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Uniform bound on the number of partitions
for optimal configurations of the
Ohta–Kawasaki energy in 3D
Xin Yang Lu and Jun-cheng Wei

Abstract. We study a 3D ternary system which combines an interface energy with a long-range
interaction term. Several such systems were derived as a sharp-interface limit of the Nakazawa–
Ohta density functional theory of triblock copolymers. Both the binary case in 2D and 3D, and the
ternary case in 2D, are quite well understood, whereas very little is known about the ternary case
in 3D. In particular, it is even unclear whether minimizers are made of finitely many components.
In this paper, we provide a positive answer to this, by proving that the number of components in
a minimizer is bounded from above by a computable quantity depending only on the total masses
and the interaction coefficients. There are two key difficulties, namely, the impossibility to decouple
the long-range interaction from the perimeter term, and the absence of a quantitative isoperimetric
inequality with two mass constraints in 3D. Therefore, the actual shape of minimizers is unknown,
even for small masses, making the construction of suitable competing configurations significantly
more delicate.

1 Introduction

Energy functionals entailing a direct competition between an attractive short-range
force and a repulsive Coulombic long-range force have been studied intensively in
recent years, to understand physical problems such as Gamow’s liquid-drop problem,
and self-assembly of block copolymers. In Gamow’s liquid-drop model [10], the
volume of the nucleus Ω ⊂ R

3 is fixed, i.e., ∣Ω∣ = m with the parameter m being
referred to as “mass.” The binding energy is given by

Eliquid(Ω) ∶= Per(Ω) + 1
8π ∫Ω×Ω

dxdy
∣x − y∣ ,

where the first term is the perimeter (or surface area) of Ω, which arises due to the
lower nucleon density near the nucleus boundary; the second term is a Coulomb-type
one, introduced to account for the presence of positively charged protons [3].
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In Ohta and Kawasaki’s diblock copolymer model [22], the free energy is given by

Ediblock(Ω) ∶= Per(Ω) + γ∫
Ω×Ω

G(x , y) dxdy,

where the first term, i.e., the perimeter, favors a large ball; the second term prefers
splitting, and models long-range interactions between monomers due to the connec-
tivity of different subchains in copolymer molecules. Here,

G(x , y) = 1
4π∣x − y∣ + R(x , y)

is the zero-average Green’s function of the Laplace operator in R
3, R(x , y) is the

regular part of G(x , y), and γ is the long-range interaction coefficient, determined
by the percentage of each type monomer, the total number of monomers in a
chain molecule, the repulsion between different monomers, and the average distance
between two adjacent monomers [6]. During each experiment, the total mass of each
type monomer is fixed. So the energy is minimized under the mass constraint ∣Ω∣ = m.

In this paper, we study a model in ternary systems, introduced by Nakazawa and
Ohta to study triblock copolymers [21], with vanishing mass fraction. A triblock
copolymer is a chain molecule consisting of three types of subchains: a subchain of
type A monomers is connected to a subchain of type B monomers, and then connected
to a subchain of type C monomers. Block copolymers can be used as a material in
artificial organ technology and controlled drug delivery.

The free energy of triblock copolymers, for the sharp interface model in R
2, was

derived by Ren and Wei in [24, 25] as the �-limit of Nakazawa and Ohta’s diffuse
interface model:

Etriblock(Ω1 , Ω2) ∶=
1
2

2
∑
i=0

Per(Ω i) +
2
∑

i , j=1
γ i j ∫

Ω i×Ω j
G(x , y) dxdy.

Here, Ω0 = (Ω1 ∪Ω2)c , the perimeter term is defined by

1
2

2
∑
i=0

Per(Ω i) = ∑
0≤i< j≤2

H2(∂Ω i ∩ ∂Ω j),

with ∂ denoting the (reduced) boundary, and the long-range interaction coefficients
γ i j form a 2 × 2 symmetric matrix. The choice of γ i j is nontrivial, as it must ensure
that the perimeter and long-range interaction terms must be of comparable order.
Therefore, finding the correct order of γ i j can be somewhat delicate, and can depend
on the total masses. Using a “droplet” scaling argument, as done by Choksi and Peletier
in [4, Section 3], [5, Section 3], and by Alama, Bronsard, the first author, and Wang
in [1], it can be shown that the leading order of the free energy takes the form

E0(Ω1 , Ω2) = ∑
k

e0(∣Ω1,k ∣, ∣Ω2,k ∣), Ω i = ⋃
k

Ω i ,k , i = 1, 2,(1.1)
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with

e0 ∶ [0,+∞) × [0,+∞) �→ R,

e0(m1 , m2) ∶= inf { ∑
0≤i< j≤2

H2(∂Ω i ∩ ∂Ω j)

+
2
∑

i , j=1

�i j

4π ∫
Ω i×Ω j

dxdy
∣x − y∣ ∶ ∣Ω i ∣ = m i , i = 1, 2},

where �i j is a suitable scaling of γ i j . That is, E0 seeks the optimal partition Ω i =
⋃k Ω i ,k , with each couple (Ω1,k , Ω2,k) minimizing e0. Note that, generally, Ω0
represents the “background,” while Ω i , i = 1, 2 represent the two types of “materials.”
The fact that e0 does not penalize interactions between Ω0 and Ω i , i = 1, 2, thus,
corresponds to the (rather natural) assumption that neither type of material interacts
with the background.

The fact that Ω i ,k and Ω j, l do not interact when k ≠ l , is due to the fact that
these represent masses located in different clusters. In the small volume-fraction limit,
as argued in [1, 4], the interaction terms between different mass clusters become
negligible compared to the interaction within the same cluster.

Choksi and Peletier showed in [4, Theorem 4.2] that, when the domain is the unit
torus T3, in the small mass volume fraction regime, the first-order �-limit of the free
energies (see [4, Equation (1.8)])

E3d
η (v) ∶=

⎧⎪⎪⎨⎪⎪⎩

η ∫T3 ∣∇v∣dx + η∥v − 1
∣T3 ∣ ∫T3 vdx∥2

H−1(T3), if v ∈ BV(T3;{0, η−3}),
+∞, otherwise,

is of the form

perimeter + long-range interaction,

i.e., (see [4, Equation (4.1)], and more in general [4, Section 4]),

E3d
0 (v) ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∞

∑
k=0

e0(mk), if v =
∞

∑
k=0

mk δxk ,
∞

∑
k=0

mk = M = total mass,

+∞, otherwise,

with

e3d
0 (m) = inf {∫

R3
∣∇z∣dx + ∥z∥2

H−1(R3) ∶ z ∈ BV(R3;{0, 1}), ∥z∥L1(R3) = M}.

The H−1 norm can be made explicit:

∥z∥2
H−1(R3) = ∫

R3×R3
G(∣x − y∣)z(x)z(y)dxdy,

where G denotes the Green’s function of the Laplacian in R
3. That is, the minima

seeks the optimal partition, in which each component minimizes the energy e3d
0 . An

analogous result, but for ternary systems in the two-dimensional torus, was obtained
by Alama, Bronsard, the first author, and Wang in [1, Theorem 3.2].
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With the same arguments from [1, 4], it is possible to show that, again, with the
domain being the unit torus T3, in the small mass volume fraction regime, the first-
order �-limit of the free energies (which are the analog of [1, Equation (1.8)] for
ternary systems in 3D)

E3d
ternary,η(v1,η , v2,η) ∶=

⎧⎪⎪⎨⎪⎪⎩

fη(v1,η , v2,η), if v1,η , v2,η ∈ BV(T3;{0, 1
η3 }),

+∞, otherwise,

fη(v1,η , v2,η) ∶=
η
2

2
∑
i=0
∫
T3
∣∇v i ,η ∣dx

+ η4
2
∑

i , j=1
γ i j ∫

T3×T3
GT3(∣x − y∣)v i ,η(x)v i ,η(y)dxdy,

GT3 ∶= Green’s function of the Laplacian in T
3 with zero average,

can be again written in the form

E3d
ternary,0(v1 , v2) ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∞

∑
k=0

e0(m1,k , m2,k), if v i =
∞

∑
k=0

m i ,k δx i ,k ,
∞

∑
k=0

m i ,k = M i ,

+∞, otherwise,
(1.2)

M i = total mass of type i constituent, i = 1, 2,

and �i jη−3 = γ i j ≥ 0 are coefficients penalizing the Coulomb interaction. Observe
that the problem of minimizing E3d

ternary,0 is again fully determined once we fix the
total masses M i and the interaction coefficients �i j . Each couple of sets (Ω1 , Ω2),
with the appropriate masses, and minimizing e0, is referred to as a “cluster.”

Next, we introduce the main energy of this paper: given connected sets Ω i , with
1Ω i ∈ BV(R3;{0, 1}), i = 1, 2, and ∣Ω1 ∩Ω2∣ = 0, define the energy

E(Ω1 , Ω2) ∶= ∑
0≤i< j≤2

H2(∂Ω i ∩ ∂Ω j) +
2
∑

i , j=1
γ i j ∫

Ω i×Ω j
∣x − y∣−1dxdy,(1.3)

where Ω0 = (Ω1 ∪Ω2)c . Here, γ i j denote the interaction strengths, and are positive,
of order O(1). Note that E is the analog of e0 from (1.1), (1.2), and [1], and of e3d

0
from [4], for ternary systems with domain R

3. Then, given disjoint unions

(⊔
k

Ω1,k ,⊔
k

Ω2,k),

with Ω i ,k being the connected components, the total energy of this configuration is
defined by

E(⊔
k

Ω1,k ,⊔
k

Ω2,k) ∶= ∑
k

E(Ω1,k , Ω2,k).

Observe that E is the analog of [1, Equation (3.5)] and [4, Equation (4.1)], for 3D
ternary systems. It is also worthy noting that E is similar to Eliquid, Ediblock , and
Etriblock , as they are all of the form

perimeter + long-range interaction,
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Ohta–Kawasaki energy in 3D 1345

with the main difference being that E suppresses the interaction between different
connected components.

In the following, when we say “optimal configuration,” unless otherwise specified,
we mean a configuration (⊔k Ω1,k ,⊔k Ω2,k) minimizing E.

Existence of minimizers has been proven in [4], whose Sections 4 and 5 were
dedicated to the 3D case, whereas Section 6 deal with the 2D case. In 2D, due to
the fact that the Green’s function is a logarithmic term, the interaction was simply
the product of the masses, hence it was equivalent to minimize the perimeter, subject
to two mass constraints. It is well known that the double bubble is the unique such
minimizer (see, e.g., [8, 19] for the 2D case, and [12] for the 3D case, and also [7, 17,
18, 23]). In the ternary 3D case, however, such simplification is not available, and
the shape of the minimizers is unclear, even for small masses. This is a significant
hurdle, and studying the shape of minimizers is hindered by the lack of a quantitative
isoperimetric inequality with two mass constraints in 3D

Therefore, a priori, it is even unclear whether optimal configurations have finitely
many clusters, as we cannot exclude the presence of infinitely many components with
very small masses. Our main result is to show that this is not the case:

Theorem 1.1 Given total masses M1, M2, and interaction coefficients γ11 , γ12 , γ22,
there exists a computable constant K = K(M1 , M2 , γ11 , γ22) such that any optimal
configuration has at most K clusters.

Existence of optimal configurations can be shown using the same arguments as
in Sections 4 and 5 of [4]. The proof of Theorem 1.1 is split into several steps: first,
in Lemma 2.1, we show that the number of clusters made of one constituent type is
bounded from above. Then, in Lemma 2.2, we show that there is at least one cluster
that is relatively massive, i.e., we bound from below the mass of the largest cluster.
Finally, in the crucial Lemma 2.3, and the subsequent Lemma 2.4, we bound from
below the mass of any cluster. Since there the total amount of masses is given a priori,
this allows us to infer Theorem 1.1.

1.1 Notation

Since the position of the clusters is rarely relevant, in this paper, we denote by Bm , a
ball of mass m.

2 Uniform upper bound on the number of clusters

The proof of Theorem 1.1 will be split over several lemmas. Throughout the entire
section, M i , i = 1, 2, will denote the total masses of type i constituent, and γ i j , i , j = 1, 2
will denote the interaction coefficients. These parameters completely determine the
minimization problem for E in 3D. All the M i and γ i j will assumed to be given, and
do not change throughout the section. Our proof will proceed as follows:
(1) First, in Lemma 2.1, we bound from above the number of clusters made purely

of one constituent type. Such upper bound will depend only on M i , γ i i , i = 1, 2.
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(2) Then, in Lemma 2.2, we show that the total mass of the largest clusters cannot
be too small. Such lower bound on the mass will depend only on M i , γ i i , i = 1, 2.

(3) Finally, in Lemmas 2.3 and 2.4, we show that the total mass of each cluster
is bounded from below by a constant depending only on M i , γ i i , i = 1, 2.
Since there is only so much total mass (i.e., M1 + M2), this allows us to infer
Theorem 1.1.

As we have no information on the shape of optimal configurations, we will often
compare their energy against that of a suitable standard double bubble. Further
information about the geometry of standard double bubbles are available in the
Appendix.

Lemma 2.1 Consider an optimal configuration, made of clusters (Ω1,k , Ω2,k), k ≥ 1.
Then

#{k ∶ ∣Ω1,k ∣∣Ω2,k ∣ = 0}

is bounded from above by a constant depending only on M i , γ i i , i = 1, 2.

Proof The proof follows arguments similar to those used to show the sub-
addictivity formula (2.1) in [16]. It is well known (see, e.g., [2, 9, 13–15, 20], and
the references therein) that there exist m i ,B = m i ,B(γ i i) > 0, i = 1, 2, such that, for all
m ≤ m i ,B(γ i i), the minimizer of

inf
∣X∣=m

{H2(∂X) + γ i i ∫
X×X

∣x − y∣−1dxdy}

is given by Bm . Since H2(∂Bm) (resp. ∫X×X ∣x − y∣−1dxdy) scales like m2/3 (resp.
m5/3), the perimeter term is dominating for all sufficiently small masses. Thus, there
exist geometric constants m i ,S = m i ,S(γ i i) ≤ m i ,B(γ i i) such that

H2(∂Bm1) + γ i i ∫
Bm1×Bm1

∣x − y∣−1dxdy

+H2(∂Bm2) + γ i i ∫
Bm2×Bm2

∣x − y∣−1dxdy

>H2(∂Bm1+m2) + γ i i ∫
Bm1+m2×Bm1+m2

∣x − y∣−1dxdy,

for all m1 , m2 ≤ m i ,S(γ i i), i.e., combining the two balls is energetically favorable
whenever m1 , m2 ≤ m i ,S(γ i i). Thus, we cannot have two balls of the type i constituent,
both with masses less than m i ,S(γ i i). Since the total mass is M1 + M2 < +∞, the proof
is complete. ∎

Lemma 2.2 Consider an optimal configuration, made of clusters (Ω1,k , Ω2,k), k ≥ 1.
Then

m+i ∶= sup
k

m i ,k , m i ,k ∶= ∣Ω i ,k ∣, i = 1, 2,
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is bounded from below by

min{M i

2
,(

3
√

36πM i

4∑2
i=1[ 3

√
36πM2/3

i + γ i i ∫BMi×BMi
∣x − y∣−1dxdy]

)
3

}, i = 1, 2.

Note that, curiously, this lower bound is independent of γ12. As it will be clear from
the proof, this is due to the fact that an upper bound for the energy of an optimal
configuration is given by the energy of two balls of masses M1 and M2, respectively.
Such bound is clearly independent of γ12.

Proof The idea is that, for very small masses, the perimeter term is sub-addictive
and dominating. Assume m+i ≤ M i/2, as otherwise M i/2 is already a lower bound.
Note that

E(Ω1,k , Ω2,k) ≥ S(m1,k , m2,k) ∀k ≥ 1,

where

S(m1 , m2) = perimeter of the standard double bubble with masses m1 and m2 ,
(2.1)

and, by [11, Theorem 4.2] (applied with v1 = m1, x = v2 = m2, n = 3), we get the
following isoperimetric inequality for clusters

S(m1 , m2) ≥
3
√

36π
2

2
∑
i=1

m2/3
i .

Thus, the total energy of our optimal configuration satisfies

∑
k≥1

E(Ω1,k , Ω2,k) ≥
3
√

36π
2

2
∑
i=1
∑
k≥1

m2/3
i ,k .

By the concavity of the function t ↦ t2/3, the sum ∑k≥1 m2/3
i ,k is minimum when

m i ,k ∈ {0, m+i } for all k. Since ∑k≥1 m i ,k = M i , there are at least ⌊ M i
m+i
⌋ many clusters

containing type i constituents, thus

∑
k≥1

E(Ω1,k , Ω2,k) ≥
3
√

36π
2

2
∑
i=1
∑
k≥1

m2/3
i ,k ≥

3
√

36π
2

2
∑
i=1
⌊M i

m+i
⌋(m+i )2/3

≥
3
√

36π
2

2
∑
i=1

M i −m+i
(m+i )1/3 ≥

3
√

36π
4

2
∑
i=1

M i

(m+i )1/3 .

Since our configuration was an optimal one, its energy does not exceed that of two
balls, which we denote by BM1 and BM2 , of masses M1 and M2, respectively. Thus, the
above line continues as

3
√

36π
4

2
∑
i=1

M i

(m+i )1/3 ≤ ∑
k≥1

E(Ω1,k , Ω2,k)

≤
2
∑
i=1
[ 3√36πM2/3

i + γ i i ∫
BMi×BMi

∣x − y∣−1dxdy],
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hence

(m+i )1/3 ≥
3
√

36π
4

M i

∑2
i=1[ 3

√
36πM2/3

i + γ i i ∫BMi×BMi
∣x − y∣−1dxdy]

,

and the proof is complete. ∎

Lemma 2.3 Consider an optimal configuration, made of clusters (Ω1,k , Ω2,k), k ≥ 1.
Assume supk ∣Ω1,k ∣ and supk ∣Ω2,k ∣ are achieved on different clusters, i.e., without loss
of generality,

∣Ω1,1∣ = m+1 = sup
k
∣Ω1,k ∣, ∣Ω2,2∣ = n+2 = sup

k
∣Ω2,k ∣.

Then

inf
k

2
∑
i=1
∣Ω i ,k ∣

is bounded from below by a constant depending only on M i , γ i i , i = 1, 2.

Proof Consider a cluster (Ω1,k , Ω2,k), with k ≥ 3, and let

m2 ∶= ∣Ω2,1∣, n1 ∶= ∣Ω1,2∣, ε i ∶= ∣Ω i ,k ∣ > 0, i = 1, 2.

Note that m+1 ≥ n1, n+2 ≥ m2. The construction will be slightly different depending on
the values of m+1

m2
, m2

n+2
, and ε1

ε2
.

Case 1: m+1
m2

≥ ε1
ε2

. Consider the competitor constructed in the following way (see
Figure 1).
• Move mass ε1 (resp. rm2, with r ∶= ε1

m+1
≤ 1) of type I (resp. type II) constituent from

the cluster (Ω1,k , Ω2,k) to (Ω1,1 , Ω2,1). This is possible, since we are discussing the
case m+1

m2
≥ ε1

ε2
, i.e., rm2 = ε1

m2
m+1

≤ ε2.
• Replace (Ω1,k , Ω2,k) and (Ω1,1 , Ω2,1) with Bε2−rm2 (of type II constituent) and
(Ω̃1,1 , Ω̃2,1) ∶= (1 + r)1/3(Ω1,1 , Ω2,1), while every other cluster remains unaltered.
Now, we estimate the change in energy. Since our initial configuration was optimal,

0 ≤ E((1 + r)1/3(Ω1,1 , Ω2,1)) + E(∅, Bε2−rm2)
− E(Ω1,1 , Ω2,1) − E(Ω1,k , Ω2,k).(2.2)

By a straightforward scaling argument,

E((1 + r)1/3(Ω1,1 , Ω2,1))
= (1 + r)2/3 ∑

0≤i< j≤2
H2(∂Ω i ,1 ∩ ∂Ω j,1), Ω0,1 ∶= (Ω1,1 ∪Ω2,1)c ,

+ (1 + r)5/3
2
∑

i , j=1
γ i j ∫

Ω i ,1×Ω j,1
∣x − y∣−1dxdy
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Ohta–Kawasaki energy in 3D 1349

Figure 1: Schematic representation of the construction of the competitor: original clusters (top),
and modified clusters (bottom). Though the objects in question are three-dimensional, for
better clarity, we represented the construction in two dimensions. Only the affected clusters
are represented here. The clusters are drawn deliberately deformed, to emphasize the fact that
we do not know the clusters’ precise shapes.

≤ (1 + r) ∑
0≤i< j≤2

H2(∂Ω i ,1 ∩ ∂Ω j,1) + (1 + 3r)
2
∑

i , j=1
γ i j ∫

Ω i ,1×Ω j,1
∣x − y∣−1dxdy

≤ (1 + 3r)[ ∑
0≤i< j≤2

H2(∂Ω i ,1 ∩ ∂Ω j,1) +
2
∑

i , j=1
γ i j ∫

Ω i ,1×Ω j,1
∣x − y∣−1dxdy

23333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333334333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333335
=E(Ω1,1 ,Ω2,1)

],

where we used the estimates

(1 + r)2/3 ≤ 1 + r ≤ 1 + 3r, (1 + r)5/3 ≤ (1 + r)2 (r≤1)
≤ 1 + 3r.

Thus, in view of Lemma 2.2,

E((1 + r)1/3(Ω1,1 , Ω2,1)) − E(Ω1,1 , Ω2,1)
≤ 3rE(Ω1,1 , Ω2,1) ≤ ε1H1(M1 , M2 , γ11 , γ22),(2.3)

H1(M1 , M2 , γ11 , γ22) ∶=
2
∑
i=1

3
m+1

[ 3√36πM2/3
i + γ i i ∫

BMi×BMi

∣x − y∣−1dxdy].

https://doi.org/10.4153/S0008439523000401 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439523000401


1350 X. Y. Lu and J. Wei

Now, we estimate E(∅, Bε2−rm2) − E(Ω1,k , Ω2,k):

E(∅, Bε2−rm2) − E(Ω1,k , Ω2,k) ≤ S(0, ε2 − rm2) − S(ε1 , ε2)
= S(0, ε2 − rm2) − S(ε1 , ε2 − rm2) + S(ε1 , ε2 − rm2) − S(ε1 , ε2)

≤ −c1ε2/3
1 , c1 ∶=

3
√

36π
2

,

where the last line is due to [11, Theorem 3.2], which gives

S(ε1 , ε2 − rm2) − S(ε1 , ε2) ≤ 0,

and [11, Theorem 4.2] (applied with v1 = ε1, x = v2 = ε2 − rm2, n = 3), which gives

S(ε1 , ε2 − rm2) ≥
3
√

36π
2

[ε2/3
1 + (ε2 − rm2)2/3 + (ε1 + ε2 − rm2)2/3]

≥
3
√

36π
2

[ε2/3
1 + 2(ε2 − rm2)2/3] =

3
√

36π
2

ε2/3
1 + 3

√
36π(ε2 − rm2)2/3

23333333333333333333333333333333333333333333333333333433333333333333333333333333333333333333333333333333335
=S(0,ε2−rm2)

.

Combining with (2.2) and (2.3) gives the necessary condition

0 ≤ E((1 + r)1/3(Ω1,1 , Ω2,1)) + E(∅, Bε2−rm2) − E(Ω1,1 , Ω2,1) − E(Ω1,k , Ω2,k)
≤ ε1H1(M1 , M2 , γ11 , γ22) − c1ε2/3

1 ,(2.4)

hence

ε1/3
1 ≥ H1(M1 , M2 , γ11 , γ22)c−1

1 ,

thus, completing the proof for this case.

Case 2: n+2
n1
≥ ε2

ε1
. The competitor constructed in a way similar to the previous case.

• Move mass ε2 (resp. rn1, with r ∶= ε2
n+2
≤ 1) of type II (resp. type I) constituent from

the cluster (Ω1,k , Ω2,k) to (Ω1,2 , Ω2,2). This is possible since we are discussing the
case n+2

n1
≥ ε2

ε1
, i.e., rn1 = ε2

n1
n+2
≤ ε1.

• Replace (Ω1,k , Ω2,k) and (Ω1,2 , Ω2,2) with Bε1−rn1 (of type I constituent) and
(1 + r)1/3(Ω1,2 , Ω2,2), while every other cluster remains unaltered.

Then the proof proceeds like in the previous case. With the same arguments from
Case 1, we obtain

E((1+r)1/3(Ω1,2 , Ω2,2)) − E(Ω1,2 , Ω2,2)≤ 3rE(Ω1,2 , Ω2,2)≤ ε2H2(M1 , M2 , γ11 , γ22),

H2(M1 , M2 , γ11 , γ22) ∶=
2
∑
i=1

3
n+2
[ 3
√

36πM2/3
i + γ i i ∫

BMi×BMi

∣x − y∣−1dxdy],

which is the analog of (2.3), and

0 ≤ E((1 + r)1/3(Ω1,2 , Ω2,2)) + E(∅, Bε1−rn1) − E(Ω1,2 , Ω2,2) − E(Ω1,k , Ω2,k)
≤ ε2H2(M1 , M2 , γ11 , γ22) − c2ε2/3

2 ,
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for some computable, purely geometric constant c2 > 0, which is the analog of (2.4).
Thus

ε1/3
2 ≥ H2(M1 , M2 , γ11 , γ22)c−1

2 ,

concluding the proof for this case.
Finally, note that the above two cases are exhaustive: if Case 1 does not hold, i.e.,

ε2
ε1
< m2

m+1
, using m+1 ≥ n1, n+2 ≥ m2, we get

ε2

ε1
< m2

m+1
≤ n+2

n1
,

i.e., Case 2 holds. The proof is thus complete. ∎

Lemma 2.4 Consider an optimal configuration, made of clusters (Ω1,k , Ω2,k), k ≥ 1.
Assume supk ∣Ω1,k ∣ and supk ∣Ω2,k ∣ are achieved on the same clusters, i.e., without loss
of generality,

∣Ω i ,1∣ = m+i = sup
k
∣Ω i ,k ∣, i = 1, 2.

Then

inf
k

2
∑
i=1
∣Ω i ,k ∣

is again bounded from below by a constant depending only on M i , γ i i , i = 1, 2.

Proof We rely on Lemma 2.3: Consider another cluster (Ω1,k , Ω2,k), k ≥ 2. Let
∣Ω1,k ∣ = ε1 > 0, ∣Ω2,k ∣ = ε2 > 0, and note that one of the following cases must hold.

(1) If m+1
m+2

≥ ε1
ε2

, then we can use the construction from Case 1 of Lemma 2.3.

(2) If m+1
m+2

≤ ε1
ε2

, i.e., m+2
m+1

≥ ε2
ε1

, then we can use the construction from Case 2 of
Lemma 2.3.

The proof is thus complete. ∎

A Appendix: geometry of the standard double bubble

In [12], it was shown that the three-dimensional standard double bubbles has the least
surface area among all sets enclosing two regions of given volumes.

Geometrically, the standard double bubble is a surface of revolution, with all the
three surfaces being part of spheres, meeting at 120 degrees (see Figures A.1 and A.2).

Below, we collect several results, used in the proof of Theorem 1.1, on the function
S introduced in (2.1).

Lemma A.1 [11, Theorem 3.2] The function S is strictly concave: given mi , n i ≥ 0,
i = 1, 2, it holds

S((1 − t)m1 + tn1 , (1 − t)m2 + tn2) > (1 − t)S(m1 , m2) + tS(n1 , n2)
for all t > 0.
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Figure A.1: The standard double bubble in R
3 : if the two bubbles that meet have equal volumes,

the shared surface between them is a flat disk. But in the case of unequal volumes, the smaller
bubble, given its larger internal pressure, will bow slightly into the larger bubble. In either
scenario, the two bubbles always meet at angles of 120 degrees. Credit: John M. Sullivan,
Technical University of Berlin and University of Illinois at Urbana–Champaign.

Figure A.2: Cross section of a standard double bubble.

Lemma A.2 [11, Corollary 3.3] The functionS(m1 , m2) is increasing in both variables.

Lemma A.3 [11, Theorem 4.2] Suppose that in a minimal enclosure of volumes m1 and
m2 in R

3, with the latter having a connected component with volume x > 0. Then

2S(m1 , m2)
c1

≥ m2x−1/3 +m2/3
1 + (m1 +m2)2/3 ,

c1 ∶= 3
√

36π = surface area of the unit ball in R
3 .

https://doi.org/10.4153/S0008439523000401 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439523000401


Ohta–Kawasaki energy in 3D 1353

Acknowledgment We are grateful to Chong Wang for useful discussions and
suggestions.

References

[1] S. Alama, L. Bronsard, X. Lu, and C. Wang, Periodic minimizers of a ternary non-local isoperimetric
problem. Indiana Univ. Math. J. 70(2021), 2557–2601.

[2] M. Bonacini and R. Cristoferi, Local and global minimality results for a nonlocal isoperimetric
problem on RN . SIAM J. Math. Anal. 46(2014), 2310–2349.

[3] R. Choksi, C. B. Muratov, and I. Topaloglu, An old problem resurfaces nonlocally: Gamow’s liquid
drops inspire today’s research and applications. Notices Amer. Math. Soc. 64(2017), 1275–1283.

[4] R. Choksi and M. A. Peletier, Small volume fraction limit of the diblock copolymer problem: I.
Sharp-interface functional. SIAM J. Math. Anal. 42(2010), 1334–1370.

[5] R. Choksi and M. A. Peletier, Small volume-fraction limit of the diblock copolymer problem: II.
Diffuse-interface functional. SIAM J. Math. Anal. 43(2011), 739–763.

[6] R. Choksi and X. Ren, On the derivation of a density functional theory for microphase separation of
diblock copolymers. J. Stat. Phys. 113(2003), 151–176.

[7] R. Dorff, G. Lawlor, D. Sampson, and B. Wilson, Proof of the planar double bubble conjecture using
metacalibration methods. Involve 2(2010), 611–628.

[8] J. Foisy, M. A. Garcia, J. Brock, N. Hodges, and J. Zimba, The standard double soap bubble in R2

uniquely minimizes perimeter. Pacific J. Math. 159(1993), 47–59.
[9] R. L. Frank and E. H. Lieb, A compactness lemma and its application to the existence of minimizers

for the liquid drop model. SIAM J. Math. Anal. 47(2015), 4436–4450.
[10] G. Gamow, Mass defect curve and nuclear constitution. Proc. R. Soc. Lond. Ser. A 126(1930),

632–644; Containing Papers of a Mathematical and Physical Character.
[11] M. Hutchings, The structure of area-minimizing double bubbles. J. Geom. Anal. 7(1997), 285–304.
[12] M. Hutchings, F. Morgan, M. Ritoré, and A. Ros, Proof of the double bubble conjecture. Ann. of

Math. (2) 155(2002), 459–489.
[13] H. Knüpfer and C. B. Muratov, On an isoperimetric problem with a competing nonlocal term I: the

planar case. Comm. Pure Appl. Math. 66(2013), 1129–1162.
[14] H. Knüpfer, C. B. Muratov, and M. Novaga, Low density phases in a uniformly charged liquid.

Comm. Math. Phys. 345(2016), 141–183.
[15] H. Knüpfer, C. B. Muratov, and M. Novaga, Emergence of nontrivial minimizers for the

three-dimensional Ohta–Kawasaki energy. Pure Appl. Anal. 2(2019), 1–21.
[16] J. Lu and F. Otto, Nonexistence of a minimizer for Thomas–Fermi–Dirac–von Weizsäcker model.

Comm. Pure Appl. Math. 67(2014), 1605–1617.
[17] E. Milman and J. Neeman, The Gaussian double-bubble conjecture. Ann. of Math. (2) 195(2022),

89–206.
[18] F. Morgan and M. Ritoré, Geometric measure theory and the proof of the double bubble conjecture.

In: Proceedings of the Clay Research Institution Summer School, MSRI, Berkeley, CA, 2001.
[19] F. Morgan and W. Wichiramala, The standard double bubble is the unique stable double bubble in

R2 . Proc. Amer. Math. Soc. 130(2002), 2745–2751.
[20] C. Muratov and H. Knüpfer, On an isoperimetric problem with a competing nonlocal term II: the

general case. Comm. Pure Appl. Math. 67(2014), 1974–1994.
[21] H. Nakazawa and T. Ohta, Microphase separation of ABC-type triblock copolymers.

Macromolecules 26(1993), 5503–5511.
[22] T. Ohta and K. Kawasaki, Equilibrium morphology of block copolymer melts. Macromolecules

19(1986), 2621–2632.
[23] B. W. Reichardt, C. Heilmann, Y. Y. Lai, and A. Spielman, Proof of the double bubble conjecture in

R4 and certain higher dimensional cases. Pacific J. Math. 208(2003), 347–366.
[24] X. Ren and J. Wei, Triblock copolymer theory: free energy, disordered phase and weak segregation.

Phys. D 178(2003), 103–117.
[25] X. Ren and J. Wei, Triblock copolymer theory: ordered ABC lamellar phase. J. Nonlinear Sci.

13(2003), 175–208.

Department of Mathematical Sciences, Lakehead University, Thunder Bay, ON P7B 1L1, Canada
e-mail: xlu8@lakeheadu.ca

Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
e-mail: jcwei@math.ubc.ca

https://doi.org/10.4153/S0008439523000401 Published online by Cambridge University Press

mailto:xlu8@lakeheadu.ca
mailto:jcwei@math.ubc.ca
https://doi.org/10.4153/S0008439523000401

	1 Introduction
	1.1 Notation

	2 Uniform upper bound on the number of clusters
	A Appendix: geometry of the standard double bubble

