
6

Supersymmetric gauge theories

Local gauge invariance is a very powerful requirement. It is a symmetry principle

that provides a powerful rationale for (Yang–Mills type) dynamics which, together

with the ideas of spontaneous symmetry breaking, forms the basis of the Standard

Model. To preserve the spectacular success of the Standard Model, it is reasonable to

expect that its supersymmetric extension will incorporate the gauge principle. This

then leads us to consider theories that are both supersymmetric and locally gauge

invariant. In this chapter, we develop a formula analogous to Eq. (5.73) for a gauge

invariant supersymmetric model with an arbitrary gauge group and any number of

“matter” chiral superfields in specified representations of this group. This formula

will then be our starting point for developing the Minimal Supersymmetric Standard

Model or, for that matter, globally supersymmetric grand unified theories.

6.1 Gauge transformations of superfields

We saw in Chapter 4 that internal symmetry transformations must commute with

the super-charge. Thus the various components of the superfields must transform

in the same way under any internal symmetry transformation and, in particular,

under a local gauge transformation. Hence, for a chiral scalar supermultiplet with

components (S, ψ, F), we want the Lagrangian density to be invariant under the

local gauge transformations,

Sa(x) → [
eigtAωA(x)

]

ab Sb(x), (6.1a)

ψa(x) → [
eigtAωA(x)

]

ab ψb(x), (6.1b)

Fa(x) → [
eigtAωA(x)

]

ab Fb(x), (6.1c)

where we write the local transformation parameters as ωA(x) to distinguish them

from the SUSY transformation parameter α or the Majorana coordinate θ . The

ωA(x) are, of course, real functions of x , g is the gauge coupling constant, and the
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80 Supersymmetric gauge theories

tA are matrix representations of the generators of the gauge group that satisfy the

Lie algebra [tA, tB] = i f ABC tC .

What would be the corresponding transformation property of the superfield Ŝ(x)?

The answer would be easy if the ωA were independent of x : then we would have

simply that Ŝa → [
eigtAωA

]

ab Ŝb. However, such a form cannot be correct for a

local gauge transformation because of the derivatives that appear in the expansion

in Eq. (5.34) or (5.36).

Recall, however, that the expansion (5.40) of the superfield in terms of x̂ =
x + i

2
θ̄γ5γμθ has no derivatives. We would then be tempted to consider the trans-

formations,

Ŝa(x̂, θ ) → [
eigtAωA(x̂)

]

ab Ŝb(x̂, θ ).

The component fields would then transform as

Sa(x̂) → [
eigtAωA(x̂)

]

ab Sb(x̂),

ψa(x̂) → [
eigtAωA(x̂)

]

ab
ψb(x̂),

Fa(x̂) → [
eigtAωA(x̂)

]

ab
Fb(x̂).

These reduce to (6.1a)–(6.1c) for θ = 0. This cannot, however, be right either

because after the gauge transformation, the components of Ŝ, which was a left-

chiral superfield, no longer transform as a left-chiral superfield. This is because

eigtAωA(x̂) (which has only one component field ωA) is not a left-chiral superfield.

To ensure that the gauge transformed left-chiral superfield remains a left-chiral

superfield, we are forced to introduce a set of left-chiral scalar superfields �̂A

with as many members as the generators of the gauge group. We then consider the

superfield transformation,

Ŝa(x̂, θ ) →
[

eigtA�̂A(x̂)
]

ab
Ŝb(x̂, θ ), (6.2)

which at least has the virtue that the transform of a left-chiral superfield remains a

left-chiral superfield. The components then transform as

Sa(x̂) →
[

eigtA�̂A(x̂)
]

ab
Sb(x̂), (6.3a)

ψa(x̂) →
[

eigtA�̂A(x̂)
]

ab
ψb(x̂), (6.3b)

Fa(x̂) →
[

eigtA�̂A(x̂)
]

ab
Fb(x̂). (6.3c)

Setting θ = 0, i.e. looking at the scalar components of (6.3a)–(6.3c), we see that

we almost recover (6.1a)–(6.1c), except for what looks like a complex gauge trans-

formation parameter (since the scalar components of �̂A are complex functions of

x). We will return to this later.
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6.1 Gauge transformations of superfields 81

We stress here that the “parameter superfield” �̂ is not a dynamical degree

of freedom. Its components are just classical functions (Grassman-valued in the

fermion case) of the spacetime co-ordinates. We need to introduce such a field so

that after a gauge transformation, chiral superfields transform appropriately under

a supersymmetry transformation.

Now that we have been able to sensibly extend the notion of gauge transforma-

tions to chiral superfields, we proceed to examine how to couple these in a gauge

invariant way. Here, and in the following, by gauge invariance we will mean in-

variance under this extended gauge transformation. Since all interactions of chiral

superfields with one another are given by the superpotential, we begin our study

with that. However, because the superpotential is simply a polynomial of chiral

superfields and does not contain any spacetime or supercovariant derivatives, it is

clear that choosing it to be invariant under global gauge transformations ensures it

is also invariant under the transformations (6.2). The Lagrangian density derived

from this is then also invariant.

We thus have only to worry about the Kähler potential contributions which give

rise to the kinetic terms for the component fields. For renormalizable theories, the

Kähler potential is given by (5.60). We see immediately that this term is not invariant

under the transformation (6.2) for the chiral superfield because the gauge param-

eter superfield �̂A is intrinsically complex. We have (with matrix multiplication

implied),

Ŝ† → Ŝ†e−igtA�̂
†
A

and, as a result, the Kähler potential term,

Ŝ†Ŝ → Ŝ†e−igtA�̂
†
A eigtB�̂B Ŝ

is no longer a gauge invariant. This should not be surprising. In the usual formulation

of gauge theories, kinetic terms for the scalar or fermion fields are also not gauge

invariant. We have to introduce new fields (the gauge potentials) and couple these to

the scalars or fermions via a gauge covariant derivative to obtain a gauge invariant

Lagrangian that includes these kinetic terms.1

Towards this end, we are led to introduce a set of gauge potential superfields

�̂A in which the vector potentials reside. These are not chiral superfields, but are

chosen to satisfy the reality conditions �̂
†
A = �̂A so that their bosonic components

are real while their fermionic components are Majorana. This ensures that the vector

potential and the gauge field strength are real. The SUSY transformation rules for

1 In fact, the parallel is exact since global gauge invariance of the Yukawa interactions of fermions as well as
the scalar potential ensures these are also locally gauge invariant, just as the global gauge invariance of the
superpotential (which leads to Yukawa interactions and the scalar potential in a supersymmetric theory) also
guarantees its local gauge invariance.
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82 Supersymmetric gauge theories

its components are given by Eq. (5.29a)–(5.29g) of Chapter 5 (with the index A
implied). We will see shortly that it is possible to work with the components S,

ψ,M, and N set to zero. The curl supermultiplet that contains the field strengths

is then constructed from �̂A, just as the field strengths Fμν

A are constructed from

the vector potentials.

In order to maintain local gauge invariance of the Kähler potential, we modify

it to,2

K = Ŝ†e−2gtA�̂A Ŝ (6.4)

where it is, of course, implicit that the dimensionality of the matrix tA depends on

the representation to which the chiral superfield belongs. We then require that the

Kähler potential remains invariant under a gauge transformation, i.e.

Ŝ†e−igtP �̂
†
P e−2gtA�̂′

A eigtQ�̂Q Ŝ = Ŝ†e−2gtA�̂A Ŝ.

This then fixes the gauge transformation rule for the fields �̂A to be,

e−igtP �̂
†
P e−2gtA�̂′

A eigtQ�̂Q = e−2gtA�̂A . (6.5)

Notice that the Kähler potential is now not a polynomial in the fields since the

field �̂ is exponentiated. It still has mass dimension 2, however, because as noted in

the exercise following Eq. (5.60) of the last chapter, [�̂] = 0, and renormalizability

is not affected.

Let us define a left-chiral superfield

gtAŴA ≡ − i

8
D̄DR

[

e2gtC �̂C DLe−2gtB�̂B

]

(6.6)

where the DR/L are the right/left supercovariant derivatives defined in Chapter 5.

Its chiral nature follows because we have already checked (see the exercise be-

low (5.54)) that the components of DR anticommute, so that by the “Majorana

character” of D, DR(D̄DR) = DR(DT
R C DR) = 0. The leading component (i.e. the

θ -independent term) of the superfield ŴA is a spinor, and we will call this a left-

chiral spinor superfield (as opposed to a left-chiral scalar superfield).

Exercise Convince yourself that none of the properties that we have derived for
chiral superfields depended upon the fact that the leading component was a scalar.
In other words, these properties of chiral superfields hold for ŴA also. In particular,
powers of ŴA are left-chiral superfields (though not necessarily Lorentz scalars).

2 The Kähler potential (5.60) of a renormalizable theory is trivially invariant under global gauge transfor-

mations. More generally, if the Kähler potential K (ŜL, Ŝ†
L) is chosen to be globally gauge invariant, then

K (ŜL, Ŝ†
Le−2gtA�̂A ) will also be locally gauge invariant if �̂A transform as discussed below. This is because

the product of any representation times the adjoint contains the original representation.
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Since we know the corresponding transformation rule for �̂A, we can now work

out how the fields ŴA transform under a gauge transformation. We have,

gtAŴA →
− i

8
D̄DR

[

eigtP �̂P e2gtC �̂C e−igtP ′ �̂†
P ′ DLe

igtQ′ �̂†
Q′ e−2gtB�̂B e−igtQ�̂Q

]

.

Now, since DL�̂
†
Q′ = 0 (because �̂

†
Q′ is a right-chiral superfield),

e−igtP ′ �̂†
P ′ DLe

igtQ′ �̂†
Q′ = DL,

and our gauge transformation simplifies to,

gtAŴA → − i

8
D̄DR

[

eigtP �̂P e2gtC �̂C DLe−2gtB�̂B e−igtQ�̂Q

]

.

The same type of argument allows us to move D̄DR past the left-chiral superfield

eigtP �̂P , and we find that

gtAŴA → − i

8
eigtP �̂P

[

D̄DRe2gtC �̂C DLe−2gtB�̂B e−igtQ�̂Q

]

.

The DL in the square brackets may act on either e−2gtB�̂B or e−igtQ�̂Q . When it acts

on the latter, the corresponding contribution to the square bracket becomes,

D̄DR DLe−igtQ�̂Q .

Since DRe−igtQ�̂Q = 0, we can replace DR DL by the anticommutator, and then

using (5.54), obtain DR DLe−igtQ�̂Q = −2i∂/ Ce−igtQ�̂Q . Then, since spacetime and

supersymmetric covariant derivatives commute, we get

D̄DR DLe−igtQ�̂Q = −2i∂μ D̄Lγ μCe−igtQ�̂Q =
2i∂μ D̄LCγ μT e−igtQ�̂Q = −2i∂μ(γ μ DRe−igtQ�̂Q )T = 0

where the expression in the brackets vanishes because �̂Q is left handed. Thus, we

only get a contribution when DL acts on e−2gtB�̂B thereby giving us our final result

for the gauge transformation of ŴA,

tAŴA → eigtP �̂P tB ŴBe−igtQ�̂Q . (6.7)

Notice that unlike the transformation law (6.5) for the gauge potential superfields

�̂A which entailed both �̂A and �̂
†
A, the transformation law for tAŴA brings in

only the fields �̂A. In fact, tAŴA transforms as a gauge field strength F A
μν (except

that the local transformation parameter is a superfield).3

3 See, for example, Introduction to Quantum Field Theory by M. Peskin and D. Schroeder, Perseus Press (1995),
Eq. (15.36), where the field strength transforms as tA Fμν A → eigtP αP tB FμνB e−igtQαQ .
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Let us summarize the main results for local gauge transformations of superfields.

Chiral superfields transform as

Ŝ → eigtA�̂A Ŝ and Ŝ† → Ŝ†e−igtA�̂
†
A ; (6.8a)

the gauge potential superfield transforms as

e−2gtA�̂A → eigtP �̂
†
P e−2gtB�̂B e−igtQ�̂Q ; (6.8b)

finally, the superfields

gtAŴA = − i

8
D̄DR

[

e2gtC �̂C DLe−2gtB�̂B

]

transform as

tAŴA → eigtP �̂P tB ŴBe−igtQ�̂Q . (6.8c)

We will see below that it is the superfield ŴA that contains the field strength Fμν

A ,

and we will work out its other components. But first, to connect up this rather

formal discussion with the usual formulation of gauge theories, let us work out the

transformations (6.8b), and later (6.8c), in terms of the component fields.

6.2 The Wess–Zumino gauge

In the last chapter, we showed that under supersymmetry the Fμν , λ, and the D
components of the curl superfield transformed into one another, but we did not

discuss the other components of this multiplet. The reason for this, as we show

next, is that we can work with all but the λ, V μ, and D components of the gauge
potential superfield set to zero. Then, because the curl superfield is derived from

the gauge potential, the question of the other components does not arise.

6.2.1 Abelian gauge transformations

We begin by working out the transformations (6.8b) in component form for an

Abelian theory. In this case, (6.8b) reads,

g�̂′ = g�̂ + i
g

2
(�̂ − �̂†). (6.9)

Notice that i g
2
(�̂ − �̂†) is a real superfield so that �̂ remains real under a gauge

transformation.

Recall that �̂ is a classical left-chiral scalar superfield. We denote its components

by ω, ξL, and ζ . We are abusing notation here by using the symbol ω both for the

(real) parameter of the local gauge transformation in (6.1a)–(6.1c) as well as for the

https://doi.org/10.1017/9781009289801.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009289801.007
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(complex) scalar component of �̂, but we trust that this will not cause confusion.

We can expand �̂ in its canonical form,

�̂ = ω(x) + i
√

2θ̄ ξL(x) + iθ̄ θLζ (x) + i

2
θ̄γ5γμθ∂μω(x)

− 1√
2
θ̄γ5θ θ̄∂/ ξL(x) + 1

8
(θ̄γ5θ )2�ω(x). (6.10)

Then,

i
g

2
(�̂ − �̂†) = i

g

2

{

i
√

2ωI + i
√

2θ̄ ξ + i√
2
θ̄ θζR + 1√

2
θ̄γ5θζI

+ i√
2

(θ̄γ5γμθ )∂μωR + 1√
2
θ̄γ5θ θ̄∂/ γ5ξ + i

√
2

8
(θ̄γ5θ )2�ωI

}

,

where, ω = ωR+iωI√
2

and ζ = ζR+iζI√
2

. Reading off the components of (6.9) immediately

tells us that under a gauge transformation, the various components of �̂ transform as,

S ′ = S − 1√
2
ωI, (6.11a)

ψ ′ = ψ − i

2
γ5ξ, (6.11b)

M′ = M − 1√
2
ζI, (6.11c)

N ′ = N − 1√
2
ζR, (6.11d)

V μ′ = V μ − 1√
2
∂μωR, (6.11e)

λ′ = λ, (6.11f)

D′ = D. (6.11g)

This transformation preserves the reality of the Bose fields and the Majorana

nature of the Fermi fields.

The important thing to note is that even if we started with a multiplet with non-

zero (S, ψ, M, N , V μ, λ, D), by choosing ωI, ξ , ζI, and ζR appropriately, we

can set S ′, ψ ′, M′, and N ′ to zero! This choice is called the Wess–Zumino gauge.

Of course, if after setting these to zero we perform another SUSY transformation,

we will re-generate these components again. Thus, the Wess–Zumino (WZ) gauge

is not supersymmetric.
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The local parameter ωR(x) is not fixed by our choice of the WZ gauge, and the

transformation corresponding to just this parameter reads,

V μ′ = V μ − 1√
2
∂μωR, (6.12a)

λ′ = λ, (6.12b)

D′ = D, (6.12c)

while the other components are not affected by it. We still have the freedom to

perform the gauge transformations (6.12a)–(6.12c). But these are the usual gauge

transformations for an Abelian theory. The gauge field changes by a gradient, and the

transformation parameter is the real part of the scalar component of the parameter

superfield �̂, while the other components (which, being partners of a gauge field,

must be neutral) remain invariant under the gauge transformation. In other words,

the choice of the WZ gauge does not fix the gauge in the usual sense of the term.

6.2.2 Non-Abelian gauge transformations

We will now work out the transformation laws for the gauge potential superfields

of a non-Abelian gauge theory. Our starting point will be Eq. 6.8b:

e−2gtA�̂′
A = eigtP �̂

†
P e−2gtB�̂B e−igtQ�̂Q . (6.13)

In this case, because the matrices tA do not commute with one another, it is not

possible to explicitly display the transformation to the WZ gauge as we did for

the Abelian case above. Using the fact that a product of the exponential of three

arbitrary matrices u, v, and w can be written (using the Baker–Campbell–Hausdorff

formula) as,

euevew = ez,

with

z = u + v + w + 1

2
[u, v] + 1

2
[u, w] + 1

2
[v, w] + · · · ,

where the ellipsis denotes terms with nested commutators, we see that (6.13) gives

us,

2gtA�̂′
A = 2gtB�̂B + igtB(�̂B − �̂

†
B) + g2 fBC DtD(�̂B�̂C − �̂C�̂

†
B)

+ ig2

2
fBC DtD�̂B�̂

†
C + · · · (6.14)

The nested commutators that we have ignored have even higher powers of couplings.

We first observe that the first two terms of (6.14) are the same as the corresponding
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equation for the Abelian case. Moreover all other terms, including the ellipsis,

vanish in this case since the structure constants are zero. We now see that there

is an iterative procedure for going to the WZ gauge for the non-Abelian case. To

zeroth order in g, the gauge transformation that we need is identical to (6.11a)–

(6.11g) discussed above. But this must be corrected to the next order in g to include

terms on the second line of (6.14), and then again to include the yet higher order

terms denoted by the ellipsis. The point of this argument is only to convince the

reader that there is a Wess–Zumino gauge even for non-Abelian theories, where the

SA, ψA,MA, and NA components of the field �̂A can be set to zero.

From now on, we will work in the WZ gauge where the gauge potential superfield

can be written as,

�̂A = 1

2
(θ̄γ5γμθ )V μ

A + iθ̄γ5θ θ̄λA − 1

4
(θ̄γ5θ )2DA. (6.15)

We must remember that the components ωIA, ξA, and ζA of the parameter superfield

�̂A are now fixed, and the only gauge freedom corresponds to transformations that

depend on the parameter ωRA (which, we will see, is the gauge transformation

in the conventional sense). We will thus compute how the components of �̂A

change under the gauge transformation (6.13) taking the parameter superfield with

ωIA = ξA = ζA = 0, and ωRA/
√

2 ≡ αA. In other words, we take,

�̂A = αA(x) + i

2
(θ̄γ5γμθ )∂μαA(x) + 1

8
(θ̄γ5θ )2�αA(x) (6.16)

and

�̂
†
A = αA(x) − i

2
(θ̄γ5γμθ )∂μαA(x) + 1

8
(θ̄γ5θ )2�αA(x). (6.17)

This transformation clearly preserves the WZ gauge. For simplicity, we will only

compute an infinitesimal gauge transformation.

In evaluating the LHS of (6.13), we need only keep terms in the expansion of

the exponential to second order, since each term in (6.15) is at least quadratic in θ .

Thus,

e−2gtA�̂′
A = 1 − gθ̄γ5γμθ (t · V μ′) − 2ig(θ̄γ5θ )θ̄ (t · λ′)

+ 1

2
(θ̄γ5θ )2

{
gt · D′ − (gt · V μ′)(gt · V ′

μ)
}
. (6.18)

We have used (5.24e) to cast the expression in canonical form and introduced the

notation t · X as a shorthand for tA X A.
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A straightforward substitution of (6.16), (6.17), and (6.15) into the RHS of

Eq. (6.13) yields, to first order in αA,

1 − gtA

[

θ̄γ5γμθV μ

A + 2i(θ̄γ5θ )θ̄λA − 1

2
(θ̄γ5θ )2DA

]

− 1

2
g2tAtB(θ̄γ5θ )2V μ

A VμB

+ ig
[

(α · t), e−2gtA�̂A

]

+ g

2
θ̄γ5γμθ

{

∂μα · t, e−2gtA�̂A

}

+ i

8
g(θ̄γ5θ )2

[

�α · t, e−2gtA�̂A

]

.

The last term of this expression vanishes because the commutator has at least two

θs yielding a term with more than four θs. The second last term involving an

anticommutator has two non-vanishing terms:

gθ̄γ5γμθ∂μα · t + g2

2
(θ̄γ5θ )2∂μαAVμB{tA, tB}.

The third last term becomes

− ig
[
(α · t), gt · V μθ̄γ5γμθ

] + 2g
[
(α · t), gθ̄ t · λ

]
θ̄γ5θ

+ i
g

2
[(α · t), gt · D] (θ̄γ5θ )2 − i

g

2

[
(α · t), (gt · V μ)(gt · Vμ)

]
(θ̄γ5θ )2.

Putting all the pieces together, the RHS of (6.13) becomes

1 − θ̄γ5γμθ (gt · V μ − g∂μα · t + ig[α · t, gt · V μ])

− 2i(θ̄γ5θ )θ̄ (gt · λ + ig[α · t, gt · λ])

+ 1

2
(θ̄γ5θ )2

(
gD · t − (gt · V μ)(gt · Vμ) + g2∂μαAVμB{tA, tB}

+ ig2[α · t, t · D] − ig[α · t, (gt · V μ)(gt · Vμ)]
)
. (6.19)

Equating the coefficients of −gθ̄γ5γμθ in (6.19) and (6.18) leads to,

(t · V μ′) = t · V μ − ∂μα · t + igαAV μ

B [tA, tB]. (6.20)

Comparing coefficents of −2ig(θ̄γ5θ )θ̄ gives,

(t · λ′) = t · λ + igαAλB[tA, tB]. (6.21)

Finally, by equating coefficients of g
2
(θ̄γ5θ )2 we get,

t · D′ − g(t · V μ′)(t · V ′
μ) = t · D + igαADB[tA, tB] − g(t · V μ)(t · Vμ)

+ g∂μαAVμB{tA, tB} − ig2αAV B
μ V μC [tA, tBtC ].
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Exercise Using the relation

i[tA, tBtC ] = − f AB DtDtC − f AC DtBtD,

show that Eq. (6.20) leads to

−g(t · V μ′)(t · V ′
μ) = − g(t · V μ)(t · Vμ) + gVμA∂μαB{tA, tB}

− ig2[tA, tBtC ]αAV B
μ V μC .

Using the result of the exercise above, it is easy to show that

D′
C = DC − g f ABCαADB . (6.22)

It is now easy to see from (6.20) and (6.21) that for an infinitesimal gauge

transformation by a parameter αA, the component fields of the gauge potential

superfield transform as,

V μ′
C = V μ

C − ∂μαC − g f ABCαAV μ

B , (6.23a)

λ′
C = λC − g f ABCαAλB, (6.23b)

D′
C = DC − g f ABCαADB . (6.23c)

The first of these is exactly what we expect for the gauge transformation of a non-

Abelian gauge potential. The vector field V μ

C does not transform covariantly in

that its transformation includes the inhomogeneous ∂μαC piece. The fields λC and

DC transform covariantly under the gauge transformation (i.e. the transformation

is homogeneous). For the λC , for instance, this is just what we expect since it

corresponds to fermions in the adjoint representation of the gauge group.

6.3 The curl superfield in the Wess–Zumino gauge

Before we can proceed with the construction of supersymmetric Lagrangians for

gauge theories, we need to work out the explicit form of the curl superfield ŴA

introduced in Eq. (6.6):

gtAŴA = − i

8
D̄DR

[

e2gtA�̂A DLe−2gtB�̂B

]

.

We will work in the WZ gauge where �̂A is given by (6.15). The calculation is

rather lengthy, so we will break it up into a number of steps, and leave it to the

reader to work through the details.

Step 1: Act with D = ∂/∂θ̄ − i∂/ θ on e−2gtA�̂A to obtain

De−2gtA�̂A = −2gt · V μ(γ5γμθ ) + ig
[
θ̄ θγ5t · λ − (θ̄γ5θ )t · λ − θ̄γ5γαθγ αt · λ

]

+ 2(θ̄γ5θ )γ5θ{gt · D − g2(t · V )2} − ig(t · ∂/ �V )θ (θ̄γ5θ )

− 1

2
g(θ̄γ5θ )2γ5(t · ∂/ λ), (6.24)
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where we have, as usual, made use of various θ identities to cast the result in

canonical form.

Step 2: Act with PL on the above expression to obtain

DLe−2gtA�̂A = 2gt · �V θR − ig
[
2θ̄ θRt · λL + θ̄γ5γαθγ αt · λR

]

− 2(θ̄γ5θ )θL{gt · D − g2(t · V )2}
− ig(t · ∂/ �V )θL(θ̄γ5θ ) + 1

2
(θ̄γ5θ )2(gt · ∂/ λR). (6.25)

Step 3: Next we multiply this by e2gt ·�̂ to find after some tedious algebra,

e2gt ·�̂ DLe−2gt ·�̂ = 2gt · �V θR − 2igθ̄ θRt · λL − ig(θ̄γ5γαθ )γ αt · λR

− 2θ̄γ5θ{gt · D + i
g

2
(t · ∂/ �V ) + 1

2
ig2 f ABC tC �VB �VA}θL

+ 1

2
(θ̄γ5θ )2

{
(gt · ∂/ λR) + 2g2 f ABC �VBtCλAR

}
. (6.26)

The structure constants in (6.26) come from writing the product tAtB of Lie algebra

generators as the sum of a commutator and an anticommutator. The former gives

the structure constants, while the symmetry of the latter (under interchange of A
and B) helps to reduce the expression to the form given above.

Step 4: Work out D̄ 1+γ5

2
D to find

D̄
1 + γ5

2
D = − ∂

∂θa
PRab

∂

∂θ̄b
+ θ̄ θL� − 2i(PR∂/ θ )c

∂

∂θc
. (6.27)

We can now work out the action of ∂
∂θa

PRab
∂

∂θ̄b
on various terms in (6.26) involving

θ . Using (5.26a)–(5.26e), we obtain:

∂

∂θa
PRab

∂

∂θ̄b
θ̄ PRθ = 4, (6.28a)

∂

∂θa
PRab

∂

∂θ̄b
(θ̄γ5γαθ ) = 0, (6.28b)

∂

∂θa
PRab

∂

∂θ̄b
(θ̄γ5θ )θLc = 4θLc, and (6.28c)

∂

∂θa
PRab

∂

∂θ̄b
(θ̄γ5θ )2 = −8θ̄ θL. (6.28d)
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We thus obtain the action of D̄ 1+γ5

2
D on (6.26) to find

8igt · λL + 8{gt · D + i
g

2
(t · ∂/ �V ) + i

g2

2
f ABC tC �VB �VA}θL

+ 4θ̄ θL{(gt · ∂/ λR) + 2g2 f ABC �VBtCλAR} + 2gθ̄ θL(t · � �V )θR

+ ig(θ̄γ5θ )2(t · �λL) − 4ig∂μ(t · �V )γ μθL − 8gθ̄∂/ θL(t · λL) + 4g∂/ t · λRθ̄ θL

+ 8iθ̄∂/ θL{gt · D + i
g

2
(t · ∂/ �V ) + i

2
g2 f ABC tC �VB �VA}θL. (6.29)

Step 5: To complete our calculation, we will exploit the fact that ŴA is a left-

chiral superfield; hence, its dependence on θ̄L and θR can arise only through x̂ . To

obtain ŴA, we can thus pick off the terms involving only θ̄R and θL from Eq. (6.29),

including of course the θ independent term, and then simply change the argument

in the component fields from x to x̂ . These terms are,

8igt · λL + 8{gt · D + i
g

2
(t · ∂/ �V ) + i

g2

2
f ABC tC �VB �VA}θL

+ 4θ̄ θL{(gt · ∂/ λR) + 2g2 f ABC �VBtCλAR} − 4ig∂μt · �V γ μθL + 4gθ̄ θL∂/ t · λR

= 8igt · λL + 4igγ μγ ν[(∂μVν A − ∂νVμA)tA + g f ABC VμB Vν AtC ]θL

+ 8gθ̄ θLtC [∂/ δAC + g f ABC �VB] λRA + 8gt · DθL. (6.30)

Since Fμν A = ∂μVν A − ∂νVμA − g f ABC VμB VνC , the term in the first square brack-

ets above is just tA Fμν A. Also, recall that the gauge group structure constants furnish

a representation – the adjoint representation of the gauge group: [tadj
C ]AB = −i fC AB .

Using this, the second set of square brackets above yields

[∂/ δAC + g f ABC �VB]λRA = [∂/ δC A + ig(tadj
B )C A �VB]λRA,

which is the gauge covariant derivative acting on the field λA that always belongs

to the adjoint representation of the gauge group.

Thus, the θ̄L and θR independent part of D̄DR{e2gt ·�̂ DLe−2gt ·�̂} is:

8igtAλAL + 4igγ μγ ν tA Fμν AθL

+ 8gθ̄ θLtA(�DλR)A + 8gtADAθL.

Comparing this with our definition (6.6) of gtAŴA, and then replacing the argument

x with x̂ we find that, in the WZ gauge,

ŴA(x̂, θ ) = λLA(x̂) + 1

2
γ μγ ν Fμν A(x̂)θL − iθ̄ θL(�DλR)A − iDA(x̂)θL, (6.31)

where �DAC = ∂/ δAC + ig(tadj
B )AC �VB is the gauge covariant derivative in the ad-

joint representation. The interested reader can explicitly check that, aside from the
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factor 8igtA, expanding the component fields about x̂ = x indeed reproduces the

expression in (6.29).

We note the following:

� We have already remarked that ŴA is a left-chiral spinor superfield. We see

explicitly that the θ independent term in ŴA is a spinor. In addition to its gauge

index A, it carries a spinor index which we have suppressed.
� ŴA has components λA, Fμν A, and DA; the spinor λA and the scalar DA are the

same components that are in the gauge potential superfield �̂A, but instead of the

vector potential, the third component of ŴA is the field strength.
� The product ŴAŴA is gauge invariant but not Lorentz invariant. Since Ŵ c

A =
CŴ

T

A transforms as the adjoint representation also, but is a right-chiral superfield,

the combination

Ŵ c
AŴA

is a gauge-invariant, Lorentz-invariant bilinear in ŴA, and is a product of only
left-chiral superfields. Its F-term is, therefore, a candidate for the Lagrangian

density.

Exercise Show that

Ŵ c
A = λ̄RA + 1

2
Fμν Aθ̄Rγ νγ μ

− iθ̄ θL

[

−λ̄LA

←
∂/ −g fC B Aλ̄LC �VB

]

− iDAθ̄R. (6.32)

6.4 Construction of gauge kinetic terms

We have just seen that the F-term of Ŵ c
AŴA is a candidate for a supersymmetric

action. Moreover, inspection of (6.31) and (6.32) shows that this term contains

a contribution proportional to Fμν

A Fμν A so that this term potentially contains the

gauge kinetic term. Before computing it, however, let us do some dimensional

analysis to see the constraints imposed by renormalizability.

The dimensionality of the superfield ŴA can be worked out as

[ŴA] = [D̄DD] = [(
∂

∂θ
)3] = 3

2
.

Since renormalizability requires that the (composite) superfield whose F-term is

proportional to the Lagrangian density have mass dimension ≤ 3, this function can

at most be quadratic in ŴA. We are thus left with just Ŵ c
AŴA as the most general
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Lorentz and gauge invariant bilinear.4 Notice also that since ŴA carries with it a

spinor index, it can only enter via even powers, assuming that the other fields in the

theory are just chiral scalar superfields. We do not, therefore, have to worry about

products of ŴAs and ŜLi in a renormalizable theory.

We are thus led to compute the θ̄ θL term of Ŵ c
AŴA. We can do so by simply using

the form (6.31) for ŴA and setting x̂ = x because, since x̂ − x is already bilinear

in θ , any other contribution to the θ̄ θL term can only come from the θ independent

term of this product. But this contribution is proportional to θ̄γμθ and not θ̄ θL that

we are looking for, and so does not contribute. We thus have,

Ŵ c
AŴA

∣
∣
∣
θ̄ θL term

=
[

λ̄RA + 1

2
Fμν Aθ̄Rγ νγ μ + iθ̄ θL

(

λ̄LA

←
∂/ +g fC B Aλ̄CL �VB

)

− iDAθ̄R

]

×
[

λLA + 1

2
γ μ′

γ ν ′
Fμ′ν ′ AθL − iθ̄ θL

(
∂/ λRA + g fC ′ B ′ A �V ′

BλRC ′
) − iDAθL

]∣
∣
∣
∣
θ̄ θL term

.

The sources of θ̄ θL terms are,

1.

(

−iλ̄RA(∂/ λRA + g fC B A �VBλRC ) + i(λ̄LA

←
∂/ +g fC B Aλ̄CL �VB)λLA

)

θ̄ θL

2. 1
4

Fμν A Fμ′ν ′ Aθ̄Rγ νγ μγ μ′
γ ν ′

θL,

3. −DADAθ̄ θL, and

4. − i
2

Fμν Aθ̄Rγ νγ μDAθL − i
2

Fμν Aθ̄Rγ μγ νDAθL.

In the first term above, we can integrate by parts and shift the derivative acting

on λ̄A to one acting on λA, at the cost of a sign. Then, up to a surface term that we

will not display, the derivative terms together yield the usual kinetic term for the

spinor field λ aside from a factor of −2.

The second term can be simplified by noting that,

θ̄Rγ νγ μγ μ′
γ ν ′

θL = 1

4
T r

[

γ νγ μγ μ′
γ ν ′

PL{θ̄ θI + θ̄γ5θ · γ5 − θ̄γ5γρθ · γ5γ
ρ}

]

= 1

2
(θ̄ θL)T r

[

γ νγ μγ μ′
γ ν ′

PL

]

where we have used (5.21). This then simplifies to
(

1

2
Fμν A Fμν

A + i

4
ενμμ′ν ′

FAμν FAμ′ν ′

)

θ̄ θL. (6.33)

4 It is clear from (6.31) that γ5ŴA = −ŴA so that Ŵ c
Aγ5ŴA is not an independent term.
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The first term in (6.33) is the usual gauge kinetic term apart from a factor −2, while

the second term can be re-written as

1

4
ενμμ′ν ′

FAμν FAμ′ν ′

= −εμνμ′ν ′
(∂μ AAν − g

2
f ABC ABμ ACν)(∂μ′ AAν ′ − g

2
f AB ′C ′ ABμ′ ACν ′)

= −εμνμ′ν ′
∂μ(AAν∂μ′ AAν ′ − g

3
f ABC AAν AB ′μ′ AC ′ν ′)

− εμνμ′ν ′ g2

4
f ABC f AB ′C ′ ABμ ACν AB ′μ′ AC ′ν ′ .

In the last step the 1/3 enters because it does not matter upon which of the three

gauge potentials the derivative acts – they all give the same contribution. We will

leave it to the reader (see exercise below) to check that the last line of the expression

above vanishes, so that the second term of (6.33) turns out to be a total derivative

and makes no contribution to the equations of motion.

Finally, the last term in our list contracts a symmetric and antisymmetric tensor,

and so identically vanishes.

Exercise Verify that

εμνμ′ν ′
g2

4
f ABC f AB ′C ′ Aμ

B Aν
C Aμ′

B ′ Aν ′
C ′ = 0.

Hints: one way to verify this is to note that we may write,

tP fP BC Aμ

B Aν
C = [tB, tC ]Aμ

B Aν
C ≡ [Aμ, Aν]

tQ fQ B ′C ′ Aμ′
B ′ Aν ′

C ′ = [tB ′, tC ′]Aμ′
B ′ Aν ′

C ′ ≡ [Aμ′
, Aν ′

],

where we have introduced matrices, Aμ ≡ Aμ

BtB etc. Then since T r (tP tQ) ∝ δP Q,
the term in question becomes εμνμ′ν ′ T r (AμAνAμ′

Aν ′
) (aside from a multiplicative

constant), and so vanishes because of the cyclic property of the trace.

Collecting all terms from the computation of the coefficient of θ̄ θL in Ŵ c
AŴA

and inserting an additional −1/2 to put the gauge kinetic terms in canonical form,

we obtain a supersymmetric and gauge-invariant Lagrangian density LGK for the

gauge field kinetic terms,

LGK = i

2
λ̄A �DACλC − 1

4
Fμν A Fμν

A + 1

2
DADA, (6.34)

where, as before,

Fμν A = ∂μVν A − ∂νVμA − g f ABC VμB VνC and

(�Dλ)A = ∂/ λA + ig(tadj
B �VB)ACλC .
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We see that we have the usual gauge kinetic term for the Yang–Mills field. We

also have a gauge invariant kinetic term for the massless spin 1
2

fields λA in the

adjoint representation of the gauge group. The spin zero fieldsDA enter without any

derivatives so these will turn out to be auxiliary fields that satisfy algebraic equations

of motion. The quanta of the theory whose Lagrangian density is LGK would thus

be massless vector bosons together with a set of massless spin 1
2

fermions, both in

the adjoint representation of the gauge group. These fermions are termed gauginos.

Exercise In our derivation of the Lagrangian density (6.34), we dropped surface
terms. Show that these can be written as,

1

4
εμνρσ Fμν

A Fρσ

A − i

2
∂μ

(
λAγ μγ5λA

)
.

These terms do not contribute to the field equations. Even so, they might be relevant
in a non-Abelian gauge theory when instanton effects are important. In Abelian
gauge theories, they have no effect.

We remark that the superfield Ŵ c
AŴA is intrinsically complex, and it was only

fortuitous that the surface terms that we ignored were anti-Hermitian. This would

not be a problem, since, as in the case of the Lagrangian density for chiral superfields

that we obtained in the last chapter, we would simply have added the Hermitian

conjugate. The point, however, is that (since the Hermitian and anti-Hermitian parts

are separately supersymmetric and gauge invariant) a supersymmetric gauge theory

may include terms proportional to the surface terms shown in the preceding exercise.

In non-Abelian gauge theories, the corresponding constant of proportionality is

conventionally written as θ (not to be confused with the Grassmann number θ that

we have been using).

Finally we note that it is only in the WZ gauge that we can set the scalar com-

ponents of �̂A to zero. This is what gave us only a finite number of terms in the

expansion (6.6) of ŴA, and not an infinite series. The latter would have resulted in

a non-polynomial Lagrangian where renormalizability would not have been at all

clear.

6.5 Coupling chiral scalar to gauge superfields

We have already seen that the gauge interactions of chiral superfields enter via the

Kähler potential (6.4),

Ŝ†
Le−2gtA�̂A ŜL. (6.35)

There is one such term for every chiral scalar superfield that we introduce. The

(θ̄γ5θ )2 component is a candidate Lagrangian density. In the previous chapter we
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had seen that, for g = 0, these gave rise to the kinetic energy terms for the scalar

and fermion components of the chiral supermultiplet.

To work out this quartic term in θ , we substitute the expansions for Ŝ†
L and ŜL

from Eqs. (5.34) and (5.37) together with the unprimed version of (6.18) for the

exponential of �̂ in the WZ gauge. There are then four sources of θ4 terms in (6.35).

First, we have the quartic terms from just Ŝ†
LŜL multiplying the 1 from the expo-

nential, which was exactly what we had worked out in Chapter 5. These terms are,

Ŝ†
LŜL

∣
∣
∣
θ4

= −1

2
(θ̄γ5θ )2{ i

2
ψ̄∂/ ψ + F†F + (∂μS)†(∂μS)}. (6.36a)

Next we have contributions from,

−Ŝ†
Lag(t · V μ)abŜLb(θ̄γ5γμθ ), (6.36b)

where the chiral superfields contribute two factors of θ . Then we have another

contribution from,

−2ig(θ̄γ5θ )Ŝ†
La θ̄ (t · λ)abŜLb (6.36c)

with one θ from the chiral superfields, and finally, we have a contribution from,

1

2
(θ̄γ5θ )2Ŝ†

La{gt · D − g2(t · V )2}abŜLb. (6.36d)

Non-zero terms from (6.36b) can only come when we have either θL and a θ̄L or

θR and a θ̄R from the chiral superfields. These contributions are:

2ψ̄aθR[−gt · V μ]abθ̄ψLb(θ̄γ5γμθ ) − i

2
(θ̄γ5γμθ )∂μS†

a[−gt · V ν]abSb(θ̄γ5γνθ )

+ i

2
(θ̄γ5γμθ )S†

a[−gt · V ν]ab∂μSb(θ̄γ5γνθ ).

Using (5.21) on the first of these terms, and (5.24d) on the remaining terms to cast

this in the canonical form, we obtain,

1

2
gψ̄(t · �V )ψL(θ̄γ5θ )2 − i

2
(θ̄γ5θ )2∂μS†[gt · V μ]S + i

2
(θ̄γ5θ )2S†[gt · V μ]∂μS.

Note that in the first term here we can rewrite (for reasons that will become clear

shortly) the fermion bilinear using,

−ψ̄a(t · �V )ab
1 − γ5

2
ψb = ψ̄b(t · �V )ab

1 + γ5

2
ψa

= 1

2

[−ψ̄(t · �V )ψL + ψ̄(t∗· �V )ψR

]
.

The terms from (6.36c) are

−2ig(θ̄γ5θ )(−i
√

2ψ̄aθR)θ̄ (t · λ)abSb − 2ig(θ̄γ5θ )S†
a θ̄ (t · λ)ab(−i

√
2θ̄ψLb).
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Again, casting these in canonical form using the relations for bilinears of Majorana

spinors together with (5.21), we obtain

g√
2

(θ̄γ5θ )2(t · λ)abψRaSb + g√
2

(θ̄γ5θ)2S†
a(tA)abλ̄AψLb.

We take the Lagrangian density to be the coefficient of − 1
2
(θ̄γ5θ )2 in (6.35) which,

as we saw in the last chapter, gives the correctly normalized kinetic terms for the

scalar and fermion components of Ŝ.

Collecting all the terms from Eq. (6.36a)–(6.36d), we find that the contribution

to the Lagrangian density from Ŝ†e−2gtA�̂A Ŝ is,

Lgauge = i

2
ψ̄∂/ ψ + (∂μS)†(∂μS) + F†F

+ i(∂μS)†g(t · V μ)S − iS†g(t · V μ)∂μS − S† [
gt · D − g2(t · V )2

]
S

+ 1

2

[−gψ̄(t · �V )ψL + gψ̄(t∗· �V )ψR

]

−
( √

2gS†tAλ̄A
1 − γ5

2
ψ + h.c.

)

. (6.37)

We can now cast the interactions of the scalar and fermion components of the

chiral superfields with gauge bosons in the familiar form using gauge covariant

derivatives introduced in Chapter 1. The covariant derivatives on S are,

DμS = ∂μS + igt · VμS (6.38a)

(DμS)† = (∂μS)† − igS†t · Vμ. (6.38b)

For the action of the covariant derivative on the Majorana spinor ψ , we must be

careful because (3.3) shows that its left- and right-handed components are complex

conjugates of one another.5 Thus, if ψL transforms according to a representation

given by tA, then ψR transforms according to the conjugate representation whose

generators are given by −t∗
A.

An aside on conjugate representations Consider a field φ that transforms under
some representation of a group, and let tA be a matrix representation of the corre-
sponding generators. Then if φ → eiαAtAφ, φ∗ → e−iαAt∗

Aφ∗ = eiαA(−tA)∗φ∗. In other
words, the conjugate field transforms with generators (−tA)∗.

It is easy to see that these satisfy the same Lie algebra [tA, tB] = i f ABC tC as
the generators tA. Since the structure constants can be chosen to be real, we have

5 Only if we insist that the left- and right-handed components transform the same way, can we conclude that the
fermion must belong to a real representation. For the case of the U (1) group, this will mean that the charge
of the fermion is zero. But we stress that it is possible to represent each chirality of a charged particle by a
Majorana field. Then one of the chiral components of this Majorana field corresponds to the field of the particle,
while the other corresponds to the antiparticle field.
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[t∗
A, t∗

B] = −i f ABC t∗
C , or [−t∗

A, −t∗
B] = i f ABC (−t∗

C ). Thus, if tA is a set of represen-
tation matrices, then −t∗

A is equally good. If the set of d × d matrices tA furnish a
representation denoted by d, the matrices −t∗

A provide another equally good repre-
sentation of the same dimensionality. This is known as the conjugate representation
and is denoted by d∗.

The gauge covariant derivative on a Majorana fermion ψ whose left-chiral com-

ponent transforms via a representation furnished by tA is thus given by,

Dμψ = ∂μψ + ig(t · Vμ)ψL − ig(t∗ · Vμ)ψR. (6.38c)

We can then write the Lagrangian (6.37) as,

Lgauge = i

2
ψ̄ �Dψ + (DμS)†(DμS) + F†F

−gS†t · DS +
(

−
√

2gS†tAλ̄A
1 − γ5

2
ψ + h.c.

)

. (6.39)

6.5.1 Fayet–Iliopoulos D-term

We have seen that the D-term of any superfield is a candidate for a Lagrangian. The

D-term of a product of chiral superfields, being a total derivative, is not interesting.

However, the D-term of the gauge potential multiplet �̂A is not a derivative of

anything. It is independent of the terms that we have considered so far. As we saw

in (6.23c), it is however gauge covariant and not gauge invariant, unless of course

f ABC = 0, i.e. when the gauge group is Abelian. We can thus include

LFI = ξpDp (6.40)

in the Lagrangian density, where p runs over each U (1) factor of the gauge group,

where ξp are coupling constants with mass dimension [ξp] = 2.

It is easy to see that the D-term of higher powers of �̂ is not gauge invariant.

6.6 A master Lagrangian for SUSY gauge theories

We now collect the various contributions to the Lagrangian density of a renormal-

izable supersymmetric gauge theory that we have obtained into a single master

formula which will serve as the starting point for SUSY model building. Our

Lagrangian density consists of,

L = LGK + Lgauge + LF + LFI, (6.41)

where LGK, Lgauge, and LFI have been constructed in this chapter, and LF is as

given in Eq. (5.70) of Chapter 5. LGK and Lgauge have been explicitly constructed
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to be gauge invariant. Since the superpotential f̂ is a sum of products of superfields

without any (spacetime or supercovariant) derivatives, LF will be just a product of

fields with no derivatives. Thus, the condition for LF to be locally gauge invariant

is that it simply be globally gauge invariant. This is guaranteed if the superpotential

is globally gauge invariant.

The complete Lagrangian for renormalizable, supersymmetric gauge theories is

L =
∑

i

(DμSi )
†(DμSi ) + i

2

∑

i

ψ̄i �Dψi +
∑

i

F†
i Fi

+ i

2

∑

A,B

λ̄A �DABλB − 1

4

∑

A

Fμν A Fμν

A + 1

2

∑

A

DADA

+
(

−
√

2g
∑

i

S†
i t · λ̄

1 − γ5

2
ψi + h.c.

)

− g
∑

i,A

S†
i (tADA)Si

−
∑

p

ξpDp +
∑

i

⎧
⎨

⎩
−i

(

∂ f̂

∂Si

)

Ŝ=S
Fi + i

(

∂ f̂

∂Si

)†

Ŝ=S
F†

i

⎫
⎬

⎭

−1

2

∑

i, j

ψ̄i

⎡

⎣

(

∂2 f̂

∂Si∂S j

)

Ŝ=S

1 − γ5

2
+

(

∂2 f̂

∂Si∂S j

)†

Ŝ=S

1 + γ5

2

⎤

⎦ ψ j , (6.42)

where i, j denote the matter field types, A is the gauge group index, and p runs

over all the U (1) factors of the gauge group.

To obtain our final formula, we may eliminate the auxiliary fields Fi and DA via

their equations of motion, which are purely algebraic:

Fi = −i

(

∂ f̂

∂Si

)†

Ŝ=S
and F†

i = i

(

∂ f̂

∂Si

)

Ŝ=S
(6.43a)

DA = g
∑

i

S†
i tASi + ξA. (6.43b)

Substituting into Eq. (6.42), we arrive at the master formula for supersymmetric

gauge theories:

L =
∑

i

(DμSi )
†(DμSi ) + i

2

∑

i

ψ̄i �Dψi +
∑

α,A

[
i

2
λ̄αA(�Dλ)αA − 1

4
FμναA Fμν

αA

]

−
√

2
∑

i,α,A

(

S†
i gαtαAλ̄αA

1 − γ5

2
ψi + h.c.

)
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−1

2

∑

α,A

[
∑

i

S†
i gαtαASi + ξαA

]2

−
∑

i

∣
∣
∣
∣
∣

∂ f̂

∂Ŝi

∣
∣
∣
∣
∣

2

Ŝ=S
(6.44)

−1

2

∑

i, j

ψ̄i

⎡

⎣

(

∂2 f̂

∂Ŝi∂Ŝ j

)

Ŝ=S

1 − γ5

2
+

(

∂2 f̂

∂Ŝi∂Ŝ j

)†

Ŝ=S

1 + γ5

2

⎤

⎦ ψ j ,

where the covariant derivatives are given by,

DμS = ∂μS + i
∑

α,A

gαtαAVμαAS, (6.45a)

Dμψ = ∂μψ + i
∑

α,A

gα(tαAVμαA)ψL − i
∑

α,A

gα(t∗
αAVμαA)ψR, (6.45b)

(�Dλ)αA = ∂/ λαA + igα

(

tadj
αB �VαB

)

AC
λαC , (6.45c)

FμναA = ∂μVναA − ∂νVμαA − gα fαABC VμαB VναC . (6.45d)

The index α that suddenly appears in (6.44) is simply to allow for several gauge

couplings that would be present if the gauge group is not simple.

Exercise Observe that unlike ordinary derivatives, the covariant derivatives de-
fined above do not commute. Show that their commutator is given by,

[
Dμ, Dν

] = i
∑

α,A

gαtαA FμναA . (6.46)

We will return to this result when we consider the covariant derivative in general
relativity.

We note the following features of our master Lagrangian density (6.44).

1. The first line is the usual gauge-invariant kinetic energies for the components of

the chiral and gauge superfields. The derivatives that appear are gauge-covariant

derivatives appropriate to the particular representation in which the field belongs.

For example, if we are talking about SUSY QCD, for quark fields in the first

line of Eq. (6.44) the covariant derivative contains triplet SU (3)C matrices: i.e.

Dμ = ∂μ + igs
λA
2

V μ

A , whereas the covariant derivative acting on the gauginos in

the following line will contain octet matrices. These terms completely determine

how all particles couple to gauge bosons. As in any gauge theory, this coupling

is fixed by the minimal coupling prescription.

2. The next line describes the interactions of gauginos with the scalar and fermion

components of chiral superfields. We will see later that matter particles as well

as Higgs bosons together with their superpartners belong to chiral scalar su-

permultiplets. Thus, this term describes how gauginos couple matter fermions
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to their superpartners, or Higgs bosons to their superpartners. Notice that these

interactions are completely determined by the gauge couplings. Here tαA is the

appropriate dimensional matrix represention of the group generators for the αth

factor of the gauge group, while gα is the corresponding gauge coupling constant

(one for each factor of the gauge group). Matrix multiplication is implied.

3. The third line describes the scalar potential. This has two distinct contributions.

The first term on this line is determined solely by the gauge interactions and has its

origin in the auxiliary fieldDA. This term is referred to as the D-term contribution

to the scalar potential. The second term comes from the superpotential f̂ . We saw

in the last chapter that this term arises when the auxiliary fields Fi are eliminated

from the Lagrangian density. This set of terms is, therefore, referred to as F-term

contributions to the scalar potential.

4. Finally, the last line of Eq. (6.44) describes the non-gauge, superpotential inter-

actions of matter and Higgs fields as well as fermion mass terms. Since this line

describes the interaction of fermion pairs with scalars, the Yukawa interactions

of the SM can arise from this term. In other words, all the Yukawa couplings are

contained in the superpotential.

5. We note here that in a supersymmetric theory, the scalar potential contains no

new couplings other than the gauge couplings and the “Yukawa couplings” and

fermion mass terms already present in the superpotential. This is the result of

supersymmetry which relates the masses as well as couplings of fermions and

bosons within a supermultiplet. Additional terms in the scalar potential are pos-

sible if supersymmetry is softly broken.

We conclude this chapter by presenting a recipe for the construction of renor-

malizable supersymmetric gauge theories.

(a) Choose a gauge group and the representations for the various supermultiplets,

taking care to ensure that the theory is free of chiral anomalies. Matter fermions

and Higgs bosons form parts of chiral scalar supermultiplets, ŜLi , while gauge

bosons reside in the real gauge supermultiplet �̂A. Keep in mind that we will

need a chiral scalar superfield for every chiral component of matter fermions

that we want to introduce.

(b) Choose a superpotential function which is a globally gauge-invariant polyno-

mial (of degree ≤ 3 for renormalizable interactions) of the various left-chiral

superfields.

(c) The interactions of all particles with gauge bosons are given by the usual “min-

imal coupling” prescription.

(d) Couple the gauginos to matter via the gauge interactions given in the second

line of (6.44).
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(e) Write down the additional self-interactions of the scalar matter fields as given

by the third line of (6.44).

( f ) Write down the non-gauge interactions of matter fields coming from the super-

potential. The form of these is given by the last two terms of (6.44).

This theory is, of course, exactly supersymmetric. The final step for obtaining

realistic models is to incorporate supersymmetry breaking. This forms the subject

of the following chapter.

Exercise Construct the Lagrangian density for supersymmetric quantum electro-
dynamics using (6.44) and the recipe just mentioned.

Remember that you will need to introduce two left-chiral scalar supermultiplets
in order to obtain a massive Dirac electron. The left-handed part of the Majorana
fermion field in the first multiplet will annihilate the left-handed (Dirac) electron,
while the corresponding component in the second multiplet will annihilate a left-
handed positron. By the Majorana property, the right-handed part of this fermion
will annihilate right-handed electrons. The Dirac electron field is then the sum of
the left-handed part of the first and the right-handed part of the second. There are,
therefore, two scalar partners (one for each chiral component) of the Dirac electron.

Show that the interaction of the photon with the Dirac electron is exactly as you
would expect in QED, while the corresponding couplings to the scalar electrons
are as in scalar QED. Work out the couplings of the photino (the SUSY partner of
the photon) to the electron and the scalar electron.

Before concluding, we remark that the action for superymmetric gauge theories

can also be written as an integral over superspace. We have,

S = −1

4

∫

d4xd4θ
[

Ŝ†e−2gtA�̂A Ŝ + 2ξp�̂p

]

−1

2

[∫

d4xd2θL f̂ (Ŝ) + h.c.

]

− 1

4

∫

d4xd2θLŴ c
AŴA, (6.47)

where the ξp are dimensionful couplings for Fayet–Iliopoulos terms, one for each

U (1) factor of the gauge group.

It is, perhaps, worth emphasizing here that supersymmetry is also restrictive

in a sense that we have not yet encountered because we have been dealing with

renormalizable theories. In this case, supersymmetry mandated the existence of

superpartners with well-defined interactions, but (aside from the holomorphy re-

quirement on the superpotential), did not restrict the spacetime structure of the

interactions. However, not all interactions that we might imagine in ordinary field

theory can be incorporated in a supersymmetric theory. This is exemplified in
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the exercise below where we assert that an arbitrary “Pauli magnetic moment” of

fermions is forbidden in a U (1) gauge theory.

Exercise Show that supersymmetry precludes the introduction of the “Pauli term”
(even if it is generalized to include transitional magnetic moments), ψ1σμνψ2 Fμν +
h.c., in a globally supersymmetric Abelian gauge theory.

One way to proceed is as follows. Since the Pauli term is a dimension 5 operator,
in a supersymmetric theory it must arise either from a dimension 4 term in the
superpotential, or from a dimension 3 term in the Kähler potential. Moreover,
since this term is (anti-)linear in ψ1, ψ2, and Fμν , it must originate in a superfield
term that includes (at least) one power of Ŝ1 and Ŝ2 (or in the case of the Kähler
potential, possibly Ŝ†

1 or Ŝ†
2), the left-chiral superfields whose spinor components

are ψ1 and ψ2, and one power of the left-chiral spinor curl superfield Ŵ exhibited in
(6.31) whose θ component is the gauge field strength Fμν . But the mass dimension
[Ŝ1] = [Ŝ2] = 1, and [Ŵ ] = 3/2, so that [Ŝ1Ŝ2Ŵ ] = 7/2 > 3, showing that this
term cannot originate in a dimension 3 superfield operator in the Kähler potential.

Finally, note that though Ŝ1Ŝ2Ŵ is a (possibly) gauge invariant left-chiral super-
field, it is not Lorentz invariant because it is a spinor under Lorentz transformations:
in order to be able to include it in the superpotential, we have to contract the spinor
index on Ŵ . We do so by letting a supersymmetric covariant derivative (remember
that this also has a spinor index) act on any one of the superfields in the product:
this then results in a dimension 4 superfield product as required. We have, however,
already seen that the supercovariant derivative acting on a left-chiral superfield
does not leave it as a left-chiral superfield, so that terms that include such a super-
covariant derivative are not allowed in the superpotential. We thus conclude that
the “Pauli term” is absent if supersymmetry is unbroken.6

Notice that our argument relies only upon dimensional counting and hence
applies equally to electric as well as magnetic dipole moments. Also, its validity is
independent of whether these dipole moments are diagonal (for Dirac fermions) or
transitional.

We thus conclude that in supersymmetric models, anomalous magnetic moments
or radiative transitions of elementary fermions (contained in chiral supermulti-
plets) are possible only if supersymmetry is broken. In other words, contributions
from supersymmetric partners in the loops exactly cancel SM contributions if su-
persymmetry is unbroken. Measurements of anomalous magnetic moments of SM
fermions or radiative decays of heavy quarks or leptons potentially provide infor-
mation about supersymmetry breaking. We will return to this in Chapter 9.

6 This was first noted by S. Ferrara and E. Remiddi, Phys. Lett. B53, 347 (1974).
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6.7 The non-renormalization theorem

Supersymmetric theories have better ultra-violet behavior than their non-

supersymmetric counterparts. We have already seen an illustration of this in our

examination of the one-loop corrections in the Wess–Zumino model, where it was

shown that quadratically divergent loop integrals all cancelled. It is now understood

that this apparently miraculous cancellation of quadratic divergences is a general

consequence of the SUSY non-renormalization theorem which states that to any

order in perturbation theory, any loop correction can be written as a D-term, i.e.

one particle irreducible loop corrections do not generate F-terms. In particular,

there are no loop corrections to the superpotential.

This was first established by using supergraph methods,7 a perturbative technique

that maintains manifest supersymmetry throughout the calculation in the same way

that Feynman diagram techniques keep the Lorentz covariance manifest.8 A more

direct proof of this theorem was given by Seiberg who recognized that the holo-

morphy of the superpotential (which is a direct consequence of supersymmetry)

suffices to establish that there are no perturbative loop corrections to the superpo-

tential, as long as the regularization procedure preserves supersymmetry and gauge

invariance.9

D-terms in the action of a supersymmetric theory lead to the kinetic energy terms

for the components of chiral superfields, so that corrections to these lead to so-called

“wave function renormalization”. Since loop corrections do not change the super-

potential, superpotential masses and couplings are renormalized only because of the

wave function renormalization; i.e. supersymmetry precludes additional renormal-
ization of the mass terms in the superpotential. The reader familiar with the basics of

renormalization in quantum field theory will immediately recognize that the wave

function renormalization is at most logarithmically divergent in the cut-off, thereby

establishing that supersymmetric theories are free of quadratic divergences to all

orders in perturbation theory. This is important because the existence of quadratic

divergences played the central role in persuading us that there must be new physics

at the TeV scale. It is the non-renormalization theorem that assures us that TeV

scale superpartners can stabilize the electroweak symmetry breaking sector of the

supersymmetric extension of the SM in the sense discussed in Chapter 2.

7 M. T. Grisaru, W. Siegel and M. Roček, Nucl. Phys. B159, 429 (1979).
8 Supergraph methods were introduced by A. Salam and J. Strathdee, Phys. Rev. D11, 1521 (1975) and developed

by other authors. See e.g. J. Honerkamp et al., Nucl. Phys. B95, 397 (1975) and S. Ferrara, Nucl. Phys. B93,
261 (1975).

9 N. Seiberg, Phys. Lett. B318, 469 (1993).
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