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Abstract

The superadditivity and subadditivity of some functionals associated with the Riemann–Stieltjes integral
are established. Applications in connection to Ostrowski’s and the generalized trapezoidal inequalities
and for special means are provided.
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1. Introduction

In the theory of the Riemann–Stieltjes integral for scalar functions, it is well known that
if f : [a, b] → R(C) is continuous and u : [a, b] → R(C) is of bounded variation, then
the Riemann–Stieltjes integral

∫ b
a f (t) du(t) exists and the following sharp inequality

holds: ∣∣∣∣∫ b

a
f (t) du(t)

∣∣∣∣≤ max
t∈[a,b]

| f (t)|
b∨
a
(u), (1.1)

where
∨b

a(u) denotes the total variation of u on [a, b]. We recall that

b∨
a
(u)= sup

{n−1∑
i=0

|u(xi+1)− u(xi )|, a = x0 < x1 < · · ·< xn−1 < xn = b

}
.

Inequality (1.1) plays an important role in obtaining various sharp bounds for the
approximation error of the Riemann–Stieltjes integral by simpler quantities such as:

f (x)[u(b)− u(a)] (see [2, 5, 6]),

f (b)[u(b)− u(x)] + f (a)[u(x)− u(a)] (see [2, 7])
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and
1

b − a
[u(b)− u(a)]

∫ b

a
f (t) dt (see [8, 9]),

where x ∈ [a, b].
Following the recent paper [1], for a continuous function f : [a, b] → R and a

function of bounded variation u : [a, b] → R we define the functional

9( f, u; [a, b]) := max
t∈[a,b]

| f (t)| ·
b∨
a
(u)−

∣∣∣∣∫ b

a
f (t) du(t)

∣∣∣∣. (1.2)

Due to the properties of the Riemann–Stieltjes integral, the functional9 is well defined
and nonnegative. The following properties of this functional as a function of an interval
hold [1].

THEOREM 1.1. Assume that f : [a, b] → R is continuous and u : [a, b] → R is of
bounded variation on [a, b]. Then for any c ∈ (a, b),

(0≤) 9( f, u; [a, c])+9( f, u; [c, b])≤9( f, u; [a, b]), (1.3)

that is, 9( f, u; ·) is superadditive as a function of an interval.
If [c, d] ⊆ [a, b], then

(0≤) 9( f, u; [c, d])≤9( f, u; [a, b]), (1.4)

that is, 9( f, u; ·) is monotonic nondecreasing as a function of an interval.

In the same paper the following functional is also considered:

8( f, u; [a, b]) :=

[
max

t∈[a,b]
| f (t)|

1
b − a

b∨
a
(u)−

∣∣∣∣ 1
b − a

∫ b

a
f (t) du(t)

∣∣∣∣](b−a)

,

which is well defined for continuous functions f : [a, b] → R and functions of
bounded variation u : [a, b] → R. The following result concerning the properties of
this functional holds [1].

THEOREM 1.2. Assume that f : [a, b] → R is continuous and u : [a, b] → R is of
bounded variation on [a, b]. Then for any c ∈ (a, b),

8( f, u; [a, b])≥8( f, u; [a, c]) ·8( f, u; [c, b]), (1.5)

that is, 8( f, u; ·) is supermultiplicative as a function of an interval.

For applications of the above results for the Trapezoidal and Ostrowski error
functionals as well as applications for special means, see [1].

In this paper we consider other composite functionals that can be naturally
associated with the functional9( f, u; [a, b]) and study their quasilinearity properties.
Some applications in connection with Ostrowski’s and the generalized trapezoidal
inequalities and for special means are provided as well [3, 4, 10, 11].
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2. Some general results

Consider a continuous function f : [a, b] → R and a function of bounded variation
u : [a, b] → R for which

9( f, u; [x, y]) := max
t∈[x,y]

| f (t)| ·
y∨
x
(u)−

∣∣∣∣∫ y

x
f (t) du(t)

∣∣∣∣ 6= 0 (2.1)

for any proper subinterval [x, y] of the given interval [a, b]. Define the new functional

ϒ( f, u; [a, b]) :=
b − a

maxt∈[a,b] | f (t)| 1
b−a ·

∨b
a(u)−

∣∣ 1
b−a

∫ b
a f (t) du(t)

∣∣
=

(b − a)2

9( f, u; [a, b])
.

(2.2)

The following result holds.

THEOREM 2.1. Assume that f : [a, b] → R is continuous and u : [a, b] → R is of
bounded variation on [a, b] such that condition (2.1) is valid. Then for any
c ∈ (a, b),

ϒ( f, u; [a, b])≤ ϒ( f, u; [a, c])+ ϒ( f, u; [c, b]), (2.3)

that is, ϒ( f, u; ·) is subadditive as a function of an interval.

PROOF. Since, by Theorem 1.1, the functional9( f, u; ·) is superadditive as a function
of an interval, we have for any c ∈ (a, b) that

9( f, u; [a, b])

b − a
≥
9( f, u; [a, c])+9( f, u; [c, b])

b − a

=
(c − a)9( f,u;[a,c])

c−a + (b − c)9( f,u;[c,b])
b−c

(c − a)+ (b − c)
.

(2.4)

Utilizing the elementary inequality between the weighted arithmetic mean and the
weighted harmonic mean, that is,

αa + βb

α + β
≥
α + β

α
a +

β
b

, α, β, a, b > 0,

for the choices

a =
9( f, u; [a, c])

c − a
, b =

9( f, u; [c, b])

b − c
, α = c − a, β = b − c,
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we have

(c − a)9( f,u;[a,c])
c−a + (b − c)9( f,u;[c,b])

b−c

(c − a)+ (b − c)

≥
(c − a)+ (b − c)

c−a
9( f,u;[a,c])

c−a

+
b−c

9( f,u;[c,b])
b−c

=
(c − a)+ (b − c)
(c−a)2

9( f,u;[a,c]) +
(b−c)2

9( f,u;[c,b])

=
b − a

(c−a)2
9( f,u;[a,c]) +

(b−c)2
9( f,u;[c,b])

.

(2.5)

Combining (2.4) with (2.5), we get

9( f, u; [a, b])

b − a
≥

b − a
(c−a)2

9( f,u;[a,c]) +
(b−c)2

9( f,u;[c,b])

,

which shows that the functionalϒ( f, u; ·) is subadditive as a function of an interval. 2

Further, for q ∈ (0, 1), we consider the following family of functionals:

�q( f, u; [a, b]) := (b − a)1−q
[9( f, u; [a, b])]q

= (b − a)1−q
[

max
t∈[a,b]

| f (t)|
b∨
a
(u)−

∣∣∣∣∫ b

a
f (t) du(t)

∣∣∣∣]q

.
(2.6)

The following result concerning the quasilinearity of the functional �q( f, u; ·) may
be stated.

THEOREM 2.2. Assume that f : [a, b] → R is continuous and u : [a, b] → R is of
bounded variation on [a, b]. Then for any q ∈ (0, 1),

(0≤) �q( f, u; [a, c])+�q( f, u; [c, b])≤�q( f, u; [a, b]), (2.7)

for any c ∈ (a, b), that is, the functional �q( f, u; ·) is superadditive as a function of
an interval.

If [c, d] ⊆ [a, b], then

(0≤) �q( f, u; [c, d])≤�q( f, u; [a, b]), (2.8)

that is, �q( f, u; ·) is monotonic nondecreasing as a function of an interval.

PROOF. We know from the proof of Theorem 2.2 that

9( f, u; [a, b])

b − a
≥
(c − a)9( f,u;[a,c])

c−a + (b − c)9( f,u;[c,b])
b−c

(c − a)+ (b − c)
(2.9)

for any c ∈ (a, b). Taking the power q ∈ (0, 1) in (2.9), we get[
9( f, u; [a, b])

b − a

]q

≥

[
(c − a)9( f,u;[a,c])

c−a + (b − c)9( f,u;[c,b])
b−c

(c − a)+ (b − c)

]q

(2.10)

for any c ∈ (a, b).
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By the concavity of the function g(t)= tq , q ∈ (0, 1) we also have[
(c − a)9( f,u;[a,c])

c−a + (b − c)9( f,u;[c,b])
b−c

(c − a)+ (b − c)

]q

≥
(c − a)

[9( f,u;[a,c])
c−a

]q
+ (b − c)

[9( f,u;[c,b])
b−c

]q
(c − a)+ (b − c)

=
(c − a)1−q

[9( f, u; [a, c])]q + (b − c)1−q
[9( f, u; [c, b])]q

(c − a)+ (b − c)

=
(c − a)1−q

[9( f, u; [a, c])]q + (b − c)1−q
[9( f, u; [c, b])]q

b − a

(2.11)

for any c ∈ (a, b).
Combining (2.10) with (2.11), we deduce that

[9( f, u; [a, b])]q

(b − a)q
≥
(c − a)1−q

[9( f, u; [a, c])]q + (b − c)1−q
[9( f, u; [c, b])]q

b − a

for any c ∈ (a, b), which shows that the functional �q( f, u; ·) is superadditive as a
function of an interval.

Now let a < c < d < b. Then by the superadditivity of �q( f, u; ·),

�q( f, u; [a, b])−�q( f, u; [c, d])≥�q( f, u; [a, c])+�q( f, u; [d, b])≥ 0,

which proves the monotonicity property. 2

If p ≥ q ≥ 0, p ≥ 1 we can also consider the mapping depending on two
parameters:

3p,q( f, u; [a, b])

:= (b − a)(p−q)/p9q( f, u; [a, b])= (b − a)(p−q+pq)/p

×

[
max

t∈[a,b]
| f (t)| ·

1
b − a

b∨
a
(u)−

∣∣∣∣ 1
b − a

∫ b

a
f (t) du(t)

∣∣∣∣]q

.

(2.12)

We have also the following general result.

THEOREM 2.3. Assume that f : [a, b] → R is continuous and u : [a, b] → R is
of bounded variation on [a, b]. Then for any p ≥ q ≥ 0, p ≥ 1, we have that
the functional 3p,q( f, u; ·) defined by (2.13) is superadditive and monotonic
nondecreasing as a function of an interval.

PROOF. First of all, we observe that the following elementary inequality holds:

(α + β)p
≥ (≤)α p

+ β p (2.13)

for any α, β ≥ 0 and p ≥ 1 (0< p < 1).
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Indeed, if we consider the function f p : [0,∞)→ R, f p(t)= (t + 1)p
− t p, we

have f ′p(t)= p[(t + 1)p−1
− t p−1

]. Observe that for p > 1 and t > 0 we have that
f ′p(t) > 0, showing that f p is strictly increasing on the interval [0,∞). Now for t =
α/β (β > 0, α ≥ 0) we have f p(t) > f p(0), giving that (α/β + 1)p

− (α/β)p > 1,
that is, the desired inequality (2.1).

For p ∈ (0, 1) we have that f p is strictly decreasing on [0,∞) which proves the
second case in (2.13).

Now let c ∈ (a, b). Since 9( f, u; ·) is superadditive as a function of an interval,
we have by (2.13), for any p ≥ 1, that

9 p( f, u; [a, b]) ≥ [9( f, u; [a, c])+9( f, u; [c, b])]p

≥ 9 p( f, u; [a, c])+9 p( f, u; [c, b]),
(2.14)

which provides that

9( f, u; [a, b])

b − a

≥
[9 p( f, u; [a, c])+9 p( f, u; [c, b])]1/p

(c − a)+ (b − c)

=

( (c − a)
[9( f,u;[a,c])

(c−a)1/p

]p
+ (b − c)

[9( f,u;[c,b])
(b−c)1/p

]p

(c − a)+ (b − c)

)1/p

(b − a)1/p−1

(2.15)

for any c ∈ (a, b).
Utilizing the monotonicity property of power means, that is,(

αx p
+ βy p

α + β

)1/p

≥

(
αxq
+ βyq

α + β

)1/q

where p ≥ q ≥ 0, and α, β, x, y ≥ 0 with α + β > 0, we have( (c − a)
[9( f,u;[a,c])

(c−a)1/p

]p
+ (b − c)

[9( f,u;[c,b])
(b−c)1/p

]p

(c − a)+ (b − c)

)1/p

≥

( (c − a)
[9( f,u;[a,c])

(c−a)1/p

]q
+ (b − c)

[9( f,u;[c,b])
(b−c)1/p

]q
(c − a)+ (b − c)

)1/q

=

(
(c − a)1−q/p9q( f, u; [a, c])+ (b − c)1−q/p9q( f, u; [c, b])

b − a

)1/q

.

(2.16)

By making use of inequalities (2.15) and (2.16), we get

9( f, u; [a, b])

b − a

≥

(
(c − a)1−q/p9q( f, u; [a, c])+ (b − c)1−q/p9q( f, u; [c, b])

b − a

)1/q

× (b − a)1/p−1
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which is equivalent, by taking the power q , to

9q( f, u; [a, b])

(b − a)q

≥

(
(c − a)1−q/p9q( f, u; [a, c])+ (b − c)1−q/p9q( f, u; [c, b])

b − a

)
× (b − a)q/p−q

= [(c − a)1−q/p9q( f, u; [a, c])+ (b − c)1−q/p9q( f, u; [c, b])]

× (b − a)q/p−q−1.

(2.17)

Moreover, if we multiply (2.17) by (b − a)1+q−(q/p), then we get

9q( f, u; [a, b])(b − a)1−q/p
≥ (c − a)1−q/p9q( f, u; [a, c])

+ (b − c)1−q/p9q( f, u; [c, b])
(2.18)

for any c ∈ (a, b), which shows that 3p,q( f, u; ·) is superadditive as a function of an
interval.

The monotonicity follows as above and the proof is complete. 2

3. Applications for Ostrowski’s inequality

In [6], the author has proved the following inequality of Ostrowski type for the
Riemann–Stieltjes integral:∣∣∣∣ f (x)[u(b)− u(a)] −

∫ b

a
f (t) du(t)

∣∣∣∣
≤ H

[
1
2
(b − a)+

∣∣∣∣x − a + b

2

∣∣∣∣]r b∨
a
(u),

(3.1)

for all x ∈ [a, b], where f : [a, b] → R is of r -H -Hölder type, that is,

| f (x)− f (y)| ≤ H |x − y|r

for any x, y ∈ [a, b], where r ∈ (0, 1] and H > 0 are given and u is of bounded
variation on [a, b].

We can now define the functional

θ( f, u, x)(a, b) := H max
t∈[a,b]

|t − x |r
b∨
a
(u)

−

∣∣∣∣ f (x)[u(b)− u(a)] −
∫ b

a
f (t) du(t)

∣∣∣∣
(3.2)
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where f, u, x, a, b, r and H are as above. We observe that, when x is in the interior
of [a, b] then

max
t∈[a,b]

|t − x |r =

[
1
2
(b − a)+

∣∣∣∣x − a + b

2

∣∣∣∣]r

which provides a natural connection between inequality (3.1) and the functional (3.2).

LEMMA 3.1. Assume that f : [a, b] → R is of r-H-Hölder type and u is of bounded
variation on [a, b]. If c ∈ (a, b), then

θ( f, u, x)(a, b)≥ θ( f, u, x)(a, c)+ θ( f, u, x)(c, b) (3.3)

for any x ∈ [a, b], that is, θ( f, u, x) is superadditive as a function of an interval.

PROOF. Observe that, for any c ∈ (a, b), we have successively

θ( f, u, x)(a, b)

= H

(
max

t∈[a,b]
|t − x |r

) b∨
a
(u)−

∣∣∣∣∫ b

a
[ f (x)− f (t)] du(t)

∣∣∣∣
= H max

{
max

t∈[a,c]
|t − x |r , max

t∈[c,b]
|t − x |r

}( c∨
a
(u)+

b∨
c
(u)

)
−

∣∣∣∣∫ c

a
[ f (x)− f (t)] du(t)+

∫ b

c
[ f (x)− f (t)] du(t)

∣∣∣∣.
(3.4)

Now, since

H max
{

max
t∈[a,c]

|t − x |r , max
t∈[c,b]

|t − x |r
}( c∨

a
(u)+

b∨
c
(u)

)
≥ H

[
max

t∈[a,c]
|t − x |r

c∨
a
(u)+ max

t∈[c,b]
|t − x |r

b∨
c
(u)

] (3.5)

and ∣∣∣∣∫ c

a
[ f (x)− f (t)] du(t)+

∫ b

c
[ f (x)− f (t)] du(t)

∣∣∣∣
≤

∣∣∣∣∫ c

a
[ f (x)− f (t)] du(t)

∣∣∣∣+ ∣∣∣∣∫ b

c
[ f (x)− f (t)] du(t)

∣∣∣∣, (3.6)

then, by (3.4),

θ( f, u, x)(a, b) ≥ H max
t∈[a,c]

|t − x |r
c∨
a
(u)+ H max

t∈[c,b]
|t − x |r

b∨
c
(u)

−

∣∣∣∣∫ c

a
[ f (x)− f (t)] du(t)

∣∣∣∣− ∣∣∣∣∫ b

c
[ f (x)− f (t)] du(t)

∣∣∣∣
= θ( f, u, x)(a, c)+ θ( f, u, x)(c, b)

and the statement is proved. 2
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COROLLARY 3.2. Assume that f and u are as above. If x ∈ [c, d] ⊂ [a, b], then

θ( f, u, x)(a, b)≥ θ( f, u, x)(c, d)

or, equivalently,

H

[
1
2
(b − a)+

∣∣∣∣x − a + b

2

∣∣∣∣]r b∨
a
(u)−

∣∣∣∣ f (x)[u(b)− u(a)] −
∫ b

a
f (t) du(t)

∣∣∣∣
≥ H

[
1
2
(d − c)+

∣∣∣∣x − c + d

2

∣∣∣∣]r d∨
c
(u)

−

∣∣∣∣ f (x)[u(d)− u(c)] −
∫ d

c
f (t) du(t)

∣∣∣∣.
(3.7)

As in the general case presented above, we consider the following composite
functionals that can be attached to θ( f, u, x):

8( f, u, x)(a, b) :=

[
θ( f, u, x)(a, b)

b − a

](b−a)

,

ϒ( f, u, x)(a, b) :=
(b − a)2

θ( f, u, x)(a, b)
,

provided the denominator is not zero, and the families of functionals

�q( f, u, x)(a, b) := (b − a)1−q
[θ( f, u, x)(a, b)]q , q ∈ (0, 1),

and

3p,q( f, u, x)(a, b) := (b − a)(p−q)/p
[θ( f, u, x)(a, b)]q , p ≥ q ≥ 0, p ≥ 1.

PROPOSITION 3.3. Assume that f : [a, b] → R is of r-H-Hölder type and u is
of bounded variation on [a, b]. For x ∈ (a, b), the functional 8( f, u, x) is
supermultiplicative, ϒ( f, u, x) is subadditive and �q( f, u, x) and 3p,q( f, u, x) are
superadditive as functions of an interval.

The proof follows from Lemma 3.1 and the results from the preceding sections. The
details are omitted.

4. Applications for the generalized trapezoidal formula

In [7], in order to approximate the Stieltjes integral
∫ b

a f (t) du(t) with the
generalized trapezoidal rule [u(b)− u(x)] f (b)+ [u(x)− u(a)] f (a), where f is a
function of bounded variation and u is continuous on [a, b], the authors considered
the generalized trapezoidal error functional

T ( f, u; x, [a, b]) := [u(b)− u(x)] f (b)+ [u(x)− u(a)] f (a)−
∫ b

a
f (t) du(t)
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and showed that

|T ( f, u; x, [a, b])| ≤ max
t∈[a,b]

|u(t)− u(x)|
b∨
a
( f ). (4.1)

Now, if f : [a, b] → R is of r -H -Hölder type, where r ∈ (0, 1] and H > 0 are given
and u is of bounded variation on [a, b], then by (4.1) we have the generalized trapezoid
inequality

|T ( f, u; x, [a, b])| ≤ H

[
1
2
(b − a)+

∣∣∣∣x − a + b

2

∣∣∣∣]r b∨
a
(u) (4.2)

for any x ∈ [a, b].
We may define the functional

η( f, u, x)(a, b) := H max
t∈[a,b]

|t − x |r
b∨
a
(u)− |T ( f, u; x, [a, b])| (4.3)

where f, u, x, a, b, r and H are as above.

LEMMA 4.1. Assume that f : [a, b] → R is of r-H-Hölder type and u is of bounded
variation on [a, b]. If c ∈ (a, b), then

η( f, u, x)(a, b)≥ η( f, u, x)(a, c)+ η( f, u, x)(c, b) (4.4)

for any x ∈ [a, b], that is, η( f, u, x) is superadditive as a function of an interval.

The proof is similar to that of Lemma 3.1 by observing that

T ( f, u; x, [a, b])= T ( f, u; x, [a, c])+ T ( f, u; x, [c, b])

for x, c ∈ [a, b], and we omit the details.

COROLLARY 4.2. Assume that f and u are as above. If x ∈ [c, d] ⊂ [a, b], then

η( f, u, x)(a, b)≥ η( f, u, x)(c, d)

or, equivalently,

H

[
1
2
(b − a)+

∣∣∣∣x − a + b

2

∣∣∣∣]r b∨
a
(u)

−

∣∣∣∣[u(b)− u(x)] f (b)+ [u(x)− u(a)] f (a)−
∫ b

a
f (t) du(t)

∣∣∣∣
≥ H

[
1
2
(d − c)+

∣∣∣∣x − c + d

2

∣∣∣∣]r d∨
c
(u)

−

∣∣∣∣[u(d)− u(x)] f (d)+ [u(x)− u(c)] f (c)−
∫ d

c
f (t) du(t)

∣∣∣∣.

(4.5)
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As in the general case presented above, we consider the following composite
functionals that can be attached to η( f, u, x):

z( f, u, x)(a, b) :=

[
η( f, u, x)(a, b)

b − a

](b−a)

,

1( f, u, x)(a, b) :=
(b − a)2

η( f, u, x)(a, b)
,

provided the denominator is not zero, and the families of functionals

4q( f, u, x)(a, b) := (b − a)1−q
[η( f, u, x)(a, b)]q , q ∈ (0, 1),

and

5p,q( f, u, x)(a, b) := (b − a)(p−q)/p
[η( f, u, x)(a, b)]q , p ≥ q ≥ 0, p ≥ 1.

PROPOSITION 4.3. Assume that f : [a, b] → R is of r-H-Hölder type and u is
of bounded variation on [a, b]. For x ∈ (a, b), the functional z( f, u, x) is
supermultiplicative, 1( f, u, x) is subadditive and 4q( f, u, x) and 5p,q( f, u, x) are
superadditive as functions of an interval.

5. Applications for means

If g : [a, b] → R is a continuous function on [a, b] then u(t)=
∫ t

a g(s) ds is
differentiable on (a, b) and the functionals 9, ϒ , �q and 3p,q become

9̃( f, g; [a, b]) := max
t∈[a,b]

| f (t)| ·
∫ b

a
|g(t)| dt −

∣∣∣∣∫ b

a
f (t)g(t) dt

∣∣∣∣, (5.1)

ϒ̃( f, g; [a, b])

:=
b − a

maxt∈[a,b] | f (t)| 1
b−a ·

∫ b
a |g(t)| dt −

∣∣ 1
b−a

∫ b
a f (t)g(t) dt

∣∣
=

(b − a)2

9̃( f, g; [a, b])
,

(5.2)

�̃q( f, g; [a, b]) := (b − a)1−q
[9̃( f, g; [a, b])]q

= (b − a)

[
max

t∈[a,b]
| f (t)|

1
b − a

·

∫ b

a
|g(t)| dt

−

∣∣∣∣ 1
b − a

∫ b

a
f (t)g(t) dt

∣∣∣∣]q

(5.3)
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and

3̃p,q( f, g; [a, b]) := (b − a)(p−q)/p9̃q( f, g; [a, b])

= (b − a)(p−q+pq)/p
[

max
t∈[a,b]

| f (t)| ·
1

b − a

∫ b

a
|g(t)| dt

−

∣∣∣∣ 1
b − a

∫ b

a
f (t)g(t) dt

∣∣∣∣]q

.

(5.4)

Obviously 9̃ remains superadditive and monotonic nondecreasing as a function of an
interval while ϒ̃ inherits the subadditivity property of ϒ . Also, any member of the
families of functionals �̃q , q ∈ (0, 1), and 3̃p,q , p ≥ q ≥ 0, p ≥ 1, is superadditive
and monotonic nondecreasing as a function of an interval.

Let us recall the following means:

arithmetic mean: A(a, b)=
a + b

2
,

geometric mean: G(a, b)=
√

ab,

harmonic mean: H(a, b)=
2

1
a +

1
b

,

logarithmic mean: L(a, b)=
b − a

ln b − ln a
, b 6= a;

identric mean: I (a, b)=
1
e

(
bb

aa

)1/(b−a)

, b 6= a;

p-logarithmic mean: Lp(a, b)=

[
bp+1

− a p+1

(p + 1)(b − a)

]1/p

,

p ∈ R \ {−1, 0}, b 6= a;

with a, b > 0. It is well known that Lp is monotonic nondecreasing over p ∈ R with
L−1 := L and L0 := I . In particular, we have the following inequalities:

H(a, b)≤ G(a, b)≤ L(a, b)≤ I (a, b)≤ A(a, b). (5.5)

If we consider u(t)= t p, p ∈ R \ {−1, 0}, u : [a, b] → R, 0< a < b, then
obviously

1
b − a

∫ b

a
u(t) dt = L p

p (a, b).

If u(t)= 1/t , t ∈ [a, b], 0< a < b, then

1
b − a

∫ b

a
u(t) dt =

1
L(a, b)

,

https://doi.org/10.1017/S0004972710002042 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972710002042


[13] The quasilinearity of some functionals 65

while for u(t)= ln t , t ∈ [a, b], 0< a < b,

1
b − a

∫ b

a
u(t) dt = ln[I (a, b)].

If we choose above g(t)= 1/t , f (t)= t p with p ∈ R \ {0, 1} and observing that
0< a < b, we have

max
t∈[a,b]

| f (t)| =max{a p, bp
},

∫ b

a
g(t) dt =

b − a

L(a, b)

and ∫ b

a
f (t)g(t) dt = L p−1

p−1 (a, b)(b − a).

Then we deduce that

vp(a, b) :=

[
max{a p, bp

}

L(a, b)
− L p−1

p−1 (a, b)

]
(b − a), p ∈ R \ {0, 1}, (5.6)

is superadditive and monotonic nondecreasing as a function of an interval, while

z p(a, b) :=
b − a

max{a p,bp}
L(a,b) − L p−1

p−1 (a, b)
, p ∈ R \ {0, 1}, (5.7)

is subadditive as a function of an interval.
Finally, if we consider the families of functionals

yp,q(a, b) := (b − a)

[
max{a p, bp

}

L(a, b)
− L p−1

p−1 (a, b)

]q

, (5.8)

where p ∈ R \ {0, 1}, q ∈ (0, 1) and

u p,r,q(a, b)= (b − a)(r−q+rq)/r
[

max{a p, bp
}

L(a, b)
− L p−1

p−1 (a, b)

]q

, (5.9)

where p ∈ R \ {0, 1}, r ≥ q ≥ 0 and r ≥ 1, then we can conclude that each functional
yp,q is superadditive and monotonic nondecreasing as a function of an interval for any
p ∈ R \ {0, 1}, q ∈ (0, 1). Also, each functional u p,r,q is superadditive and monotonic
nondecreasing as a function of an interval for any p ∈ R \ {0, 1} and r ≥ q ≥ 0 and
r ≥ 1.

Similar results may be stated for other choices of f and g. However, the details are
omitted.
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