕ (n+1)

0 ⊕ . . . ∈ D(T2),

it follows, by Proposition 2.5 (ii), that ‖Tn+1Tn fn‖2 ≤ 2‖Tn fn‖2, for every n � 0.
Consequently

∞∑
n=0

‖Tn+1(Tn fn)‖2 ≤ 2
∞∑

n=0

‖Tn fn‖2 < ∞,

which yields Tf ∈ D(T). �

3. 2-isometric operator valued unilateral weighted shifts. In this section we intend
to characterize 2-isometric invertibly weighted shifts. We start with the following result.

LEMMA 3.1. If the operators A ∈ B(H) and C ∈ B(H � R(A)) satisfy A∗A � IH
and C∗C � IH�R(A), respectively, then there exists a positive and invertible operator
D ∈ B(R(A)) such that the operator B df= C ⊕ D satisfies B∗B � IH and

‖BA f ‖2 = 2‖A f ‖2 − ‖ f ‖2, f ∈ H. (3.1)

Moreover, if A and B are invertible and an invertible operator B1 ∈ B(H) satisfies

‖B1A f ‖2 = 2‖A f ‖2 − ‖ f ‖2, f ∈ H, (3.2)

then there exists a unitary operator U ∈ B(H) such that B1 = UB.

Proof. Since R(A) is closed and dimR(A) = dimH, it follows that there exists a
unitary operator U : H→R(A). Set S df= UA−1 ∈ B(R(A)), where A−1 is considered as
the operator from R(A) to H. Notice that ‖A−1f ‖ = ‖|S| f ‖, where |S| df= (S∗S)

1
2 . Since

|S| is a positive contraction, there exists a spectral measure E on R(A) such that |S| =∫
[0,1] xE(dx). Let us define the operator D ∈ B(R(A)) by D = (

∫
[0,1] 2 − x2E(dx))

1
2 . It

is clear that ‖ f ‖ ≤ ‖Df ‖. Hence D is invertible and ‖ f ‖ ≤ ‖B f ‖, for all f ∈H. An easy
computation shows that

∥∥∥∥
(∫

[0,1]
2 − x2E(dx)

) 1
2

A f
∥∥∥∥

2

= 2‖A f ‖2 − ‖|S|A f ‖2 = 2‖A f ‖2 − ‖ f ‖2 (f ∈ H),

and so (3.1) holds.
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If A and B are invertible operators and an invertible operator B1 satisfies (3.2), then
‖B1 f ‖ = ‖B f ‖, for all f ∈H. Hence UB f = B1 f , for f ∈H, defines a unitary operator
U . �

PROPOSITION 3.2. Let T0 ∈ B(H) be an operator (resp. an invertible operator) such
that T∗

0 T0 � IH. Then there exists a family of operators (resp. invertible operators) {Ti}∞i=1
such that the operator valued weighted shift with weights {Ti}∞i=0 is a 2-isometry.

Proof. Existence of such a sequence {Ti}∞i=1 is an inductive consequence of
Proposition 2.5 (i), Lemma 3.1 and Proposition 2.2. �

It has been shown in [4, Lemma 6.1] that the (scalar) weighted shift S with weights
{λn}∞n=0 is a 2-isometry if and only if λ0 � 1 and λn = σn(λ0) for n � 0, where

σn(λ) =
√

1 + (n + 1)(λ2 − 1)
1 + n(λ2 − 1)

(n � 0, λ � 1).

In the case of operator valued weighted shifts we have the following result.

THEOREM 3.3. If T0 � I, then there exists exactly one sequence {Ti}∞i=1 such that
{Tn}∞n=1 completes T0 to the weights of a 2-isometric operator T ∈ l2

IWP(H). Moreover,
the sequence {Tn}∞n=0 is composed of positive and commuting operators.

Proof. If T0 � I , then there exists a spectral measure E such that T0 =∫
[1,‖T0‖] xE(dx). Suppose that T0, . . . , Tn are defined and Tn = ∫

[1,‖T0‖] ξ (x)E(dx), where
ξ (x) � 1 for x ∈ [1, ‖T0‖]. Set

Tn+1
df=

∫
[1,‖T0‖]

√
2ξ 2(x) − 1

ξ 2(x)
E(dx).

Then √
2ξ 2(x) − 1

ξ 2(x)
� 1, x ∈ [1, ‖T0‖],

and ‖Tn+1Tn f ‖2 = 2‖Tn f ‖2 − ‖ f ‖2 for f ∈ H.
Suppose that families {Ti}∞i=1 and {T ′

i }∞i=1 complete T0 to the weights of 2-isometric
weighted shifts T ∈ l2

IWP(H) and T ′ ∈ l2
IWP(H) respectively. An easy computation

shows that, if an operator T is a 2-isometry, then T is a k-isometry for k � 2.
Suppose that T ′

i · · · T ′
1T0 = Ti · · · T1T0 for i = 0, . . . , k − 1. Since T and T ′ are (k + 1)-

isometries, we infer from Proposition 2.5 (i) that

‖T ′
k · · · T ′

1T0 f ‖2 = (−1)k+1
∑

0≤p≤k

(−1) p
(

k + 1
p

)∥∥T ′
[p,0] f

∥∥2

= (−1)k+1
∑

0≤p≤k

(−1)p
(

k + 1
p

)∥∥T[p,0] f
∥∥2 = ‖Tk · · · T1T0 f ‖2 ( f ∈ H).

Since Tk · · · T1T0 and T ′
k · · · T ′

1T0 are positive, we have T ′
k · · · T ′

1T0 = Tk · · · T1T0. �
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REMARK 3.4. It follows from [9, Lemma 1] that if T is a 2-isometric operator valued
weighted shift then T∗

0 T0 � I . Notice that, by Proposition 2.5 (i), if T is a 2-isometric
invertibly weighted shift, then T is a bounded operator.

4. Completely hyperexpansive operator valued unilateral weighted shifts. In this
section we investigate the completely hyperexpansive invertibly weighted shifts. There
is no loss of generality in assuming that the considered weighted shifts belong to the
class l2

IWP(H) (cf. Corollary 2.3).
For a semispectral measure F : B([0, 1]) −→ B(H) we set


F,0
df= IH,


F,n
df=

(
I +

∫
[0,1]

(1 + . . . + xn−1)F(dx)
) 1

2

(n � 1).

PROPOSITION 4.1. Let T ∈ B(l2(H)) be the operator valued weighted shift with
weights {Tn}∞n=0. Then T is completely hyperexpansive and T ∈ l2

IWP(H) if and only
if there exists a semispectral measure F : B([0, 1]) −→ B(H) such that

T0 = 
F,1,

Tn = 
F,n+1

−1
F,n = 
F,n+1T−1

0 T−1
1 · · · T−1

n−1 (n � 1).
(4.1)

The measure F is uniquely determined by the condition

‖ f ‖2 +
∫

[0,1]
(1 + · · · + xk)〈F(dx) f, f 〉 = 〈T∗

0 . . . T∗
k Tk . . . T0 f, f 〉 ( f ∈ H, k � 0).

Moreover, {Tn}∞n=0 is a commutative family of operators if and only if F is commutative.

Proof. Let T ∈ l2
IWP(H) be completely hyperexpansive. Since

T∗
0 . . . T∗

n Tn . . . T0 = (Tn . . . T0)2 (n � 0),

and the sequence I, T2
0 , (T1T0)2, . . . is completely alternating (cf. [1, Remark 2]), it

follows from Theorem 1.2 that there exists a semispectral measure F on [0, 1] such that

(T0 . . . Tn)2 = I +
∫

[0,1]
(1 + · · · + xn)F(dx) (n � 0). (4.2)

The reverse implication follows from Proposition 2.5.
Suppose that {Tn}∞n=0 is a commutative family of operators. Then, by the equality

(Tm . . . T0)2(Tn . . . T0)2 = (Tn . . . T0)2(Tm . . . T0)2, for m, n � 0, we get


2
F,m
2

F,n = 
2
F,n


2
F,m m, n � 1.

Using an induction argument we obtain∫
[0,1]

xmF(dx)
∫

[0,1]
xnF(dx) =

∫
[0,1]

xnF(dx)
∫

[0,1]
xmF(dx) (m, n � 0).
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Hence, by the Stone-Weierstrass approximation theorem F(σ )F(τ ) = F(τ )F(σ ), for all
closed subsets σ, τ ⊆ [0, 1], which together with the (automatic) regularity of F implies
that F is commutative. The reverse implication follows from [2, Theorem 14]. �

We are now in a position to show how the minimal objects introduced in [5] look
in the context of bounded completely hyperexpansive operator valued weighted shifts
T ∈ l2

IWP(H).
Take a semispectral measure F on [0, 1] and let (K̃, R̃, Ẽ) be a minimal spectral

dilation of F . Let T = SF be a weighted shift defined in Proposition 4.1. Set

Fn(σ ) df=
−1
F,n

∫
σ

xnF(dx)
−1
F,n (n � 0, σ ∈ B([0, 1])),

Kn
df=

∨
i�0

∫
[0,1]

xi+ n
2 Ẽ(dx)R̃(H) (n � 0),

and define a semispectral measure G : B([0, 1]) → B(l2(H)), a Hilbert space K, an
operator R ∈ B(l2(H),K), a spectral measure E : B([0, 1]) → B(K) and an operator
A ∈ B(K) by

(i) G(σ )(⊕∞
i=0 fi)

df= ⊕∞
i=0Fi(σ ) fi (σ ∈ B([0, 1]),⊕∞

i=0 fi ∈ l2(H)),

(ii) K df= ⊕∞
i=0Ki,

(iii) R df= ⊕∞
i=0[PKi

∫
[0,1] x

i
2 Ẽ(dx)R̃
−1

F,i],

(iv) E(σ )(⊕∞
i=0 fi)

df= ⊕∞
i=0PKi Ẽ(σ )|Ki fi (σ ∈ B([0, 1]),⊕∞

i=0 fi ∈ K),

(v) A df= ⊕∞
i=0[PKi

∫
[0,1] xẼ|Ki (dx)],

where PKi ∈ B(K,Ki) is the orthogonal projection of K onto Ki.

THEOREM 4.2. G is a semispectral measure satisfying (1.1), (K, R, E) is a minimal
spectral dilation of F, (K, R, A) is a CH-minimal spectral decomposition of T and σ (A) =
supp G = supp F. Moreover, L1(G) = L1(F) and ‖ f ‖1,G = ‖ f ‖1,F for each f ∈ L1(G)
(cf. [11, Appendix )].

Proof. From the equations〈 ∫
[0,1]

xnG(dx) ⊕∞
i=0 fi,⊕∞

j=0gi

〉

=
∫

[0,1]
xn〈G(dx) ⊕∞

i=0 fi,⊕∞
j=0gj

〉

=
∞∑

i=0

∫
[0,1]

xn〈Fi(dx) fi, gi〉

=
∞∑

i=0

〈 ∫
[0,1]

xn+iF(dx)
−1
F,i fi,


−1
F,igi

〉

=
〈
⊕∞

i=0

[

−1

F,i

∫
[0,1]

xn+iF(dx)
−1
F,i

]
⊕∞

i=0 fi,⊕∞
j=0gi

〉
(n � 0),

and Proposition 4.1, we see that∫
[0,1]

xnG(dx) = ⊕∞
i=0


−1
F,i

∫
[0,1]

xn+iF(dx)
−1
F,i = T∗(n+1)Tn+1 − T∗nTn (n � 0).
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Hence

T∗nTn = (
T∗(n)Tn − T∗(n−1)Tn−1) + · · · + (T∗T − I) + I

= I +
∫

[0,1]
(1 + · · · + xn−1)G(dx) (n � 1),

and so (1.1) holds. Note that, by the definition of Fi and [5, Theorem 4.4], we have
σ (A) = supp G = supp F . It follows from the definition of Fi that∫

[0,1]
xnFi(dx) = 
−1

F,i

∫
[0,1]

xi+nF(dx)
−1
F,i

= 
−1
F,iR̃

∗
∫

[0,1]
x

i
2 Ẽ(dx)

∫
[0,1]

xnẼ(dx)
∫

[0,1]
x

i
2 Ẽ(dx)R̃
−1

F,i (n � 0),

and so (K, R, E) is a minimal spectral dilation of G. It is easy to check that (K, R, A)
is a CH-minimal spectral decomposition of T . Take ξ ∈ L1(G). Since∫

[0,1]
|ξ (x)|〈Fi(dx)f, f 〉 =

∫
[0,1]

|ξ (x)|xi〈F(dx)
−1
F,i f,
−1

F,i f
〉 ≤ ‖ f ‖2‖ξ‖1,F ,

for all f ∈ H, we see that∫
[0,1]

|ξ (x)|〈G(dx) ⊕∞
i=0 fi,⊕∞

i=0 fi
〉

=
∞∑

i=0

∫
[0,1]

|ξ (x)|〈Fi(dx) fi, fi〉 ≤ ‖ξ‖1,F
∥∥⊕∞

i=0fi
∥∥2 (⊕∞

i=0 fi ∈ K
)
.

Consequently L1(G) = L1(F) and ‖ξ‖2
1,G = ‖ξ‖2

1,F . �
We shall now consider the problem of a completely hyperexpansive completion of

positive operators T0, T1 ∈ B(H). The similar problem for subnormal operators has
been considered by Ivanovski in [3] (cf. [10]).

THEOREM 4.3. Let T0 and T1 be commuting positive operators. Then the following
are equivalent.

(i) There exist weights {Tn}∞n=2 such that the operator valued unilateral weighted shift
T ∈ B(l2(H)) with weights {Tn}∞n=0 is completely hyperexpansive and T ∈ l2

IWP(H).
(ii) T1 � I and (T1T0)2 − 2T2

0 + I ≤ 0.

Proof. (ii) ⇒ (i). Suppose that T1 � I and (T1T0)2 − 2T2
0 + I ≤ 0. Let us define

the operators A, B ∈ B(H) by A = −(T1T0)2 + 2T2
0 − I and B = (T1T0)2 − T2

0 . By
assumption A and B are positive. Let us define a semispectral measure F : B([0, 1]) −→
B(H) by F(σ )

df= χ0A + χ1B, σ ∈ B([0, 1]), where χσ stands for the characteristic
function of the set σ . Let SF = {(SF )n}∞n=0 be a completely hyperexpansive weighted
shift defined as in Proposition 4.1. It follows from (4.1) that (SF )0 = T0 and (SF )1 = T1.

The implication (i) ⇒ (ii) is obvious. �

5. Examples. This section contains various examples illustrating the subject of
the paper. We begin with examples of 2-isometric weighted shifts and completely
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hyperexpansive weighted shifts which are not 2-isometric. Both cases, commutative
and noncommutative weights, are taken into consideration.

EXAMPLE 5.1. Let H df= L2([1, 2], m), where m stands for the Lebesgue measure on
[1, 2]. Let us define the spectral measure E : B([1, 2]) −→ B(H) by E(σ )f df= χσ f for
σ ∈ B([1, 2]) and f ∈ L2([1, 2], m), where χσ stands for the characteristic function of
the set σ . Set T0 = ∫

[1,2] x
1
2 E(dx). Then, by Theorem 3.3, T0 can be completed to a 2-

isometric weighted shift T ∈ l2
IWP(H) that is not unitarily equivalent to any orthogonal

sum of scalar weighted shifts ⊕∞
i=0Si. Indeed, suppose contrary to our claim, that T

is unitarily equivalent to ⊕∞
i=0Si, which in turn is unitarily equivalent to an operator

valued weighted shift T ′ with diagonal weights. By [7, Corollary 3.3] there exists
a unitary operator U on H such that UT ′∗

0 T ′
0 = T∗

0 T0U = ∫
[1,2] xE(dx)U , which is

impossible, because the point spectrum of
∫

[1,2] xE(dx) is an empty set, but the point
spectrum of T ′∗

0 T ′
0 is not empty.

Let us define the semispectral measure F : B([1, 2]) −→ B(H) by F(σ )
df= m(σ )T0

(σ ∈ B([1, 2])). A similar calculation shows that an operator SF , defined as in
Proposition 4.1, is a completely hyperexpansive operator with commutative weights
that is not unitarily equivalent to any orthogonal sum of scalar weighted shifts
⊕∞

i=0Si. An easy calculation shows that SF is not a 2-isometry.
Let A, B ∈ B(H) be two positive non-commuting operators and define a semi-

spectral measure G : B([0, 1]) −→ B(H) by G(σ ) df= χ{0}A + χ{1}B. Then an operator
SG defined in Proposition 4.1 is a completely hyperexpansive operator with non-
commutative weights which, by Theorem 3.3, is not a 2-isometry.

In Example 5.2, we construct two completely hyperexpansive weighted shifts
T, T ′ ∈ l2

IWP(C) satisfying T �= T ′, T0 = T ′
0 and T1 = T ′

1 (cf. Theorem 4.3).

EXAMPLE 5.2. Let us define the measures µ1 and µ2 on [0, 1] by µ1 = 2χ{ 1
2 } and

µ2 = χ{ 1
3 } + χ{ 2

3 }. Then the operators Sµ1 and Sµ2 defined as in Proposition 4.1 satisfy
Sµ1 �= Sµ2 , (Sµ1 )0 = (Sµ2 )0 and (Sµ1 )1 = (Sµ2 )1.

In Example 5.3 we show that the condition

∑
0≤p≤n

(−1)p
(

n
p

)∥∥T[p,0] f
∥∥2 = 0 ( f ∈ H, n � 1) (5.1)

does not imply complete hyperexpansivity in the case in which T is not an invertible
weighted shift (cf. Proposition 2.5).

EXAMPLE 5.3. Let H be an infinite dimensional Hilbert space and U ∈ B(H ⊕ H)
an isometric operator such that R(U) = H ⊕ 0. Let us consider the operator weighted
shift T ∈ B(H ⊕ H), where T0 = U , T1 = IH ⊕ ( 1

2 IH) and Tn = IH⊕H, for all n � 2.
An easy calculation shows that T satisfies (5.1). Since ‖T1(0 ⊕ f )‖ = 1

2‖f ‖ for f ∈ H,
it follows that T is not completely hyperexpansive (cf. [9, Lemma 1]).

We conclude the paper with an example of a 2-isometric unbounded operator
valued weighted shift.
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EXAMPLE 5.4. Let K00 and K01 be separable infinite dimensional Hilbert spaces
and set H df= K00 ⊕ K01.

Step 1. Suppose that K01 = K11 ⊕ K12 ⊕ K13, where K11, K12 and K13 are closed
infinite dimensional subspaces of K01. Let A00 ∈ B(K00) be an operator such that
A00 � I and ‖A00‖ � 2, and let V01 ∈ B(K01) be an isometry such that R(V01) = K11.
We can now define the weight T0 on H by T0

df= A00 ⊕ V01. Set Kn0
df= K00, for n � 1,

and Kn1
df= K11, for n � 2. It follows from Theorem 3.3 that there exist weights {An0}∞n=1

on K00 such that the weighted shift with weights {An0}∞n=0 is a 2-isometry. Define

Vn1
df= IK11 for n � 1.

Step 2. Suppose that K13 = K23 ⊕ K24 ⊕ K25, where K23, K24 and K25 are closed
infinite dimensional subspaces of K13. Let A12 ∈ B(K12) be an operator such that
A12 � I and ‖A12‖ � 3. Let V13 ∈ B(K13) be an isometry such that R(V13) = K23. We
can now define the weight T1 on H by T1

df= A10 ⊕ V11 ⊕ A12 ⊕ V13. Set Kn2
df= K12 for

n � 2 and Kn3
df= K23 for n � 3. It follows from Theorem 3.3 that there exist weights

{An2}∞n=2 on K00 such that the weighted shift with weights {An2}∞n=1 is a 2-isometry.

Define Vn3
df= IK23 for n � 2.

Using this and an induction argument we can construct a sequence of bounded
operators {Tn}∞n=0 defined on H, where ‖Tn‖ � n + 2 and the pairs Tn and Tn+1 satisfy
‖Tn+1Tn f ‖2 = 2‖Tn f ‖2 − ‖ f ‖2, for f ∈ H and n � 0. Hence, by Proposition 2.5, T is
the unbounded 2-isometry with an invariant domain. Notice that in the case in which
the point spectra of A00 and V01 are empty sets, T is not unitarily equivalent to any
orthogonal sum of scalar weighted shifts (cf. Example 5.1).
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