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UPPER FAITHFUL D.G. NEAR-RINGS
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This paper is concerned with d.g. near-rings and their relationship to faithful d.g.
near-rings. For general definitions and results, we refer to Pilz [5]. We use left near-
rings where he uses right near-rings, but otherwise there is little difference. This work
follows earlier work [3], [4] and Mahmood [2]. Before outlining the contents of the
paper we present a precis of the definitions.

The set R is a left zero-symmetric near-ring if it is equipped with two operations +
and • such that (R, +) is a not necessarily abelian group, (R, •) is a semigroup, x(y + z)
= xy + xz, xO = Ox = 0 for all x, y, z in R. The typical such structure arises as follows. Let
(G, +) be a group with identity 0 and let

with addition defined pointwise and multiplication defined as function composition.
Every (left zero-symmetric) near-ring is isomorphic to a subnear-ring of such a near-
ring. If (H, +) is a group, then a near-ring homomorphism 9 from a near-ring R to
M0(H) is a representation of R. As usual with ring representation theory, we omit
reference to the map 9 most of the time and write hr for h(rd), where heH, reR. We
call H an .R-module. Near-ring module theory is well-developed, and the obvious terms
from ring module theory carry over.

An element s of R is called distributive if (x + y)s = xs + ys for all x, y in R. If there
exists a semigroup S of distributive elements in R such that i? = Gp<S>, then R is called
a distributively generated (d.g.) near-ring. We write it as (R, S) because the set S matters.
In particular S need not be the semigroup of all distributive elements. In M0(G), End G,
the set of all endomorphisms of G, is the set of all distributive elements. They generate
the d.g. near-ring (£(G), EndG). If (R,S), (T,U) are two d.g. near-rings, a near-ring
homomorphism 9:R->T such that S0£L/ is called a d.g. (near-ring) homomorphism. A
representation 9:R-*M0(G) such that S#£EndG is called a d.g. representation;
equivalently if 9 is a d.g. homomorphism (R,S)-*(E(G),EndG) then it is a d.g.
representation. A d.g. near-ring is faithful if it has a faithful d.g. representation, that is a
d.g. representation 9 such that Ker0 = {O}.

Not all d.g. near-rings are faithful ([3], Theorem 3.3). But to any d.g. near-ring (R, S)
are associated two faithful d.g. near-rings. The lower faithful d.g. near-ring is a d.g. near-
ring (R,S) and a d.g. epimorphism 9:(R,S)-^(R, S) such that for any d.g.
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homomorphism </>:(i?,S)->(T, U) where (T, U) is faithful there exists a unique d.g.
homomorphism ij/:(R,S)->(T, U) such that 0^ = 0, ([2], Theorem 2.1). This was the
main subject matter of [4]. The upper faithful d.g. near-ring is a d.g. near-ring (R,S) and
a d.g. epimorphism 0:(R,S)^>(R,S), with 0|s being the identity, such that for any d.g.
homomorphism <f):(T,U)-*(R,S) where (T, U) is faithful, there exists a unique d.g.
homomorphism \p:(T, U)->(R,S) such that 1̂0 = #([2], Theorem 2.2.).

In [4], a group-theoretic approach to finding (R, S) for a given (R, S) was adopted and
some examples were studied. Here we adopt the same approach for (R, S), and look at
the difference between (R,S) and (R,S) for some particular cases. We measure this
difference by the size of the ideal which is the kernel of the canonical homomorphism
6:(R,S)-+(R,S) via (R,S). If (R,S) is faithful this kernel is {0}, since then (R,S) = (R,S)
= (R,S). lf(R,S) is not faithful, then (R, S) > (R, S) > (R, S) and so it is non-zero and its
size in relation to (R, S) will give some idea of the unfaithfulness of (R, S).

1. The upper faithful d.g. near-ring

T d l h d f fidiTo develop a method for finding the upper faithful d.g. near-ring for a given d.g. near-
ring (R, S), we need some results from earlier papers and group theory. For results from
group theory we give as standard reference Scott [6]. In [3] the theory of free d.g. near-
rings due to Frohlich [1] was generalised. In any variety V of groups, and given any
semigroup S, let Fr(S) be the free group on the set of symbols S. Then by defining
multiplication using left distributivity, right distributivity of the elements S and the
product in S, we have a d.g. near-ring (Fr(S), S) which is the free d.g. near-ring on S in
V, and such that given any d.g. near-ring (R, S) with (R, +) in V there is an
epimorphism n :(Fr(S),S) ->(R, S) extending the identity mapping on S.

From group theory, we need the idea of presentations. Given a set X, we can define
the free group Fr(X) on the set X. A set ^ of elements of Fr(X) generate a normal
subgroup N. Then a group G^FT(X)/N is said to be given by the presentation
Gp<-X";^> where X is a set of generators and & is a set of relations. It is fairly obvious
that many different sets of relations may define the same group. In particular, given a
d.g. near-ring {R,S) we have a presentation for (R, +) with generators S:(R, +)
= Gp<S;^> for some set of relations M.

Let (R, S) be a non-faithful d.g. near-ring. Then (R,S) is a homomorphic image of
(Fr(S),S) and the homomorphism 7r:(Fr(S), S)->(R, S) extends the identity map on S,
and has kernel I say. Hence

The upper faithful d.g. near-ring (R, S) is also generated by S, so again we have

for some ideal J. Furthermore as the identity map from S to S extends to a d.g.
homomorphism from (R,S)->(R,S) we must have
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Since (R, S) is not faithful, S cannot contain a (multiplicative) identity ([3], Theorem
3.4). Let S1 be S with a multiplicative identity adjoined. So S is a proper subsemigroup
of S1. We can embed (Fr(S),S) in (Fr(S1), S1) in a natural way and we will assume from
now on that (Fr(S),S) is contained in (FrfS1)^1). By Theorem 2.3 of [4], since (R,S) is
faithful, (R,S) can be embedded in (^S1) where (7; + ) = Gp<l>*(£, +) is the free
product in V of (R, +) and the free group in V on one symbol, namely 1. Let K be the
normal closure in (Fr(S1), +) of (J, +). Then by Lemma 4.5 of [3], a standard result, we
have (T, +)s(Fr(S1), +)/K and so (^S^^FriS^S^/K. Thus K is an ideal of FrCS1).
We also have KnFr(S) = J. By a simple application of Lemma 2.2, it follows that Fr(S)
is a two-sided invariant subnear-ring of FT(S1):FT(S1)FT{S)S1 cFT(S). It follows that

Definition 1.1. An ideal L of Fr(S) such that Fr(S1)LS1 £ L is called an Fr(S^-ideal.

Some immediate consequences are stated without proof.

Lemma 1.2. The sum of Fr(Sx) ideals is an Fr(S1) ideal. If L is an FriS1) ideal of
Fr(S), then M, the normal closure of L in {Frfi1), +) is an ideal o/FrCS1) and MnFr(S)
= L.

The argument above, which only depends on the fact that (R, S) is faithful, and not
on the fact that it is the upper faithful d.g. near-ring for (R,S), gives us the following
result.

Lemma 1.3. Let L be an ideal of Fr(S) such that Fr(S)/L is faithful. Then L is an
Fr(Sx) ideal ofTr(S).

This leads to our first important result.

Theorem 1.4. Let (R,S) be a d.g. near-ring, I the ideal of (Fr(S),S) defined by
(R,S)^(Fr(S),S)/I. Identify (Fr(S),S) with its natural image in (FrCS1)^1). Then (R,S),
the upper faithful d.g. near-ring for {R,S) is isomorphic to

where K is the largest Fr(S1) ideal ofFr(S) contained in I.

Proof. Lemma 1.2 ensures there is a unique largest FT(S1) ideal contained in /. By
Lemma 1.3 and the remarks before Definition 1.1, it follows that (R,S) is isomorphic to
(Fr(S),S)/K, where K is an Fr(S1)-ideal of Fr(S) contained in /.

Suppose that I^L^K, and L is an Fr(Sx) ideal of Fr(S). Then by Lemma 1.3
Fr(S)/L is faithful. Because Lsl, we can extend the identity map on S to a d.g.
homomorphism from (Fr(S),S)/L to (Fr(S),S)/I^(R,S). By the definition of (R,S), this
can be factored through (K,S)s(Fr(S),S)/K. This forces K 2 L Hence K is the unique
largest Fr(S1) ideal of Fr(S) contained in /.

It is also possible to prove Theorem 1.4 by a completely different route which
emphasizes the presentation aspect. We use the following result from [4].
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Theorem 1.5 Let (R, +) = Gp<S;^> be a presentation of the d.g. near-ring (R,S)
where ® = {rx;Xe\}. Then (i?,S) is faithful if and only if

for all AeA, w(u) e Fr(Sx) - Fr(S), where H is the normal closure in Fr(S) of 91,
rx = rx(su...,s,), w(u) = w(ut,...,uv) and vv(us)^wiu^,...,uvs).

This is Theorem 2.5 of [4]. Let (R,S) be a d.g. near-ring with (K,S)s(Fr(S),S)//,
where / is the normal closure of 2̂ in Fr(S) and (R, +)=Gp<5;^> is a presentation of
(R, +). From the proof of Theorem 2.5 in [4], it follows that an ideal J of Fr(S) is an
Fr^1) ideal of Fr(S) if and only if rx(w(usl),...,w(us,))eJ for all AeA, w(u)eFr(S1)
— Fr(S) where {rx;XeA} is a set which generates J as a normal subgroup. So the largest
Fr(Sx) ideal contained in /, identifying (Fr(5), S) with its natural image in (Fr(S1),S1), is
the largest set ^ x satisfying the condition of Theorem 1.5, which is contained in /. Since
(R, S) is mapped onto (R, S) by a d.g. homomorphism which extends the identity map on
S, the kernel L of the canonical homomorphism (Fr(S), S)->(R, S) is contained in /, i.e.
L s / . But L is an Fr(S1) ideal of Fr(S), so L^K. Also Fr(S)/K is faithful by
Theorem 1.3. So (R,S) is a homomorphic image of Fr(S)/K and K^L. Thus K = L and
we have another proof of Theorem 1.4.

2. Some applications

In [4], the lower faithful d.g. near-rings were calculated for some d.g. near-rings of a
particularly simple kind. We will consider some of these d.g. near-rings here and find
their upper faithful d.g. near-rings. In practice, the method we use for finding a
presentation for the upper faithful d.g. near-ring is based on the original proof of
existence in [3].

Consider the d.g. near-ring (R,S). Construct the group G = Gp<x>*(Rx, +), the free
product of an infinite cyclic group generated by x and a copy of (R, +) which we
denote Rx = {rx;reR}. Define S = {s;seS} as a semigroup of endomorphisms of G by

where the product in (rs)x is the product obtained from R and s is the endomorphism
induced by seS. Then the d.g. near-ring generated by S in M0(G) is (R,S) ([3], Theorem
4.6). Let elsl + ... + £nsn be a word in the elements of S, where £, = ±1 for l ^ i ^ n . An
arbitrary element g of G is

where nij is an integer, mt may be 0, rtx may be 0x but all other terms are non-trivial.
Then the word e ^ +. . . + ensn is a relation in R if and only if
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for all ge G, that is if and only if

for all £2:1, mt eZ, rteR. We consider this product more closely:

rlx +... + m,x + rtx)(e1s1 +. . . + &nsn)

+ ...+ mtx + r, ,)^ +.. . + en(m1x + r lx +. . . + m,

+ . . . + e ^ / n ^ + { r l S n ) x + ... + mtsnx+(r,sn)x). (2.1)

We can now state the general result concerning presentations of upper faithful d.g. near-
rings.

Theorem 2.2. Let (R,S) be a d.g. near-ring. With the notation given just above, a
presentation for the upper faithful d.g. near-ring (R,S)for (R,S) is given by

where 3%x is the set of all words e1s1 + ... + ensn such that (2.1) is zero in Rfor all choices
o/t^l, m,eZ, rteR, mt^0for i^2, r

This result is theoretical, but not practical in general and compares with Theorem 2.6
of [4]. But in special cases it can produce some concrete results. As in [4], there is a
class of near-rings which yields much easier presentations, namely the class of zero near-
rings in which all products are zero. They are obviously d.g. near-rings since all
elements are distributive. In this case Theorem 2.2 takes a much simpler form.

Theorem 2.3. Let {R,S) be a zero d.g. near-ring. Then the upper faithful d.g. near-ring
(R,S)for (R,S) is given by

the zero d.g. near-ring, where Sfr^ is the set

. + ensn; e1ms1 + ... + enmsn=0 in R for all meZ}.

Proof. This follows immediately because the right hand side of (2.1) becomes, in this
situation

i
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Compare this with Lemma 3.3 of [4]. In the notation of that paper we are just taking
the maximal integrally closed set of relations contained in the relations for R. We now
apply this to the zero d.g. near-rings on the dihedral groups. These groups were studied
in [4] and their lower faithful d.g. near-rings were determined.

We define the dihedral groups D2n of order 2n by the presentation

D2n = Gp(x,y;2x,ny,x + y + x+y).

This group is often denoted Dn, but we will use the same notation as in [4]. Normally
we restrict n to be at least 3. The detailed structure of the group D2n is well-known and
can be obtained from most textbooks on group theory. We will mention the results we
need without proof when appropriate. We take as our set of distributive generators the
set of elements {x, y}. To simplify our notation we will write the two generators of the
upper faithful d.g. near-ring as {s, t}, s corresponding to x, t to y and the near-ring itself
as (R, S). It will of course itself be a zero d.g. near-ring. So all we need to do is to
determine its additive structure using Theorem 2.3.

Lemma 2.4. The complete set of relations for (R, S) is

{2s,nt,p1t + s + p2t + ...

for all Pi,. . . , p2m+ I such that
2m+ 1

\ (-l) 'Pi=0modn.

Proof. We first show that these relations hold. The first two follow since 2mx, nmy
are relations which hold in D2n for all meZ. So consider

We need to show that for all qeZ,

in D2n for all qeZ. If q is even then the left hand side becomes qiYjTt1 p()y, and this is
zero when 2£?™jM p; =0modn. If q is odd, then the left hand side becomes

2rn
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since x + ry= — ry + x in D2n. So all these relations do hold in R.
Conversely let

be a relation in R where px and pm may be 0. Then p1y + x + ... + x + pm>'=0 in R and
so

So we must have m— 1 even and £r=i( —l)'P>=0 modn. Also pt2y + 2x + ... + 2x+pm2y
=0 in R forces 2 £"= i P; = 0 mod w. This shows that the relations in the statement are a
complete set of relations for (R, +).

These relations are in fact greatly redundant as we shall soon see. We remark first
that we can say a lot about (R,S) without detailed presentations. From [3] we know
that any d.g. near-ring (T,U) such that (7̂  +) is a free group in some variety on the set
of generators U is faithful. As D2n is soluble of class 2, then so is (R, +) since this is a
variety. Also D2n is of exponent n if n is even, 2n if n is odd. Thus (R, +) also satisfies
this. Let R' be the derived group of R. Then R' is abelian and is generated by [s, t] = - s
— t+s + t=s — t + s + t, and all its conjugates. Since J? = Gp<s,t>> 2s = 0 = nt, it follows
that {[s,t]os+l"; a=0, 1, 0^b<n} is the complete set of conjugates of [s,t] (notation: u"
= — v + u + v). In D2n, the derived group is generated by [x, y] = 2y, which has order n if
n is odd, n/2 if n is even. We now determine the structure of R. As the two conditions
on a word in s and t given to Lemma 2.4 will keep occurring, we will refer to them as
the first and second conditions.

Lemma 2.5. [s, i] has order nifn is odd and n/2 if n is even.

Proof. Consider a[_s,t]=.a( — s — t + s + t). The first condition is automatically
satisfied. The second condition gives — 2a = 0modn. This gives the result, since n odd
forces a = n,n even forces a = n/2 as the least value satisfying the second condition.

Lemma 2.6. [s, t]s = - [s, t], [s, £]' = [s, f].

Proof. [ s , t ] s = - s - s - t + s - l - r + s = - t - s - l - t + s = [£,s]=-[s,r] since 2s = 0, which
is the first equation. Now consider

This word obviously satisfies the first condition as there are an equal number of +1 and
— t. The second condition is satisfied as can easily be checked. Hence — [s, t] + [s, t]' is a
relation in R. This completes the proof of Lemma 2.3.

Theorem 2.7. (i) Ifn is odd, then

(R, +) =
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has order In2, and a set of relations for the generators

{s, t} is {2s, nt, n[_s, t], [s, t]s + [s, t], [s, tj - [s, t]}.

(ii) Ifn = 2m and m is odd, then

has order n2, and a set of relations for the generators

{s,t} is {2s,nt,m[s,f],ls,f]s + [s

(iii) Ifn = 4m then

(R, +) = {as + bt + cls,tJ,0^aSU

has order n2/2, and a set of relations for the generators

{s,t} is {2s,nt,2mt + m[s,t],[s,ty + [s,f],[s,ty-[s,t']}.

Proof. Lemmas 2.5 and 2.6, together with the general remarks concerning the
general structure enable us to state the following conclusions. The group R/R' has order
2n, generated by s of order 2, t of order n, R' = Gp<[s,£]> is a cyclic normal subgroup
of order n if n is odd, n/2 if n is even. Lemma 2.6 gives the action of s and t on R'. The
only question that remains is whether there is a non-trivial relation of the form

as + bt + c[s, t'] = as + bt + c( — s — t + s + t).

Since x + by + c( — x—y + x + y)j=0 in D2n, it follows that a must be 0. So we have

bt + c(-s-t + s + t).

The two conditions of Lemma 2.4 give us

2b=0modn,

b + 2c = 0 mod n

and we may obviously assume that O^b, c^n— 1.

(i) If n is odd, we get in succession b=0, c = 0 and so part (i) holds.
(ii) Let n = 2m, with m odd. Then we can have b = 0 or m to satisfy the first

congruence. From the second congruence b = 0 forces c = 0 or m, both cases being
covered by earlier relations. Also b = m gives m + 2c = 0mod2m. So m divides 2c, and m
odd forces m divides c, which gives a contradiction. Thus no further non-trivial relations
exist in this case and part (ii) holds.

(iii) Let n = 4m. Then b = 0 or b = 2m satisfies the first congruence. The second
congruence forces c = 2m or 0 if b = 0, giving no further non-trivial relations. So assume
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that b = 2m. Then we need 2m + 2c = 0 mod 4m. So c = m is a solution. This completes the
proof of part (iii).

Corollary 2.8. The zero d.g. near-ring on D8 is faithful.

Proof. Theorem 2.7 (iii) with m = 1 gives the result

This result is given in [4], Theorem 3.4 also. Note that the three cases are the same
as were obtained in Theorem 3.4 [4] in a different context. We now introduce a
measure of the lack of faithfulness of a d.g. near-ring.

Definition 2.9. Let (R,S) be a d.g. near-ring with upper faithful d.g. near-ring
6:(R,S)-+(R,S), and lower faithful d.g. near-ring <j>: {R, S) -+{R, S). Then we call Ker0 the
upper defect of (R,S), D(R,S), Ker<p the lower defect of (R,S), D(R,S) and Ker0<£ the
defect of (R, S), D(R, S).

The following facts are immediate consequences of the definition.

Lemma 2.10. If either the upper defect or the lower defect of a d.g. near-ring is {0}, so
is the other. The defect of a d.g. near-ring is an extension of the lower defect by the upper
defect.

We can now determine easily the defects of the zero d.g. near-rings on the dihedral
groups.

Theorem 2.11. Let {R,S) be the zero d.g. near-ring on D2n where (R, +)
= Gp(s,t;2s,nt,s + t + s + t}, and n ^ 3 .

(i) / / n is odd, then D(R, S) is the zero near-ring on a cyclic group of order n, D (R, S) is
the zero near-ring on a cyclic group of order n, and D(R, S) is the zero near-ring on the
direct sum of two cyclic groups of order n.

(ii) If n = 2m and m is odd, then D(R, S) is the zero near-ring on a cyclic group of order
m, D (R, S) is the zero near-ring on a cyclic group of order m, and D(R, S) is the zero near-
ring on the direct sum of two cyclic groups of order m.

(iii) If n = 4m, then D(R, S) is the zero near-ring on a cyclic group of order m, D (R, S) is
the zero near-ring on a cyclic group of order m, and D(R, S) is the zero near-ring on the
direct sum of two cyclic groups of order m.

Proof. These results follow from Theorem 2.7, Theorem 3.4 of [4] and some
elementary abelian group theory. Note that in (R, S), the group generated by t and [s, t~\
is always abelian. We give the generators in each case.

(i) D(«,S) = Gp<t,[s,t]>,

(ii) D(R,S) = Gp<2t,[s,£]>,

(iii)
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