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Inspired by a result in T. H. Colding. (16). Acta. Math. 209(2) (2012), 229-263
[16] of Colding, the present paper studies the Green function G on a non-parabolic

RCD(0, N) space (X, d, m) for some finite N > 2. Defining bx = G(x, ·) 1
2−N for a

point x ∈ X, which plays a role of a smoothed distance function from x, we prove
that the gradient |∇bx| has the canonical pointwise representative with the sharp

upper bound in terms of the N -volume density νx = limr→0+
m(Br(x))

rN of m at x;

|∇bx|(y) � (N(N − 2)νx)
1

N−2 , for any y ∈ X \ {x}.

Moreover the rigidity is obtained, namely, the upper bound is attained at a point
y ∈ X \ {x} if and only if the space is isomorphic to the N -metric measure cone over
an RCD(N − 2, N − 1) space. In the case when x is an N -regular point, the rigidity
states an isomorphism to the N -dimensional Euclidean space RN , thus, this extends
the result of Colding to RCD(0, N) spaces. It is emphasized that the almost
rigidities are also proved, which are new even in the smooth framework.

Keywords: Ricci curvature; metric measure space; Green functions; rigidity;
Gromov–Hausdorff convergence; Optimal transportation theory

1. Introduction

1.1. Green function and concerned problems in the smooth framework

In the classical PDE theory, the (positive) Green function Gx at the pole x of
the Laplace operator on the N -dimensional Euclidean space R

N is the solution to
the heat equation

Δu = −δx (1.1)
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2 S. Honda and Y. Peng

as measures, where δx is the Dirac measure at x. In the case when N � 2, it is
well-known that this equation is solved by

Gx =

⎧⎪⎪⎨
⎪⎪⎩

− 1
2π

log dx, N = 2

d2−N
x

N(N − 2)ωN
, N � 3

(1.2)

where dx(·) is the Euclidean distance function from x and ωN := π
N
2 Γ(N

2 + 1)−1 is
the volume of a unit ball B1(0N ) in R

N .
We can also discuss the Green functions for more general classes of spaces

along the same line. For instance, it is known that for an N -dimensional complete
Riemannian manifold (MN , g) (N � 2) with non-negative Ricci curvature, the exis-
tence of the (global) Green function G is equivalent to the following non-parabolic
assumption: ∫ ∞

1

r

VolBr(x)
dr <∞, ∀ x ∈MN , (1.3)

where Br(x) denotes the open ball centred at x of radius r with respect to the
induced distance d by g, and Vol denotes the Riemannian volume measure by g.
See [56] by Varopoulos for the details. In this case, it is well-known that the fol-
lowing asymptotic behaviour for the Green function Gx at the pole x ∈MN holds
as dx → 0+:

Gx =

⎧⎪⎪⎨
⎪⎪⎩

− 1
2π

log dx + o(− log dx), N = 2

d2−N
x

N(N − 2)ωN
+ o(d2−N

x ), N � 3
(1.4)

This fact indicates that in the case when N � 3, the function

bx := G
1

2−N
x (1.5)

should be a counterpart of the distance function from x up to a multiplication of a
dimensional positive constant;

(N(N − 2)ωN )
1

N−2 dx. (1.6)

Colding [16] proved the sharp gradient estimate for bx and the rigidity as follows.

Theorem 1.1 Theorem 3.1 of [16]. Let (MN , g) be an N -dimensional (N � 3),
complete and non-parabolic Riemannian manifold with non-negative Ricci curvature
and let x ∈MN . Then we have the following.

(1) (Sharp gradient estimate) We have

|∇bx|(z) � (N(N − 2)ωN )
1

N−2 (1.7)

for any z ∈MN \ {x}.
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(2) (Rigidity) (MN , g) is isometric to the N -dimensional Euclidean space R
N

with bx = (N(N − 2)ωN )
1

N−2 dx if the equality of (1.7) holds for some z ∈
MN \ {x}.

Note that Colding used the normalized one, (N(N − 2)ωN )
1

2−N G
1

2−N
x , as the

definition of bx. Thus the sharp upper bound in [16] was exactly 1 instead of the
right-hand-side of (1.7). See the footnote 4 in [16].

In particular the rigidity indicates that bx exactly coincides with (N(N −
2)ωN )

1
N−2 dx if and only if the manifold is Euclidean. Given this rigidity result,

it is natural to ask whether the quantitative almost rigidity result is satisfied or
not:

(A) If |∇bx|(y) is close to the sharp upper bound (N(N − 2)ωN )
1

N−2 at some
point y ∈MN \ {x}, then can we conclude that the manifold is pointed
Gromov–Hausdorff (pGH) close to R

N?

It is worth mentioning that

|∇bx|(y) → (N(N − 2)ωN )
1

N−2 (1.8)

whenever y → x. Therefore in order to give a positive answer to the question (Q),
we need to find an additional assumption on y.

We are now in a position to introduce the first main result of the paper.

Theorem 1.2 Almost rigidity. For any integer N � 3, all 0 < ε < 1, 0 < r < R,
1 � p <∞ and ϕ ∈ L1([0, ∞), H 1) there exists δ := δ(N, ε, r, R, p, ϕ) > 0 such
that if an N -dimensional (N � 3) complete Riemannian manifold with non-negative
Ricci curvature (MN , g) satisfies

s

VolBs(x)
� ϕ(s), for H 1-a.e. s ∈ [1,∞) (1.9)

for some x ∈MN and that

(N(N − 2)ωN )
1

N−2 − |∇bx|(y) � δ (1.10)

holds for some y ∈ BR(x) \Br(x). Then we have

dpmGH

(
(MN , d,Vol, x), (RN , dRN ,H N , 0N )

)
< ε (1.11)

and ∥∥∥bx − (N(N − 2)ωN )
1

N−2 dx

∥∥∥
L∞(BR(x))

+
∥∥∥bx − (N(N − 2)ωN )

1
N−2 dx

∥∥∥
H1,p(BR(x),d,Vol / Vol BR(x))

� ε (1.12)

in particular

‖(N(N − 2)ωN )
1

N−2 − |∇bx|‖Lp(BR(x),Vol / Vol BR(x)) � ε, (1.13)

where dpmGH denotes any fixed distance metrizing the pointed measured Gro-
mov–Hausdorff (pmGH) convergence.
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As explained around (1.8), the lower bound r in theorem 1.10 cannot be dropped
in order to get (1.11). On the other hand, it is known that if the asymptotic
N -volume VMN defined by

VMN := lim
R→∞

VolBR(x)
RN

(� ωN ) (1.14)

is close to ωN , then (MN , d, Vol, x) is pmGH close to (RN , dRN , H N , 0N ), quan-
titatively. See [15] by Colding. Note that the converse statement is not true even
in the case when the metric is Ricci flat with the maximal volume growth (namely
VMN > 0).

In connection with this observation, it is natural to ask whether the conclusion
(1.11) in the theorem above can be improved to be that VMN is close to ωN , or
not. However a simple blow-up argument on a fixed manifold which is not isometric
to R

N allows us to conclude that the desired improvement is impossible, see also
remark 4.5.

As another possible improvement in the theorem above, it is also natural to ask
whether the case when p = ∞ in (1.13) is satisfied or not, namely

(N(N − 2)ωN )
1

N−2 − |∇bx| � ε, on BR(x)? (1.15)

However we can also see that this improvement is impossible (thus the improvement
of (1.12) to the case when p = ∞ is also impossible) via Gromov–Hausdorff limits.
See subsection 5.1.

The observation above allows us to say that theorem 1.2 is sharp. Finally let us
introduce an immediate corollary.

Corollary 1.3. For any integer N � 3, all 0 < ε < 1 and v > 0 there exists
δ := δ(N, ε, v) > 0 such that if an N -dimensional (N � 3) complete Riemannian
manifold with non-negative Ricci curvature (MN , g) satisfies VMN � v and (1.10)
for some sequence yi ∈MN (i = 1, 2, . . .) with d(x, yi) → ∞, then

|VMN − ωN | � ε (1.16)

In particular, in addition, if ε is sufficiently small depending only on N and v, then
MN is diffeomorphic to R

N .

Note that the existence of such sequence yi in the corollary above cannot be
replaced by the existence of only one point which is far from x. See remark 4.7.

The results above are justified via a non-smooth geometric analysis with Ricci
curvature bounded below. Moreover the results above are generalized to such a
non-smooth framework, so-called RCD spaces. In the next section let us provide a
brief introduction on RCD spaces.

1.2. Non-smooth space with Ricci curvature bounded below; RCD
spaces

In the first decade of this century, Lott–Villani [46] and Sturm [53, 54] intro-
duced the notion of CD(K, N) spaces independently as a concept of metric measure
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spaces with Ricci curvature bounded below byK ∈ R and dimension bounded above
by N ∈ [1, ∞] in some synthetic sense via the optimal transportation theory. For
instance, in the case when N is an integer, R

N with any norm and the Lebesgue
measure L N satisfies the CD(0, N) condition. Note that this is not ‘Riemannian’
whenever the norm does not come from an inner product and that Gigli found
a ‘Riemannian’ notion on general metric measure spaces, so-called infinitesimally
Hilbertianity, in [32], which allows us to meet the Dirichlet form theory from the
metric measure geometry. It is worth mentioning that N is not necessarily to be an
integer in general.

After a pioneer work of Gigli–Kuwada–Ohta [27] on Alexandrov spaces, Ambro-
sio–Gigli–Savaré (in the case when N = ∞) and Gigli (in the case when N <∞)
introduced RCD(K, N) spaces (or RCD spaces for short) by adding the infinites-
imally Hilbertianity to the CD condition, see [2, 33]. It is known that RCD
spaces include weighted Riemannian manifolds with Bakry–Émery Ricci curvature
bounded below, Ricci limit spaces, and Alexandrov spaces [51, 57] by Petrunin and
Zhang-Zhu. The study is hugely developed, see for instance [8, 35] as nice surveys.

As explained in the previous subsection, we will mainly discuss an RCD(0, N)
space (X, d, m) for some finite N > 2 satisfying the non-parabolic assumption:∫ ∞

1

r

m(Br(x))
dm <∞, ∀ x ∈ X. (1.17)

Then, as in the smooth case, the global Green function G = GX can be defined by
the integration of the heat kernel p(x, y, t):

G(x, y) :=
∫ ∞

0

p(x, y, t) dt, (1.18)

and it is proved in [12] by Bruè–Semola that G is well-defined with G(x, ·) ∈
W 1,1

loc (X, d, m) for any x ∈ X. A typical example of RCD(0, N) spaces is(
[0,∞), dEuc, r

N−1 dr
)

(1.19)

whose Green function G satisfies the following expression from the pole/origin 0;

G(0, r) =
1

N − 2
r2−N . (1.20)

See proposition 3.8. It is worth mentioning that (1.19) is the N -metric measure
cone over a single point (definition 2.7).

1.3. Main results and organization of this paper

In order to introduce main results of this paper, fix an RCD(0, N) space (X, d, m)
for some finite N > 2 satisfying the non-parabolic assumption (1.17). Moreover we
also fix a point x ∈ X whose N -volume density νx is finite;

νx := lim
r→0

m(Br(x))
rN

∈ (0,∞), (1.21)

where the positivity is a direct consequence of the Bishop–Gromov inequality.
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Remark 1.4. The origin of the RCD(0, N) space (1.19) satisfies (1.21), more
generally (1.21) is satisfied at the pole of any N -metric measure cone over an
RCD(N − 2, N − 1) space. It is worth mentioning that (1.21) is also satisfied
at any point if the space is non-collapsed, namely m = H N because of the
Bishop inequality, where H N denotes the N -dimensional Hausdorff measure (see
definition 2.4).

Defining bx by (1.5) in this setting, let us ask whether a similar rigidity result as
in theorem 1.1 is justified even in this setting, or not. The main difficulty to realize
this consist of two parts;

• a priori, |∇bx| makes only m-a.e. sense;

• as observed in (1.20), in general, the constancy of |∇bx| does not imply an
isomorphism to a Euclidean space.

The first main result in this setting are stated as follows, which allow us to
overcome the first issue above.

Theorem 1.5 Pointwise properties on |∇bx|; theorems 3.15 and 3.22. We have the
following.

(1) (Canonical representative of |∇bx|) For any z ∈ X, the limit;

lim
r→0+

∫
--

Br(z)

|∇bx|dm ∈ [0,∞) (1.22)

exists. Denoting by |∇bx|∗(z) (or |∇bx|(z) for short if there is no confusion)
the limit, we see that any point is a Lebesgue point of |∇bx|, namely

lim
r→0+

∫
--

Br(z)

||∇bx| − |∇bx|∗(z)|dm = 0, ∀ z ∈ X. (1.23)

(2) (Upper semicontinuity) The function |∇bx|∗ is upper semicontinuous on X.

(3) (Sharp pointwise gradient estimate) We have

|∇bx|∗(z) � CNν
1

N−2
x , ∀ z ∈ X (1.24)

and

|∇bx|∗(x) = CNν
1

N−2
x , (1.25)

where

CN := (N(N − 2))
1

N−2 . (1.26)

In particular bx with bx(x) := 0 is CNν
1

N−2
x -Lipschitz on X with the (global)

Lipschitz constant CNν
1

N−2
x .

Let us introduce the second main result overcoming the second issue above, see
definition 2.7 for N -metric measure cones.
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Theorem 1.6 Rigidity; theorem 4.1. If

|∇bx|∗(z) = CNν
1

N−2
x (1.27)

for some z ∈ X \ {x}, then (X, d, m) is isomorphic to the N -metric measure cone

over an RCD(N − 2, N − 1) space, in particular, |∇bx|∗ ≡ CNν
1

N−2
x .

Combining the results above with the compactness of non-parabolic RCD(0, N)
spaces with respect to the pmGH convergence (theorem 3.11), we obtain the
following almost rigidity result

Theorem 1.7 Almost rigidity; theorem 4.3. For all N > 2, 0 < ε < 1, v > 0,
0 < r < R <∞ and ϕ ∈ L1([0, ∞), H 1) there exists δ := δ(N, ε, r, R, ϕ) > 0 such
that if a pointed non-parabolic RCD(0, N) space (X, d, m, x) satisfies (1.21),

s

m(Bs(x))
� ϕ(s), for H 1 − a.e. s ∈ [1,∞) (1.28)

and

CNν
1

N−2
x − |∇bx|∗(z) � δ (1.29)

hold for some z ∈ BR(x) \Br(x), then (X, d, m, x) ε-pmGH close to the N -metric
measure cone over an RCD(N − 2, N − 1) space.

In particular, in theorem 1.7, if we further assume that N is an integer and that
the point x admits an N -dimensional Euclidean tangent cone (which is trivial in
the manifold case), then the N -metric measure cone stated in theorem 1.7 can be
replaced by the N -dimensional Euclidean space, which gives a positive answer to
the question (Q) even in the RCD setting.

In the next subsection let us provide the outlines of the proofs of the results
above.

1.4. Outline of the proofs and organization of the paper

In order to prove theorem 1.5, we will study a drifted Laplace operator L defined
by

L u := Δu+ 2〈∇ logGx,∇u〉. (1.30)

Then we follow arguments by Colding in [16] to get the L -subharmonicity of |∇bx|2
and the (Δ-)subharmonicity of |∇bx|2G(x, ·) (proposition 3.21) via the Bochner
inequality appearing in the definition of RCD spaces (see (2.8)). Combining their
subharmonicities with regularity results on subharmonic functions on PI spaces
[9] proves (1) and (2) of the theorem. To prove the remaining statements, (3), we
recall that the Green function from the pole on the N -metric measure cone over an
RCD(N − 2, N − 1) space can be explicitly calculated (proposition 3.8) as in (1.20)
and that any tangent cone at x whose N -volume density is finite is isomorphic to
such a metric measure cone (corollary 2.9) because of a result of De Philippis–Gigli
[19]. Then, combining them with blow-up arguments at the base point x based
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on the stability of the Laplacian [3] by Ambrosio and the first named author, we
obtain (3), where the L -subharmonicity of |∇bx|2 plays a role here again.

In order to prove the rigidity result, theorem 1.6, we use the strong maximum
principle for L -subharmonic, upper semicontinuous functions to get the constancy
of |∇bx|2. Then the explicit calculation of Δbx allows us to apply a rigidity result
of Gigli–Violo [31] to prove theorem 1.6.

Let us emphasize that under realizing the results above, we are also able to
obtain a convergence result of the Green functions with respect to the pmGH con-
vergence, in particular, as a corollary, the W 1,p-strong convergence of bx is proved
for any finite p <∞ (corollary 3.23). After establishing compactness results on non-
parabolic RCD(0, N) spaces with respect to pmGH convergence (theorem 3.11), the
W 1,p-convergence result allows us to show the almost rigidity, theorem 1.7, via a
contradiction. Then the main results stated in the smooth framework, theorem 1.2
and corollary 1.3, are corollaries of the results for RCD spaces.

Finally we show the sharpness of theorem 1.2 via observing the 3-metric measure
cone, C(S2(r)) for some r < 1 which is close to 1, where S

2(r) denotes the round
sphere of radius r in R

3 centred at the origin. See subsection 5.1.
The organization of the paper is as follows. Section 2 is devoted to fixing the

notations/conventions and the introduction on RCD spaces, in particular, about
N -metric measure cones. In § 3, we study the Green function on a non-parabolic
RCD(0, N) space, where the starting point is a work by Bruè–Semola [12]. One
of the main purposes in this section is to prove theorem 1.5. Section 4 is devoted
to proving the rigidity/almost rigidity results. In § 5, we provide simple examples
which show that our results are sharp. In the final section, § 6, we provide proofs of
regularity results about L -subharmonic functions directly coming from the general
theory of PI spaces [9]. This part makes the paper to be more self-contained.

2. Preliminary

2.1. Notation and convention

Let us fix general conventions and geometric/analytic notations:

• We denote by C(a1, a2, . . . , ak) a positive constant only dependent on
a1, a2, . . . , ak, which may vary from line to line unless otherwise stated.

• For a metric space (X, d), denote by
– Br(x) := {y ∈ X | d(x, y) < r} and Br(x) := {y ∈ X | d(x, y) � r} ;

– Lip(X, d) the collection of all Lipschitz functions on (X, d).

• We say that a triple (X, d, m) is a metric measure space if (X, d) is a complete
and separable metric space and m is a locally finite Borel measure which is fully
supported on X.

• Whenever we discuss on a metric measure space (X, d, m), we identify two
objects which coincide except for a m-negligible set.
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• For a metric measure space (X, d, m), let A be a collection of functions defined
on an open subset U of X. Then we denote by
– A+ := {f ∈ A | f � 0 for m-a.e.};
– Aloc := {f : U → R | fχBr(x) ∈ A for any Br(x) with Br(x) ⊂ U};
– Ac := {f ∈ A |The support of f, supp f, is compact and is included in U}.
For instance, Lp

loc(U, d, m), Lipc(U, d), W 1,p
loc (U, d, m), etc., make sense.

2.2. Definition of RCD(K, N) space and heat kernel

Let (X, d, m) be a metric measure space. We define the local Lipschitz constant
at x of a function f defined on X as follows:

lip f(x) := lim sup
y→x

|f(x) − f(y)|
d(x, y)

, (2.1)

where lip f(x) is interpreted as 0 if x is isolated. For any f ∈ L2(X, m), the Cheeger
energy of f is defined by

Ch(f) := inf
{

1
2

lim inf
i→∞

∫
X

(lip f)2 dm

∣∣∣∣ fi

∈ Lip(X, d) ∩ (L∞ ∩ L2)(X,m), ‖fi − f‖L2 → 0
}
. (2.2)

The Sobolev space W 1,2(X, d, m)1 is the collection of L2(X, m)-functions with
finite Cheeger energy, equipped with the W 1,2-norm

‖f‖W 1,2(X,d,m) :=
√
‖f‖2

L2 + 2Ch(f). (2.3)

For any f ∈W 1,2(X, d, m), by taking a minimizing sequence {fi}i in the right-
hand-side of (2.2), we can find the optimal L2-function denoted by |∇f |, called the
minimal relaxed slope of f , realizing the Cheeger energy, namely

Ch(f) =
1
2

∫
X

|∇f |2 dm. (2.4)

We say that (X, d, m) is infinitesimally Hilbertian if W 1,2(X, d, m) is a Hilbert
space. In this case, we set

〈∇f1,∇f2〉 := lim
t→0

|∇(f1 + tf2)|2 − |∇f1|2
2t

∈ L1(X,m), ∀ f1, f2 ∈W 1,2(X, d,m),

(2.5)
which is symmetric and bi-linear in m-a.e. sense (see for instance [29, Theorem
4.3.3] for several equivalent definitions of infinitesimal Hilbertianity). Moreover then

1Similarly we can define W 1,p(X, d, m). See for instance [5].
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we can define the (linear) Laplacian as follows; we denote by D(Δ) the set of all
f ∈W 1,2(X, d, m) such that there exists h ∈ L2(X, m) such that

−
∫

X

〈∇f,∇ϕ〉dm =
∫

X

ϕhdm, ∀ϕ ∈W 1,2(X, d,m). (2.6)

Since such h is unique whenever it exists, we shall denote by Δf . We are now in a
position to give the definition of RCD spaces.

Definition 2.1 RCD-space. We say that (X, d, m) is an RCD(K, N) space for
some K ∈ R and N � 1 if the following four conditions are satisfied.

(1) (Volume growth bound) There exist C > 0 and x ∈ X such that

m(Br(x)) � CeCr2
, ∀ r > 0. (2.7)

(2) (Infinitesimal Hilbertianity) (X, d, m) is infinitesimally Hilbertian.

(3) (Sobolev-to-Lipschitz property) Any f ∈W 1,2(X, d, m) with |∇f | � L for m-
a.e. admits an L-Lipschitz representative.

(4) (Bochner’s inequality) For any f ∈ D(Δ) with Δf ∈W 1,2(X, d, m) and any
ϕ ∈ D(Δ) ∩ L∞

+ (X, m) with Δϕ ∈ L∞(X, m), it holds that

1
2

∫
X

Δϕ|∇f |2 dm �
∫

X

ϕ

(
(Δf)2

N
+ 〈∇f,∇Δf〉 +K|∇f |2

)
dm. (2.8)

There are also several equivalent characterizations of RCD(K, N)-conditions, see
[7, 13, 25]. We refer to [8] as a good survey for the theory of RCD spaces.

Let us also mention that there exist local notions above, including the domain
D(Δ, U) of the local Laplacian defined on an open subset U of X, the local Sobolev
space W 1,2(U, d, m) and so on.2 In the sequel we immediately use them, see for
instance [3, 9, 38] for the details.

We here recall the precise definitions of the heat flow and the heat kernel on
an RCD(K, N) space (X, d, m) for some K ∈ R and some finite N � 1. For any
f ∈ L2(X, m), there exists a unique locally absolutely continuous (or equivalently,
smooth, in this setting, (see [29])) curve h·f : (0, ∞) → L2(X, m), called the heat
flow starting at f , such that htf → f in L2(X, m) as t→ 0+ and that htf ∈ D(Δ)
for any t > 0 with

d
dt
htf = Δhtf. (2.9)

Then, thanks to [53, 54] with the Bishop–Gromov inequality and the Poincaré
inequality which will be explained in the next subsection 2.3, the heat flow can be
written by the integral of a unique continuous kernel p = pX : X ×X × (0, ∞) →

2For instance, for any f ∈ D(Δ, U) we have Δf, |∇f |, f ∈ L2(U, m).
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(0, ∞), called the heat kernel of (X, d, m). Namely, for all f ∈ L2(X, m), we have
htf ∈ C(X) with

htf(x) =
∫

X

p(x, y, t)f(y) dm(y), ∀ x ∈ X. (2.10)

Note that the heat kernel p can be characterized by using the dual heat flow h̃t

acting on the space of all Borel probability measures with finite quadratic moments
P2(X);

h̃tδx = p(x, ·, t)m, ∀ x ∈ X, ∀ t > 0, (2.11)

where δx is the Dirac measure at x.
Let us write a formula on the heat kernel under a rescaling, which directly follows

from the definition; for all a, b > 0, the RCD(a−2K, N) space

(X̃, d̃, m̃) := (X, ad, bm) (2.12)

satisfies

pX̃(x, y, t) =
1
b
pX(x, y, a−2t). (2.13)

In order to keep our presentation short, we assume that the readers are familiar
with basics on the RCD theory, including pointed measured Gromov–Hausdorff
(pmGH) convergence, its metrization dpmGH, stability/compactness of RCD spaces
with respect to dpmGH, and functional convergence with respect to dpmGH. We refer
a recent nice survey [35] about this topic (see also [3, 5, 28]).

Let us end this subsection by introducing the following two notions with related
results.

Definition 2.2 Tangent cone. A pointed RCD(0, N) space (Y, dY , mY , y) is said
to be a tangent cone of (X, d, m) at x ∈ X (or tangent cone at infinity of (X, d, m)
in the case when K = 0, respectively) if there exists a sequence ri → 0+ (or ri → ∞,
respectively) such that(

X,
1
ri

d,
m

m(Bri
(xi))

, x

)
pmGH−−−−→ (Y, dY ,mY , y). (2.14)

Moreover a point x ∈ X is called k-regular if any tangent cone at x is isomorphic
to the k-dimensional Euclidean space (Rk, dEuc, ω

−1
k H k, 0k).

Remark 2.3. We often use m
rk

i

for some k � 1 instead of using m
m(Bri

(x)) in the
definition above, and we also call such limit a tangent cone.

It is proved in [12] ifX is not a single point, then there exists a unique integer k at
most N such that for m-a.e. x ∈ X, x is k-regular. We call k the essential dimension
of (X, d, m) (see also [18, 22]). It is known that the essential dimension is at most
the Hausdorff dimension, however in general they do not coincide. See [49]. The
following is defined in [20] as a synthetic counterpart of volume non-collapsed Ricci
limit spaces.

https://doi.org/10.1017/prm.2024.131 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.131


12 S. Honda and Y. Peng

Definition 2.4 Non-collapsed space. We say that (X, d, m) is non-collapsed if
m = H N .

It is known that any non-collapsed RCD space has nicer properties rather than
that of general RCD spaces, including a fact that N must be an integer, and the
Bishop inequality in the case when K = 0;

H N (Br(x))
ωNrN

� 1, ∀ r > 0. (2.15)

It is worth mentioning that (X, d, m) is non-collapsed, up to multiplying a positive
constant to the reference measure, if the essential dimension is equal to N , or N is
an integer with the existence of an N -regular point. See [10] (and [40]).

2.3. Geometric and analytic inequalities on RCD(0, N) spaces

Let us recall several inequalities on an RCD(0, N) space (X, d, m) for some finite
N � 1. Fix x ∈ X. The Bishop–Gromov inequality states

m(Br(x))
rN

� m(Bs(x))
sN

, ∀ r < s. (2.16)

See [46] and [53, 54] for the proof. Based on this inequality we introduce;

Definition 2.5 N -volume density and asymptotic N -volume. The N -volume
density at x, denoted by νx, is defined by

νx := lim
r→0

m(Br(x))
rN

∈ (0,∞]. (2.17)

Moreover the asymptotic N -volume, denoted by VX , is defined by

VX := lim
r→∞

m(Br(x))
rN

∈ [0,∞). (2.18)

Note that the Bishop–Gromov inequality (2.16) implies the existence of the both
right-hand-sides of (2.17) and (2.18), that VX does not depend on the choice of
x ∈ X and that νx � VX .

Remark 2.6. Let us provide a formula on the N -volume density under a rescaling;
for all a, b > 0, the N -volume density ν̃x̃ of the pointed non-parabolic RCD(0, N)
space (X̃, d̃, m̃, x̃) := (X, ad, bm, x) satisfies

ν̃x̃ = lim
r→0+

bm(B̃r(x))
rN

=
b

aN
lim

r→0+

m(Ba−1r(x))
(a−1r)N

=
b

aN
νx. (2.19)

In particular ν̃x̃ = νx if b = aN , which will play a role later. Note that similarly we
have VX̃ = b

aN VX .
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Next let us recall Gaussian estimates on the heat kernel p established in [43]; for
any 0 < ε < 1, there exists C(N, ε) > 1 such that

1
C(N, ε)m(Bt1/2(x))

exp
(
− d2(x, y)

4(1 − ε)t

)
�p(x, y, t)� C(N, ε)

m(Bt1/2(x))
exp

(
− d2(x, y)

4(1+ε)t

)
(2.20)

and

|∇xp(x, y, t)| � C(N, ε)
t1/2m(Bt1/2(x))

exp
(
−d2(x, y)

(4 + ε)t

)
. (2.21)

Finally let us recall the following Poincaré inequality proved in [52];

∫
--

Br(x)

∣∣∣∣∣f −
∫
--

Br(x)

f dm

∣∣∣∣∣ dm � 4r
∫
--

B2r(x)

|∇f |dm, ∀ r > 0, ∀ f ∈W 1,2(X, d,m),

(2.22)
where ∫

--
A

· dm :=
1

m(A)

∫
A

·dm (2.23)

denotes the integral average for any measurable set A with positive and finite
measure.

When N > 2, the Poincaré inequality combining with the Bishop–Gromov
inequality (2.16) implies the self-improved Poincaré inequality:

⎛
⎝∫--

Br(x)

∣∣∣∣∣f −
∫
--

Br(x)

f dm

∣∣∣∣∣
2N

N−2

dm

⎞
⎠

N−2
2N

� C(N)r

(∫
--

B2r(x)

|∇f |2 dm

) 1
2

. (2.24)

Moreover if f ∈W 1,2
0 (Br(x), d, m) and X is non-compact, then we have a more

convenient corollary usually referred as Sobolev inequality:

(∫
--

Br(x)

|f | 2N
N−2 dm

)N−2
2N

� C(N)r

(∫
--

Br(x)

|∇f |2 dm

) 1
2

(2.25)

which plays a central role to get various properties on differential operators includ-
ing the Laplacian and a drifted Laplace operator L in § 6. See for instance [9, 37]
for the details.

2.4. Metric measure cone and rigidity

In this subsection, we introduce known rigidity results to an N -metric measure
cone whose definition is as follows. In the sequel, we fix a finite N > 2.

Definition 2.7 N -metric measure cone. The (N -)metric measure cone
(C(Y ), dC(Y ), mC(Y )) over an RCD(N − 2, N − 1) space (Y, dY , mY ) is defined
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by

C(Y ) := [0,∞) × Y/({0} × Y ),

dC(Y ) ((r1, y1), (r2, y2)) :=
√
r21 + r22 − 2r1r2 cos(dY (y1, y2)),

dmC(Y )(r, y) := rN−1dr ⊗ dmY (y), (2.26)

where dr = L1 is the 1-dimensional Lebesgue measure. Denote by OY := [(0, y)] the
pole of C(Y ).

Note that in the definition above, if (Y, dY , mY ) is non-collapsed, then
(C(Y ), dC(Y ), mC(Y )) is also non-collapsed because we can easily check by definition

lim
s→0+

mC(Y )(Bs(r, x))
ωN+1sN+1

= 1, for any r > 0 and any (N − 1)-regular point x of X.

(2.27)
This remark will play a role in subsection 5.1.

The following results are fundamental results for N -metric measure cones, where
(1) is due to [44, Corollary 1.3] and (2) is obtained in [19, Theorem 1.1] and [31,
Theorem 5.1].

Theorem 2.8 Rigidity. We have the following.

(1) The N -metric measure cone over an RCD(N − 2, N − 1) space is an
RCD(0, N) space.

(2) Let (X, d, m, x) be a pointed RCD(0, N) space. Then the following three
conditions are equivalent:
(a) (X, d, m, x) is isomorphic to the N -metric measure cone over an

RCD(N − 2, N − 1) space with the pole;

(b) there exists f ∈ Dloc(Δ) such that Δf = 2N holds (in particular f must
be locally Lipschitz because of [6, 42]), that f is positive on X \ {x} with
f(x) = 0, and that |∇√

2f |2 = 1 (moreover then f is equal to 1
2d(x, ·)2);

(c) the function

R �→ m(BR(x))
RN

(2.28)

is constant.

The following is a well-known result which will play a central role in the paper.

Corollary 2.9. We have the following.

(1) If an RCD(0, N) space (X, d, m) has the finite N -volume density νx <∞
at a point x ∈ X, then any tangent cone at x is isomorphic to the N -metric
measure cone over an RCD(N − 2, N − 1) space.
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(2) If an RCD(0, N) space (X, d, m) has the positive asymptotic N -volume VX >
0, then any tangent cone at infinity is isomorphic to the N -metric measure
cone over an RCD(N − 2, N − 1) space.

Proof. We give only a proof of (1) because (2) is similar. Denoting by m̃, x̃ the
reference measure, the base point, respectively on a tangent cone, it easily follows
from the finiteness νx <∞ that

m̃(BR(x̃))
m̃(Br(x̃))

=
(
R

r

)N

, ∀r > 0, ∀R > 0. (2.29)

Thus (2) of theorem 2.8 allows us to conclude. �

Let us recall the explicit description on the heat kernel on an N -metirc measure
cone.

Proposition 2.10. Let (X, d, m, x) be isomorphic to the N -metric measure cone
with the pole over an RCD(N − 2, N − 1) space. Then we have

m(Br(x))
rN

= m(B1(x)) = νx = VX , ∀ r > 0 (2.30)

and

p(x, y, t) = Ct−
N
2 exp

(
−d(x, y)2

4t

)
, ∀ y ∈ X, (2.31)

where

C =
21−N

NΓ
(

N
2

)
m(B1(x))

(2.32)

Proof. It follows by definitions 2.5 and 2.7 that (2.30) holds. On the other hand,
(2.31) is a direct consequence of [45, Proposition 4.10] with (2.11) and (2) of
theorem 2.8. See [41, Proposition 2.13] for a more general result (see also [23,
Theorem 6.20] and [55, Section 8]). �

3. Green function

In this section we discuss the Green function on a non-parabolic RCD(0, N) space.

3.1. Non-parabolic RCD(0, N) space

Throughout the section, we fix an RCD(0, N) space (X, d, m) for some finite
N > 2, which is not necessarily an integer. Let us start by introducing the following
fundamental notion due to [12] in our framework.

Definition 3.1 Non-parabolic RCD(0, N) space. (X, d, m) is said to be non-
parabolic if for some point x ∈ X (and thus for any x ∈ X),∫ ∞

1

s

m
(
Bs(x)

) ds <∞. (3.1)
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It is trivial that (X, d, m) is non-parabolic if VX > 0 because of the
Bishop–Gromov inequality. In the sequel we assume that (X, d, m) is non-parabolic.
Note that the diameter must be infinite, thus it is non-compact. Then we can define
the Green function as follows.

Definition 3.2 Green function. The Green function G = GX of the non-parabolic
RCD(0, N) space (X, d, m) is defined by

G : X ×X \ diag(X) → (0,∞),

(x, y) �→
∫ ∞

0

p(x, y, t) dt, (3.2)

where diag(X) := {(x, x) ∈ X ×X|x ∈ X}. In the following we write GX
x (·) =

Gx(·) := G(x, ·) : X \ {x} → (0, ∞).

In the sequel, we fix x ∈ X. It is proved in (the proof of) [12, Lemma 2.5] that
Gx is harmonic on X \ {x} and that Gx ∈W 1,1

loc (X, d, m) holds with∫
X

Δf(y)Gx(y) dm(y) = −f(x) (3.3)

for any f ∈ Dc(Δ) with Δf ∈ L∞(X, m). In order to introduce quantitative esti-
mates on Gx, let us prepare the following auxiliary functions for all x ∈ X and
r ∈ (0, ∞);

FX
x (r) = Fx(r) :=

∫ ∞

r

s

m
(
Bs(x)

) ds, HX
x (r) = Hx(r) :=

∫ ∞

r

1
m
(
Bs(x)

) ds.

(3.4)
It is easy to see that both F and H are continuous with respect to the two variables
(x, r) ∈ X × (0, ∞). Note that Bishop–Gromov inequality (2.16) shows for any
r > 0

1
(N − 2)νx

� Fx(r)
r2−N

� 1
(N − 2)VX

,
1

(N − 1)νx
� Hx(r)

r1−N
� 1

(N − 1)VX
. (3.5)

Let us provide formulae on their asymptotics.

Lemma 3.3. The following asymptotic properties hold as r → 0:

lim
r→0

Fx(r)
r2−N

=
1

(N − 2)νx
, (3.6)

lim
r→0

Hx(r)
r1−N

=
1

(N − 1)ν x

. (3.7)

Moreover the following asymptotic properties hold as r → ∞:

lim
r→∞

Fx(r)
r2−N

=
1

(N − 2)VX
, (3.8)
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lim
r→∞

Hx(r)
r1−N

=
1

(N − 1)VX
, (3.9)

where the limits of (3.8) and of (3.9) can be understood as ∞ in the case when
VX = 0.

Proof. We only show (3.6) under assuming νx <∞ because the others can follow
from similar arguments. The Bishop–Gromov inequality (2.16) shows that the map

Ix(r) := νx − m(Br(x))
rN

(3.10)

is non-decreasing with Ix(r) � 0. Thus fixing r0 > 0, we have for any 0 < r < r0,

νxr
N − Ix(r0)rN � m(Br(x)) � νxr

N . (3.11)

Write Fx(r) as

Fx(r) =
∫ r0

r

s

m(Bs(x))
ds+

∫ ∞

r0

s

m(Bs(x))
ds. (3.12)

Then by (3.11) the first term of the right-hand-side can be estimated as follows.

r2−N
0 − r2−N

(2 −N)νx
�
∫ r0

r

s

m(Bs(x))
ds � r2−N

0 − r2−N

(2 −N)(νx − Ix(r0))
. (3.13)

Thus

rN−2

∫ ∞

r0

s

m(Bs(x))
ds− C(N, νx)

(
r

r0

)N−2

� Fx(r)
r2−N

− 1
(N − 2)νx

� rN−2

∫ ∞

r0

s

m(Bs(x))
ds+

C(N, νx)
Ix(r0)

(
r

r0

)N−2

. (3.14)

For any ε ∈ (0, 1), we can let r = εr0 and thus

(εr0)N−2

∫ ∞

r0

s

m(Bs(x))
ds− C(N, νx)εN−2 � Fx(εr0)

(εr0)2−N
− 1

(N − 2)νx

� (εr0)N−2

∫ ∞

r0

s

m(Bs(x))
ds+

C(N, νx)
Ix(r0)

εN−2. (3.15)

Letting ε→ 0 completes the proof of (3.6). �

We are now in a position to introduce estimates on G by F, H given in
[12, Proposition 2.3] after [36] in the smooth setting.

Proposition 3.4. There exists C = C(N) > 1 such that

1
C
Fx(d(x, y)) � Gx(y) � CFx(d(x, y)), ∀ y ∈ X \ {x}, (3.16)

and

|∇Gx|(y) � CHx(d(x, y)), for m − a.e. y ∈ X. (3.17)
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Since Fx(r) → 0 as r → ∞, we have immediately the following.

Corollary 3.5. We have Gx(y) → 0 as d(x, y) → ∞.

Let us define the main target on the paper.

Definition 3.6 Smoothed distance function bx. Define a function bX
x = bx

on X \ {x} by

bx := G
1

2−N
x . (3.18)

We provide formulae related to bx, which will play roles later.

Lemma 3.7. We have

Δbx = (N − 1)
|∇bx|2

bx
, (3.19)

and

Δb2
x = 2N |∇bx|2. (3.20)

Proof. Because

Δbx = ΔG
1

2−N
x =

N − 1
(N − 2)2

G
2N−3
2−N

x |∇Gx|2 = (N − 1)
|∇bx|2

bx
, (3.21)

and thus

Δb2
x = 2bxΔbx + 2|∇bx|2 = 2N |∇bx|2, (3.22)

where we used the fact that Gx is harmonic on X \ {x}. �

We give the explicit formula for the smoothed distance function for an N -metric
measure cone. Although this is well-known (see for instance [11, Lemma 2.7]), let
us provide a proof for readers’ convenience.

Proposition 3.8 Green function on N -metric measure cone. If (X, d, m, x) is
isomorphic to the N -metric measure cone with the pole over an RCD(N − 2, N − 1)
space, then we have

Gx(y) =
1

N(N − 2)m(B1(x))
d(x, y)2−N , ∀y ∈ X \ {x}. (3.23)

In particular

bx = CNν
1

N−2
x dx, (3.24)

where

CN := (N(N − 2))
1

N−2 . (3.25)
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Proof. Thanks to proposition 2.10, we know

Gx(y) =
21−N

NΓ
(

N
2

)
m(B1(x))

∫ ∞

0

t−
N
2 exp

(
−d(x, y)2

4t

)
dt

=
21−N

NΓ
(

N
2

)
m(B1(x))

· d(x, y)2−N4
N
2 −1Γ

(
N

2
− 1
)

=
1

N(N − 2)m(B1(x))
d(x, y)2−N . (3.26)

Finally recalling (2.30), we get (3.24). �

Finally let us provide formulae on the functions above, F, G, H and b under
rescalings, which will play roles later.

Lemma 3.9. For all a, b > 0, consider the rescaled non-parabolic RCD(0, N) space;(
X̃, d̃, m̃, x̃

)
:= (X, ad, bm, x) . (3.27)

Then the Green function GX̃
x̃ , the corresponding auxiliary functions F X̃

x̃ , HX̃
x̃ , and

the smoothed distance function bX̃
x of the rescaled space satisfy

GX̃
x̃ =

a2

b
GX

x , F X̃
x̃ (r) =

a2

b
FX

x

( r
a

)
, HX̃

x̃ (r) =
a

b
HX

x

( r
a

)
(3.28)

and

bX̃
x̃ =

a
2

2−N

b
1

2−N

bX
x , |∇̃bx̃| =

a
N

2−N

b
1

2−N

|∇bx|. (3.29)

In particular, if b = aN , then

GX̃
x̃ (y) = a2−NGX

x (y), F X̃
x̃ (r) = a2−NFx

( r
a

)
, HX̃

x̃ (r) = a1−NHx

( r
a

)
.

(3.30)
and

bx̃ = abx, |∇̃bx̃| = |∇bx|. (3.31)

Proof. The formula for G is a direct consequence of (2.13). Moreover it implies
(3.29). On the other hand, since

Fx̃(r) =
∫ ∞

r

s

bm(B̃s(x̃))
ds =

1
b

∫ ∞

r

s

m(Ba−1s(x))
ds

=
a2

b

∫ ∞

a−1r

t

m(Bt(x))
dt =

a2

b
Fx

( r
a

)
, (3.32)

we have the desired formula for F . Similarly we have the remaining results. �
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3.2. Convergence

In this subsection we discuss the convergence of non-parabolic RCD(0, N) spaces
with respect to the pmGH topology. Let us introduce an elementary lemma.

Lemma 3.10. Let

(Xi, di,mi, xi)
pmGH→ (X, d,m, x) (3.33)

be a pmGH convergent sequence of RCD(0, N) spaces for some finite N � 1. Then
we have

lim inf
i→∞

νxi
� νx∞ (3.34)

and

lim sup
i→∞

VXi
� VX . (3.35)

Proof. We give only a proof of (3.35) because the proof (3.34) is similar (moreover
this is valid even in the case of negative lower bounds on Ricci curvature. See also
[47, Subsection 2.3]). For fixed r > 0, we have

VXi
� mi(Br(xi))

rN
→ m(Br(x))

rN
(3.36)

which shows

lim sup
i→∞

VXi
� m(Br(x))

rN
. (3.37)

Then letting r → ∞ completes the proof of (3.35). �

Next let us provide a compactness result as follows. In the sequel we fix a finite
N > 2. Note that if Fx(1) � τ <∞, then

1
m(B2(x))

�
∫ 2

1

s

m(Bs(x))
ds � Fx(1) � τ <∞, (3.38)

thus

0 <
1

2Nτ
� m(B1(x)) � m(Bs(x))

sN
, ∀ s � 1. (3.39)

This observation plays a role at the beginning of the proof of the following.

Theorem 3.11 Compactness of non-parabolic RCD(0, N) spaces. Let (Xi, di, mi, xi)
be a sequence of pointed non-parabolic RCD(0, N) spaces with

sup
i

mi(B1(xi)) <∞ (3.40)

and

sup
i
Fxi

(1) <∞. (3.41)

Then after passing to a subsequence, (Xi, di, mi, xi) pmGH converge to a pointed
RCD(0, N) space (X, d, m, x) with the lower semicontinuity of Fxi

in the sense
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that

lim inf
i→∞

Fxi
(ri) � Fx(r), ∀ ri → r in (0,∞). (3.42)

In particular (X, d, m) is non-parabolic.

Proof. Note that (3.41) gives a uniform positive lower (upper, respectively) bound
on mi(B1(xi)) because of (3.39). Thus, thanks to the compactness of RCD spaces
with respect to the pmGH topology (see for instance [1, Theorem 6.11], [25,
Theorem 5.3.22], [28, Theorem 7.2], [46, Theorem 5.19], and [53, Theorem 4.20]),
after passing to a subsequence, (Xi, di, mi, xi) pmGH converge to a pointed
RCD(0, N) space (X, d, m, x). Observe that for all r � s, we have∫ s

ri

r

mi(Bt(xi))
dt→

∫ s

r

t

m(Bt(x))
dt, (3.43)

which implies∫ s

r

t

m(Bt(x))
dt = lim

i→∞

∫ s

ri

t

mi(Bt(xi))
dt � lim inf

i→∞
Fxi

(ri). (3.44)

Letting s→ ∞, we have (3.42). �

Note that (3.40) is satisfied if

sup
i
νxi

<∞. (3.45)

Because if νx � ν <∞, then

m(Bs(x))
sN

� νx � ν, ∀ s � 1 (3.46)

by the Bishop–Gromov inequality. Compare the following theorem with [11,
Proposition 2.3].

Theorem 3.12 Convergence of Green functions. Let us consider a pmGH conver-
gent sequence of pointed non-parabolic RCD(0, N) spaces

(Xi, di,mi, xi)
pmGH→ (X, d,m, x). (3.47)

Then the following conditions are equivalent.

(1) The functions fi(s) := s
mi(Bs(xi))

converge in L1([1, ∞), H 1) to the function
f(s) := s

m(Bs(x)) as i→ ∞.

(2) Fxi
(1) → Fx(1).

(3) For any finite p � 1, Gxi
W 1,p

loc -strongly, and locally uniformly converge to Gx

on X \ {x}. Or equivalently bxi
W 1,p

loc -strongly, and locally uniformly converge
to bx on X \ {x}, where we say that a sequence of functions fi : Xi \ {xi} →
R locally uniformly converge to a function f : X \ {x} → R if under fixing
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isometric embeddings ιi : Xi ↪→ Y, ι : X ↪→ Y into a common proper metric
space (Y, dY ) realizing (3.47), for any compact subset A ⊂ X \ {x} and any
ε ∈ (0, 1), there exist δ ∈ (0, 1) and i0 ∈ N such that |fi(zi) − f(z)| < ε holds
for all zi ∈ Xi and z ∈ A whenever dY (ιi(zi), ι(z)) < δ and i � i0.

Proof. The key point is:

• it is proved in [4, Theorem 3.3] that

pXi
(yi, zi, ti) → pX(y, z, t) (3.48)

holds for all convergent sequences of ti → t in (0, ∞) and of yi, zi ∈ Xi → y,
z ∈ X, respectively.

Based on the above, let us start giving the proof. The implication from (1) to (2) is
trivial. Assume that (2) holds. Thanks to (3.48) and (2.20) with the assumption, we
know

∫ R

r
pi(xi, yi, t)dt→

∫ R

r
p(x, y, t)dt and thus Fxi

(R) → Fx(R) for any R � 1.
In particular for any 0 < ε < 1 there exists R � 1 such that Fxi

(R) + Fx(R) < ε
for any i. On the other hand, for any fixed convergent sequence yi ∈ Xi to y ∈ X
with x �= y, by (2.20), we know that there exists 0 < r < 1 such that

∫ r

0

pi(xi, yi, t)dt+
∫ r

0

p(x, y, t)dt < ε. (3.49)

The observation above allows us to conclude the pointwise convergence Gxi
(yi) →

Gx(y). Then the locally uniform convergence comes from this with a locally uniform
Lipschitz bound (3.17). Moreover since Gxi

is harmonic on Xi \ {xi}, it follows from
the stability of Laplacian, [3, Theorem 4.4], that the W 1,2

loc -strong convergence of
the Green functions holds. Finally the improvement to the W 1,p

loc -strong convergence
is justified by combining this with (3.17) (see also [39]). Thus we have (3).

Finally let us prove the remaining implication from (3) to (1). Thanks to corollary
3.5, for any 0 < ε < 1 there exists R � 1 such thatGx(y) < ε for any y ∈ X \BR(x).
Fix y ∈ X \B2R(x) and take yi ∈ Xi converging to y. Then our assumption allows
us to conclude Gxi

(yi) < 2ε for any sufficiently large i. Thus by (3.16), we have

Fxi
(R) � Fxi

(di(xi, yi)) � C(N)Gxi
(yi) � C(N)ε. (3.50)

On the other hand, as discussed above, we can prove that fi converges in
L1([1, r), H 1) to f for any finite r > 1. This with (3.50) implies (1) because ε
is arbitrary. �

Compared with theorem 3.11, it is natural to ask whether the second condition
above can be replaced by a weaker one; supi Fxi

(1), or not. However this improve-
ment is impossible by observing a simple example discussed in subsection 5.2. In
this sense theorem 3.11 is sharp.

Let us give corollaries of theorem 3.12. See also [11, Corollary 2.4].
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Corollary 3.13. We have

lim
y→x

G(x, y)
d(x, y)2−N

=
1

N(N − 2)νx
(3.51)

and

lim
d(x,y)→∞

G(x, y)
d(x, y)2−N

=
1

N(N − 2)VX
. (3.52)

Proof. We prove only (3.51) via a blow-up argument because the proof of (3.52) is
similar via a blow-down argument, where the case when νx = ∞ or VX = 0 directly
follows from lemma 3.3 with (3.16).

Take a convergent sequence yi ∈ X \ {x} → x, let ri := d(x, yi) and consider
rescaled RCD(0, N) spaces;

(Xi, di,mi, xi) :=
(
X,

1
ri

d,
1
rN
i

m, x

)
. (3.53)

Then since

Fxi
(1) =

Fx(ri)
r2−N
i

→ 1
(N − 2)νx

, νxi
= νx, (3.54)

thanks to theorem 3.11, after passing to a subsequence, (Xi, di, mi, xi) pmGH
converge to a tangent cone (W, dW , mW , w) at x, which is isomorphic to the
non-parabolic N -metric measure cone over an RCD(N − 2, N − 1) space with the
finite volume density νw = νx (see (2.30)). By proposition 3.8 we know Fw(1) =

1
(N−2)νw

(= limi→∞ Fxi
(1) by (3.54)) and

GW (w, z) =
1

N(N − 2)νw
dW (w, z)2−N , ∀z ∈W \ {w}. (3.55)

After passing to a subsequence again, we find the limit point z of yi ∈ Xi (thus
dW (w, z) = 1). Then theorem 3.12 shows

G(x, yi)
r2−N
i

= GXi(xi, yi) → GY (w, z) =
1

N(N − 2)νw
=

1
N(N − 2)νx

(3.56)

which completes the proof because yi is arbitrary. �

The next corollary gives an equi-convergent result on b. Note that this corollary
can be improved later under adding a uniform upper bound on the N -volume
density. See corollary 3.27.

Corollary 3.14. For all N > 2, 0 < ε < 1, 0 < r < R <∞, v > 0, 1 � p <
∞ and ϕ ∈ L1([1, ∞), H 1) there exists δ = δ(N, ε, r, R, v, p, ϕ) > 0 such that
if two pointed non-parabolic RCD(0, N) spaces (Xi, di, mi, xi)(i = 1, 2) satisfy
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mi(B1(xi)) � v,

s

mi(Bs(xi))
� ϕ(s), for H 1-a.e. s ∈ [1,∞), (3.57)

and

dpmGH ((X1, d1,m1, x1), (X2, d2,m2, x2)) < δ, (3.58)

then

|bx1(y1) − bx2(y2)| +
∣∣∣∣∣
∫
--

Bs(y1)

|∇bx1 |pdm1 −
∫
--

Bs(y2)

|∇bx2 |pdm2

∣∣∣∣∣ < ε (3.59)

for all δr � s � (1 − δ)r and yi ∈ BR(xi) \Br(xi) satisfying that y1 δ-close to y2
with respect to (3.58).

Proof. In order to simplify our arguments below, we give a proof only in the case
when p = 2 because the general case is similar after replacing W 1,2-convergence by
W 1,pi -convergence for a convergent sequence pi → p.

The proof is done by a strandard contradiction argument based on the compact-
ness of RCD spaces with respect to the pmGH convergence. Namely if the assertion
is not satisfied, then there exist sequences of;

• pointed non-parabolic RCD(0, N) spaces (Xj,i, dj,i, mj,i, xj,i) with mj,i(B1

(xj,i)) � v,

fj,i(s) :=
s

mj,i(Bs(xj,i))
� ϕ(s), for H 1-a.e. s ∈ [1,∞) (3.60)

and

dpmGH ((X1,i, d1,i,m1,i, x1,i), (X2,i, d2,i,m2,i, x2,i)) → 0; (3.61)

• points yj,i ∈ BR(xj,i) \Br(xj,i) satisfying that y1,i is εi-close to y2,i for some
εi → 0+ and that

inf
i

(∣∣bx1,i(y1,i) − bx2,i(y2,i)
∣∣ +

∣∣∣∣∣
∫
--

Bs(y1,i)
|∇bx1,i |2dm1,i −

∫
--

Bs(y2,i)
|∇bx2,i |2dm2,i

∣∣∣∣∣
)

> 0.

(3.62)

Theorem 3.11 shows that after passing to a subsequence, (Xj,i, dj,i, mj,i, xj,i)
pmGH-converge to a pointed non-parabolic RCD(0, N) space (X, d, m, x). With no
loss of generality we can assume that yj,i converge to a point y ∈ BR(x) \Br(x).
Moreover the dominated convergence theorem with (3.60) yields that fj,i(s) L1-
strongly converge to f(s) := s

m(Bs(x)) in L1([1, ∞), H 1). Thus theorem 3.12 allows
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us to conclude

∣∣bx1,i
(y1,i) − bx2,i

(y2,i)
∣∣+
∣∣∣∣∣
∫
--

Bs(y1,i)

|∇bx1,i
|2dm1,i −

∫
--

Bs(y2,i)

|∇bx2,i
|2dm2,i

∣∣∣∣∣
→ |bx(y) − bx(y)| +

∣∣∣∣∣
∫
--

Bs(y)

|∇bx|2dm −
∫
--

Bs(y)

|∇bx|2dm

∣∣∣∣∣ = 0 (3.63)

which contradicts (3.62). �

3.3. Canonical representative of |∇bx| and drifted Laplace operator L

Throughout this subsection we continue to argue under the same assumptions
as in the previous subsection, namely we fix a pointed non-parabolic RCD(0, N)
space (X, d, m, x). A main result of this subsection is the following.

Theorem 3.15 Canonical pointwise representative of |∇bx|. The limit

lim
r→0+

∫
--

Br(z)

|∇bx|2dm ∈ [0,∞) (3.64)

exists for any z ∈ X \ {x}. Denoting by |∇bx|∗(z) the square root of the limit, we
have the following.

(1) |∇bx|∗ is upper semicontinuous.

(2) Any point z ∈ X \ {x} is a Lebesgue point of |∇bx|∗;∫
--

Br(z)

||∇bx|∗ − |∇bx|∗(z)|dm → 0. (3.65)

(3) We see that

|∇bx|∗(z) = lim sup
y→z

|∇bx|∗(y), ∀z ∈ X \ {x}. (3.66)

It is worth mentioning that in the proof of the theorem above, we immediately
show

|∇bx|∗(z) = lim
r→0+

ess sup
y∈Br(z)

|∇bx|(y), ∀ z ∈ X \ {x}. (3.67)

Actually theorem 3.15 with (3.67) is a direct consequence of the subharmonicity of
|∇bx|2Gx stated in proposition 3.21 and general results on PI spaces in [9, Section
8.5]. Thus in the rest of this subsection, we focus on introducing the subharmonicity
and its drifted ones which play important roles later.

Remark 3.16. Let us recall the following well-known fact; if x is a Lebesgue point
of a locally bounded function f defined on an open subset U of a PI space (X, d, m),
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then ∫
--

Br(x)

ψ (ϕ ◦ f − ϕ(f(x))) dm → 0 (3.68)

for all ϕ, ψ ∈ C(R) with ψ(0) = 0. In particular x is also a Lebesgue point of ϕ ◦ f .
In order to prove the theorem above, we will apply this fact as f = |∇bx|2, ϕ(t) =√|t| and ψ(t) = |t| with the following arguments.

Consider the following drifted Laplace operator L by

L := Δ + 2〈∇ logGx,∇·〉. (3.69)

See definition 3.18 for the precise definition. It should be emphasized that Colding
studied L in [16] deeply in the smooth framework in order to prove the pointwise
rigidity result, (2) of theorem 1.1 (see [17] for applications).

In the sequel, we follow his arguments, but extra delicate treatments on L are
necessary in our setting because of lack of the smoothness. Firstly let us estimate
the drifted term of (3.69) as follows.

Proposition 3.17. We have

|∇ logGx|(y) � C(N)
d(x, y)

, for m-a.e. y ∈ X \ {x}. (3.70)

In particular

‖∇ logGx‖L∞(X\Br(x)) � C(N)
r

, ∀ r > 0. (3.71)

Proof. By theorem 3.4,

|∇ logGx| =
|∇Gx|
Gx

� C(N)
Hx(d(x, ·))
Fx(d(x, ·)) . (3.72)

On the other hand by definition we have

Fx(s) =
∫ ∞

s

t

m(Bt(x))
dt �

∫ ∞

s

s

m(Bt(x))
dt = sHx(s). (3.73)

Combining this with (3.72) completes the proof. �

Let us recall the sub/super harmonicity of a function f on an open subset Ω of
X. We say that f is sub (or super, respectively) harmonic on Ω if f ∈W 1,2

loc (Ω, d, m)
with ∫

Ω

−〈∇u,∇ϕ〉dm � 0, (or � 0, respectively) (3.74)

for any ϕ ∈ (Lipc)+(Ω, d). It directly follows that f is sub (or super, respectively)
harmoninc on Ω if f ∈ Dloc(Δ, Ω) with Δf � 0 (or Δf � 0, respectively). See
also [50].

Based on this observation, we are now in a position to define the L -operator
precisely as follows.
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Definition 3.18 L -operator and L -sub/super harmonicity. Let Ω be an open
subset in X \ {x}.

(1) (L -operator) For u ∈ Dloc(Δ, Ω), let

L u := Δu+ 2〈∇ logGx,∇u〉 ∈ L2
loc(Ω,m). (3.75)

(2) (L -sub/super harmonicity) A function u ∈W 1,2
loc (Ω, d, m) is said to be L -sub

(or super, respectively) harmonic on Ω if∫
Ω

−〈∇u,∇ϕ〉dmGx
� 0, (or � 0, respectively) (3.76)

for any ϕ ∈ (Lipc)+(Ω, d), where mGx
is the weighted Borel measure on X

defined by

mGx
(A) :=

∫
A

G2
xdm. (3.77)

Remark 3.19. The L -operator can be defined as a measure valued one; for any
u ∈ D(Δ, Ω), define

L u := Δu+ 2〈∇ logGx,∇u〉dm, (3.78)

where D(Δ, Ω) is the domain of the measure valued Laplacian, see [29, 34] for the
detail. Then, even in the measure valued case, L -sub/super harmonicity are also
well-defined, and weak/strong maximum principles are justified. See also [30, 31].
Although we avoid to use the measure valued Laplacian/L -operator for simplicity
in our presentation, however, for our main target in the sequel, |∇bx|2, the measure
valued L -operator, L |∇bx|2 is well-defined.

In connection with this, it is easy to see that u is L -sub (or L -super, respectively)
harmonic on Ω if and only if for any ϕ ∈ (Lipc)+(Ω, d),∫

Ω

−〈∇ϕ,∇u〉 + 2ϕ〈∇ logG,∇u〉dm � 0, (or � 0, respectively). (3.79)

This observation will be a starting point in § 6.

Let us introduce a standard integration-by-parts formula for mGx
.

Proposition 3.20. Let Ω be an open subset in X \ {x} and let u ∈ Dloc(Δ, Ω).
Then ∫

Ω

〈∇ϕ,∇u〉dmGx
= −

∫
Ω

ϕ · L udmGx
(3.80)

for any ϕ ∈ Lipc(Ω, d). In particular u is L -sub (or super, respectively) harmonic
on Ω if L u � 0 (or L u � 0, respectively).
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Proof. The proof is quite standard;

∫
Ω

〈∇ϕ,∇u〉dmGx
=
∫

Ω

〈∇(G2
xϕ),∇u〉dm −

∫
Ω

ϕ〈∇G2
x,∇u〉dm

= −
∫

Ω

G2
xϕΔudm −

∫
Ω

2ϕGx〈∇Gx,∇u〉dm

= −
∫

Ω

ϕ · L udmGx
. (3.81)

�

We are now in a position to prove a main result in this subsection, recall that the
subharmonicity of |∇bx|2Gx with results in [9, Section 8.5] implies theorem 3.15
(we can find the corresponding regularity results for the L -operator in § 6).

Proposition 3.21 Subharmonicity of gradient of bx. We see that |∇bx|2Gx is
subharmonic on X \ {x} and that |∇bx|2 is L -subharmonic on X \ {x}.

Proof. First of all, we claim that |∇bx|2 ∈W 1,2
loc (X \ {x}, d, m). For any compact

set K ⊂ X \ {x}, we can take a good cut-off function η ∈ (Lipc)+(X, d) ∩D(Δ)
such that η ≡ 1 in K, supp η ⊂ X \ {x} and |∇η| + |Δη| < C (see [48, Lemma
3.2] for such an existence). Letting h := ηbx, then [34, Propositions 3.3.18 and
3.3.22] shows that |∇h|2 ∈W 1,2(X \ {x}, d, m), which implies |∇bx|2 ∈W 1,2

loc (X \
{x}, d, m) because K is arbitrary.

Next recalling

−
∫

X\{x}
〈∇ψ,∇(fh)〉dm =

∫
X\{x}

ψ (hΔf + 2〈∇f,∇h〉) dm

−
∫

X\{x}
〈∇(ψf),∇h〉dm (3.82)

for all ψ ∈ Lipc(X \ {x}, d), f ∈ Dloc(Δ, X \ {x}) and h ∈W 1,2
loc (X \ {x}, d, m),

we apply this as f = b2
x, h = |∇bx|2 to get

−
∫

X\{x}
〈∇ψ,∇(b2

x|∇bx|2)〉dm

=
∫

X\{x}
ψ
(|∇bx|2Δb2

x + 2〈∇b2
x,∇|∇bx|2〉

)
dm −

∫
X\{x}

〈∇(ψb2
x),∇|∇bx|2〉dm

=
∫

X\{x}
ψ
(
2N |∇bx|4 + 2〈∇b2

x,∇|∇bx|2〉
)
dm −

∫
X\{x}

〈∇(ψb2
x),∇|∇bx|2〉dm,

(3.83)

https://doi.org/10.1017/prm.2024.131 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.131


Sharp gradient estimate, rigidity and almost rigidity of Green functions 29

where we used (3.20). On the other hand, since b2
x|∇bx|2 = |∇b2

x|2
4 , the Bochner

inequality allows us to estimate the left-hand-side above as follows;

−
∫

X\{x}
〈∇ψ,∇(b2

x|∇bx|2)〉dm = −1
4

∫
X\{x}

〈∇ψ,∇|∇b2
x|2〉dm

� 1
2

∫
X\{x}

ψ

(
(Δb2

x)2

N
+ 〈∇Δb2

x,∇b2
x〉
)

dm

=
∫

X\{x}
ψ
(
2N |∇bx|4 +N〈∇|∇bx|2,∇b2

x〉
)
dm,

(3.84)

where we used (3.20) again. Therefore it follows from (3.83) and (3.84) that∫
X\{x}

(2 −N)ψ〈∇b2
x,∇|∇bx|2〉dm −

∫
X\{x}

〈∇(ψb2
x),∇|∇bx|2〉dm � 0. (3.85)

Let us prove that this inequality (3.85) implies the conclusions. Actually as done
in (3.83) and (3.84), it follows from Leibniz’ rule that3

−
∫

X\{x}
〈∇ψ,∇|∇bx|2〉dmGx

=
∫

X\{x}

(−〈∇(ϕb2
x),∇|∇bx|2〉 + (2 −N)ϕ〈∇b2

x,∇|∇bx|2〉
)
dm � 0 (3.87)

holds, where ϕ = b−2
x G2

xψ, which proves the L -subharmonicity of |∇bx|2 on
X \ {x}.

Similarly we have4

−
∫

X\{x}

〈∇ (|∇bx|2Gx

)
,∇ψ〉 dm

=
∫

X\{x}

(−〈∇(ϕb2
x),∇|∇bx|2〉 + (2 −N)ϕ〈∇b2

x,∇|∇bx|2〉
)
dm � 0, (3.89)

where ϕ = ψb−N
x , which proves the subharmonicity of |∇bx|2Gx on X \ {x}. �

3This is also justified by using the measure valued L -operator because

L |∇bx|2 = Δ|∇bx|2 + 2〈∇ log G,∇|∇bx|2〉dm

= Δ|∇bx|2 + (2 − N)b−2
x 〈∇b2

x,∇|∇bx|2〉dm. (3.86)

4This is also justified by using the measure valued Laplacian because

Δ(|∇bx|2Gx) = GΔ|∇bx|2 + 2〈∇G,∇|∇bx|2〉
= b2−N

x Δ|∇bx|2 + (2 − N)b−N
x 〈∇b2

x,∇|∇bx|2〉
= b−N

x

(
b2

xΔ|∇bx|2 + (2 − N)〈∇b2
x,∇|∇bx|2〉

)
. (3.88)
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In the sequel, we will use the simplified notation |∇bx| = |∇bx|∗ for the simplicity
on our presentations. In § 6, we will also provide the fundamental properties on the
L -operator with the proofs, including the strong maximum principle, which comes
from the general theory on PI spaces. They will play important roles in the sequel.

3.4. Sharp gradient estimate on bx

Fix a pointed non-parabolic RCD(0, N) space (X, d, m, x) and assume that the
N -volume density νx at x is finite;

νx = lim
r→0+

m(Br(x))
rN

<∞. (3.90)

Note that this condition does not imply that the essential dimension is equal to
N because of an example; ([0, ∞), dEuc, r

N−1dr) is an RCD(0, N) space with the
finite N -volume density at the origin.

The main result of this section is the following. Recall CN = (N(N − 2))
1

N−2 .

Theorem 3.22 Sharp gradient estimate of bx. We have

|∇bx|(y) � CNν
1

N−2
x , ∀ y ∈ X \ {x}. (3.91)

Proof. The proof is divided into several steps as follows.

Step 1. Let us prove that |∇bx| ∈ L∞(X, m). By calculus rules

|∇bx| =
1

N − 2
G

N−1
2−N
x |∇Gx|. (3.92)

Let

Copt,x := lim
r→0

ess sup
y∈Br(x)

|∇bx|(y)
(

= lim
r→0

sup
y∈Br(x)

|∇bx|(y)
)
. (3.93)

Plugging in (3.51), (3.17) and (3.7) we see that

Copt,x � C(N)ν
1

N−2
x . (3.94)

Thus we can take r sufficiently small such that

|∇bx|(y) � C(N)ν
1

N−2
x , m-a.e. y ∈ Br(x) \ {x}. (3.95)

On the other hand, combining (3.92) with theorem 3.4 yields that for m-a.e.
y ∈ X \ {x}, we have

|∇bx|(y) � C(N)Fx(d(x, y))
N−1
2−N Hx(d(x, y)). (3.96)

Note that it holds that sHx(s) � Fx(s) for any s ∈ [1, ∞). Thus, choosing R
sufficiently large, then for any y ∈ X \BR(x), we have

|∇bx|(y) � C(N)
Hx(d(x, y))

Fx(d(x, y))
N−1
N−2

� C(N)VX + 1 (3.97)
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because of (3.8). Moreover it follows from the continuity of right-hand-side of (3.96)
that |∇bx| is bounded m-a.e. in BR(x) \Br(x), which is a compact subset. Therefore
|∇bx| ∈ L∞(X, m).

Step 2. Let us prove that |∇bx|(y) � Copt, x for any y ∈ X \ {x}.
Fix 0 < r < R and choose arbitrarily ε > 0. By corollary 3.5, we can find R0 > R

sufficiently large such that

Gx(y) < ε, ∀ y ∈ X \BR0(x) (3.98)

Take 0 < r0 < r with

|∇bx|2(y) < C2
opt,x + ε, ∀ y ∈ Br0(x) \ {x}. (3.99)

Let L :=
∥∥|∇bx|

∥∥
L∞(X,m)

and set

ux := |∇bx|2Gx − (C2
opt,x + ε)Gx − L2ε, (3.100)

which is upper semicontinuous and subharmonic on X \ {x} because of proposition
3.21.

Let Ω := BR0(x) \Br0(x). Applying the weak maximum principle for upper
semicontinuous subharmonic functions [31, Proposition 1.15], we see that

sup
Ω
ux = sup

∂Ω
ux � 0 (3.101)

which proves

|∇bx|2(y) � C2
opt,x +

L2ε

Gx(y)
+ ε, ∀ y ∈ Ω. (3.102)

This observation allows us to conclude that |∇bx| � Copt, x for m-a.e. after letting
ε→ 0+ under fixing r, R. Thus by theorem 3.15 we know that |∇bx|(y) � Copt, x

for any y ∈ X \ {x}.

Step 3. We claim that Copt, x = CNν
1

N−2
x , where this completes the proof. Thanks

to (2.30), proposition 3.8 and theorem 3.12, we know that for any 0 < δ < 1

∫
--

Br(x)\Bδr(x)

∣∣∣∣|∇bx|2 − C 2
Nν

2
N−2
x

∣∣∣∣ dm → 0, as r → 0+. (3.103)

Take yi → x satisfying |∇bx|(yi) → Copt, x and let ri := d(x, yi) and consider
rescaled spaces;

(Xi, di,mi) :=
(
X,

1
ri

d,
1
rN
i

m

)
. (3.104)

Applying the weak Harnack inequality for L -superharmonic functions, proposition
6.5, to a lower semicontinuous L -superharmonic function C2

opt, x − |∇bXi
x |2 � 0, we
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have⎛
⎝∫--

B
di
1
4

(yi)

∣∣C2
opt,x − |∇bXi

x |2∣∣p dmi

⎞
⎠

1/p

� C(N)
(
C2

opt,x − |∇bXi
x |2(yi)

)

= C(N)
(
C2

opt,x − |∇bx|2(yi)
)→ 0,

(3.105)

where p = p(N) > 0. Thus recalling |∇bx| ∈ L∞(X \ {x}, m), it holds that∫
--

B
di
1
4

(yi)

∣∣C2
opt,x − |∇bXi

x |2∣∣ dmi → 0, (3.106)

namely ∫
--

B ri
4

(yi)

∣∣C2
opt,x − |∇bx|2

∣∣ dm → 0. (3.107)

On the other hand, (3.103) implies∫
--

B ri
4

(yi)

∣∣∣∣C 2
Nν

2
N−2
x − |∇bx|2

∣∣∣∣ dm → 0. (3.108)

Thus by (3.107) and (3.108) we have Copt, x = CNν
1

N−2
x . �

We provide direct consequences of theorem 3.22. Firstly we improve theorems
3.12 and 3.15 removing the singular base point.

Corollary 3.23 Improvement of the convergence of b. Let us consider a pmGH
convergent sequence of pointed non-parabolic RCD(0, N) spaces

(Xi, di,mi, xi)
pmGH→ (X, d,m, x) (3.109)

with (3.45) and Fxi
(1) → Fx(1). Then bxi

W 1,p
loc -strongly, and locally uniformly

converge to bx on X for any p <∞.

Proof. Note

1
mi(B1(xi))

∫
Bε(xi)

|∇bxi
|pdmi � mi(Bε(xi))

mi(B1(xi))
C p

N · sup
j
ν

p
N−2
xj

→ m(Bε(x))
m(B1(x))

C p
N · sup

j
ν

p
N−2
xj . (3.110)

Since the right-hand-side of (3.110) is small if ε is small, combining this with
theorem 3.12 completes the proof. �
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Corollary 3.24. Let bx(x) := 0. Then bx is CNν
1

N−2
x -Lipschitz with the Lipschitz

constant CNν
1

N−2
x . Moreover letting

|∇bx|(x) := CNν
1

N−2
x , (3.111)

we have the same conclusions as in theorem 3.15 with (3.67) even for the base point
z = x. More strongly, we have for any p <∞.

∫
--

Br(x)

∣∣∣∣∇
(

bx − CNν
1

N−2
x dx

)∣∣∣∣
p

dm → 0, r → 0+. (3.112)

In particular, |∇bx|(yi) → CNν
1

N−2
x for some convergent sequence yi → x.

Proof. Thanks to (3.16) and (3.6), putting bx(x) := 0 gives a unique continuous
extention of bx on X. Since {x} is null with respect to the 2-Sobolev capacity
because of the finiteness of νx (see [9]), we know bx ∈W 1,2

loc (X, d, m). Then the
first statement comes from arguments in the last step in the proof of theorem
3.22 with the (local) Sobolev-to-Lipschitz property and corollary 3.23. Moreover
corollary 3.23 with proposition 3.8 allows us to obtain (3.112). �

As the final application of theorem 3.22, we determine the small scale asymptotics
of the gradient of the Green function.

Corollary 3.25. We have

lim
r→0+

sup
y∈Br(x)

|∇Gx|(y)
d(x, y)1−N

=
1

Nνx
. (3.113)

Proof. Since (3.51), (3.92) and corollary 3.24 yield (under a suitable limit y → x)

|∇Gx|(y)
d(x, y)1−N

= (N − 2)
(
d(x, y)Gx(y)

1
N−2

)N−1

|∇bx|(y)

→ (N − 2)

(
1

CNν
1

N−2
x

)N−1

CNν
1

N−2
x

=
1

Nνx
(3.114)

we conclude. �

Next we provide an asymptotic formula as y → ∞.
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Corollary 3.26 Sharp gradient asymptotics. For any p <∞ we have

∫
--

Br(x)

∣∣∣∣∇
(

bx − CNV
1

N−2
X dx

)∣∣∣∣
p

dm → 0, r → ∞, (3.115)

therefore
∫
--

Br(x)

∣∣∣∣|∇bx|2 − C 2
NV

2
N−2

X

∣∣∣∣ dm → 0, r → ∞. (3.116)

In particular

|∇bx|(yi) → CNV
1

N−2
X , (3.117)

equivalently

|∇Gx|(yi)
d(x, yi)1−N

→ 1
NVX

(3.118)

holds for some sequence yi ∈ X with d(x, yi) → ∞.

Proof. Firstly we discuss the case when VX = 0. Then we can follow the same
arguments as in the proof of [16, Theorem 2.12]. Namely we can estimate as
d(x, y) → ∞,

|∇bx|(y) =
G

N−1
2−N
x

N − 2
|∇Gx|(y)

� Gx(y)
N−1
2−N

N − 2
· C(N) ·Gx(y) · 1

d(x, y)

� C(N)
(
Fx(d(x, y))
d(x, y)2−N

) 1
2−N

→ 0, (3.119)

where we used the gradient estimates on positive harmonic functions obtained in
[42, Theorem 1.2] in the first inequality above and we also used (3.8) and (3.16) in
the last inequality and in the limit. Thus we obtain the conclusion in this case.

Next we consider the case when VX > 0. The first statement, (3.115), is a direct
consequence of corollary 3.23 and (2) of corollary 2.9. The remaining one (3.117)
(or (3.118)) follows from an argument similar to the proof of corollary 3.25. �

Based on corollary 3.23, we can prove the following whose proof is the same to
that of corollary 3.14. Thus we omit the proof.

Corollary 3.27. For all N > 2, 0 < ε < 1, 0 < τ < 1, v > 0, 1 � p <∞ and
ϕ ∈ L1([1, ∞), H 1) there exists δ = δ(N, ε, τ, v, p, ϕ) > 0 such that if two pointed
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non-parabolic RCD(0, N) spaces (Xi, di, mi, xi)(i = 1, 2) satisfy νxi
� v <∞,

s

mi(Bs(xi))
� ϕ(s), for H 1-a.e. s ∈ [1,∞) (3.120)

and

dpmGH ((X1, d1,m1, x1), (X2, d2,m2, x2)) < δ, (3.121)

then

|bx1(y1) − bx2(y2)| +
∣∣∣∣∣
∫
--

Bs(y1)

|∇bx1 |pdm1 −
∫
--

Bs(y2)

|∇bx2 |pdm2

∣∣∣∣∣ < ε (3.122)

for all τ � s � τ−1 and yi ∈ Bτ−1(xi) satisfying that y1 δ-close to y2 with respect
to (3.121).

Finally let us end this section by giving the following corollary which generalizes
[26, Theorem 3.5] to the RCD setting. This corollary is pointed out by the reviewer.
We thank the reviewer.

Corollary 3.28. The function fx : (0, ∞) → [0, ∞) defined by

fx(t) := sup
{bx=t}

|∇bx| (3.123)

is monotone non-increasing, where recall that we assume νx <∞. Moreover we
have

lim
t→0+

fx(t) = CNν
1

N−2
x (3.124)

and

lim
t→∞ fx(t) = CNV

1
N−2

X . (3.125)

Proof. For the first statement, we just follow the proof of [26, Theorem 3.5]. Namely
our goal is to prove for any t > 0

|∇bx| � sup
{bx=t}

|∇bx|, on {bx � t} (3.126)

because then for any s � t we have

fx(s) = sup
{bx�s}

|∇bx| � sup
{bx�t}

|∇bx| = fx(t) (3.127)

which completes the proof of the first statement. Thus let us focus on the proof of
(3.126). Note that Gx is L-harmonic on X \ {x}. Fixing a sufficiently large T > t,
consider an L-subharmonic function ϕ on X \ {x} defined by

ϕ(y) := |∇bx|2(y) − fx(t) − C 2
Nν

2
N−2
x

TN−2Gx(y)
. (3.128)

It is trivial that ϕ � 0 holds on {bx = t} ∪ {bx = T}. Thus the strong maximum
principle, proposition 6.7, shows ϕ � 0 on {t � bx � T}. Then letting T → ∞
proves (3.126).
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On the other hand (3.124) is a direct consequence of theorem 3.22 and corollary
3.24. Thus let us focus on the proof of (3.125). The proof is divided into the following
2 cases.

Case 1 : VX = 0.
By the same argument as in (3.97), we see that for any ε > 0, there exists R > 1

such that

|∇bx|(y) � C(N)VX + ε = ε (3.129)

holds for any y ∈ X \BR(x), namely we have lim supdx(y)→∞ |∇bx|(y) �
C(N)VX = 0 which proves (3.124) in this case.

Case 2 : VX > 0.
In this case the proof is similar to Step 3 of the proof of theorem 3.22 with

(3.126). Let Copt,∞ := limt→∞ fx(t). Take xt ∈ {bx = t} with |∇bx|(xt) = fx(t),
and let 0εt := fx(t)2 − C2

opt,∞ � 0. Note that C2
opt,∞ − |∇bx|2 + εt � 0 holds on

{bx � t}.
On the other hand, thanks to (3.52), for any sufficiently large t > 1, we have

Bδt(xt) ⊂ {bx � t
2}, where δ = δ(N, VX) is a positive constant depending only on

N, VX . In particular

C2
opt,∞ − |∇bx|2 + ε t

2
� 0, on Bδt(xt). (3.130)

Then, after a rescaling t−1d, m(Bt(x))−1m, applying the weak Harnack inequality
for L-superharmonic function, proposition 6.5, to C2

opt,∞ − |∇bx|2 + ε t
2

� 0, we
have as t→ ∞
⎛
⎝∫--

B t
4
(xt)

∣∣∣C2
opt,∞ − |∇bx|2 + ε t

2

∣∣∣p dm

⎞
⎠

1/p

� C(N)
(
C2

opt,∞ − |∇bx|2(xt) + ε t
2

)
→ 0,

(3.131)
for some p = p(N) > 0, namely∫

--
B t

4
(xt)

∣∣C2
opt,∞ − |∇bx|2

∣∣dm → 0. (3.132)

Combining this with (3.116) yields Copt,∞ = CNV
1

N−2
X which completes the proof

of (3.125). �

4. Rigidity to N-metric measure cone

We are now in a position to prove the main results. Fix a finite N > 2.

4.1. Rigidity

Let us prove the desired rigidity result based on theorems 3.15 and 3.22 (see
(3.25) for the definition of CN ).
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Theorem 4.1 Rigidity to N -metric measure cone. Let (X, d, m, x) be a pointed
non-parabolic RCD(0, N) space with the finite N -volume density νx <∞. If there
exists a point y ∈ X \ {x} such that

|∇bx|(y) = CNν
1

N−2
x , (4.1)

then (X, d, m, x) is isomorphic to the N -metric measure cone with the pole over
an RCD(N − 2, N − 1) space.

Proof. First of all, let us prove that X \ {x} is connected. Let U be a connected
component of X \ {x}. As mentioned in the beginning of the proof of corollary 3.24,
since {x} has a null 2-capacity, the indicator function χU of U is in H1,2

loc (X, d, m)
with |∇χU | = 0. Thus the (local) Sobolev-to-Lipschitz property shows χU = 1 for
m-a.e., which implies X \ {x} = U . Thus X \ {x} is connected.

Then applying the strong maximum principle, proposition 6.7, for |∇bx|2 yields

|∇bx| ≡ CNν
1

N−2
x in X \ {x}. Letting u := b2

x/(2C 2
Nν

2
N−2
x ), we have |∇√

2u|2 = 1
and thus, by (3.20), Δu = N for m-a.e. These observations allow us to apply [31,
Theorem 5.1] (see also Theorem 2.8) to get the conclusion. �

In particular, when restricted to points with Euclidean tangent spaces, theorem
4.1 implies an interesting corollary; compare with [16, Theorem 3.1].

Corollary 4.2. We have the following.

(1) Let (X, d, m) be a non-parabolic RCD(0, N) space for some integer N � 3
with the finite N -volume density νx <∞ at an N -regular point x. If there

exists z ∈ X \ {x} such that |∇bx|(z) = CNν
1

N−2
x holds, then (X, d, m) is

isometric to (RN , dRN , cH N ) for some positive constant c > 0.

(2) If a non-parabolic non-collapsed RCD(0, N) space (X, d, H N ) for some inte-
ger N � 3 with the finite N -volume density νx <∞ at a point x ∈ X satisfies

|∇bx|(z) � CNω
1

N−2
N for some z ∈ X \ {x}, then (X, d, H N ) is isometric to

(RN , dRN , H N ).

Proof. Let us prove (1). Theorem 4.1 yields that (X, d, m) is isomorphic to an N -
metric measure cone over an RCD(N − 2, N − 1) space. In particular it must be
isomorphic to a tangent cone at x. Thus we conclude.

Next let us prove (2). The sharp gradient estimate, theorem 3.22, yields

lim
r→0+

H N (Br(x))
ωNrN

� 1, (4.2)

thus x is an N -regular point because of [20, Corollary 1.7] (recall (2.15)). Then the
conclusion follows from the first statement (1). �

4.2. Almost rigidity

Finally, let us prove the following almost rigidity theorem of bx:
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Theorem 4.3 Almost rigidity. For all N > 2, 0 < ε < 1, 0 < r < R <∞, ν >
0, 1 � p <∞ and ϕ ∈ L1([1, ∞), H 1) there exists δ := δ(N, ε, r, R, ν, p, ϕ) > 0
such that if a pointed non-parabolic RCD(0, N) space (X, d, m, x) satisfies νx � ν,

s

m(Bs(x))
� ϕ(s), for H 1-a.e. s ∈ [1,∞) (4.3)

and

|∇bx|(z) � CNν
1

N−2
x − δ (4.4)

for some z ∈ BR(x) \Br(x), then we have

∥∥∥∥bx − CNν
1

N−2
x dx

∥∥∥∥
L∞(BR(x))

+

(∫
--

BR(x)

∣∣∣∣∇
(

bx − CNν
1

N−2
x dx

)∣∣∣∣
p

dm

)1/p

� ε

(4.5)
and there exists an RCD(N − 2, N − 1) space (Y, dY , mY ) such that

dpmGH

(
(X, d,m, x), (C(Y ), dC(Y ),mC(Y ), OY )

)
+ |νx − νOY

| < ε (4.6)

Proof. As in the proof of corollary 3.14, it is enough to consider the case when
p = 2. Then the proof is done by a contradiction, thus assume the conclusion fails.
Then there exist sequences of positive numbers δi → 0+ and of pointed RCD(0, N)
spaces (Xi, di, mi, xi) such that νxi

� ν, s
mi(Bs(xi))

� ϕ(s) for H 1-a.e. s ∈ [1, ∞),
that

|∇ibxi
|(zi) � CNν

1
N−2
xi − δi, for some zi ∈ BR(xi) \Br(xi) (4.7)

and that for any RCD(N − 2, N − 1) space (Y, dY , mY ), we have

inf
i

(
dpmGH

(
(Xi, di,mi, xi), (C(Y ), dC(Y ),mC(Y ), OY )

)
+ |νxi

− νOY
|) > 0 (4.8)

or

inf
i

⎛
⎝∥∥∥∥bxi − CNν

1
N−2
xi dxi

∥∥∥∥
L∞(BR(xi))

+

(∫
--

BR(xi)

∣∣∣∣∇
(

bxi−CNν
1

N−2
xi dxi

)∣∣∣∣
p

dm

)1/p
⎞
⎠>0.

(4.9)
Theorem 3.11 allows us to conclude that after passing to a subsequence,
(Xi, di, mi, xi) pmGH converge to a pointed non-parabolic RCD(0, N) space
(X, d, m, x), and νxi

→ μ for some μ ∈ [0, ∞). On the other hand, the lower
semicontinuity of N -volume densities (3.34) implies

νx � lim
i→∞

νxi
= μ � ν <∞. (4.10)

Consider L -superharmonic lower semicontinuous functions on Xi \ {xi};

ui := C 2
Nν

2
N−2
xi − |∇ibxi

|2 � 0. (4.11)
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Fix 0 < s < r
4 . Applying the weak Harnack inequality, proposition 6.5, to the

nonegatively valued L -superharmonic function ui, we have(∫
--

B2s(zi)

up
i dmi

) 1
p

� C inf
Bs(zi)

ui � Cui(zi) � Cδi. (4.12)

where p = p(N, s) > 0. Thus recalling that ui is uniformly bounded, we have∫
--

B2s(zi)

∣∣∣∣C 2
Nν

2
N−2
xi − |∇ibxi

|2
∣∣∣∣ dmi → 0. (4.13)

Note that with no loss of generality we can assume that zi converge to a point
z ∈ BR(x) \Br(x). Moreover the dominated convergence theorem yields the con-
vergence of s

mi(Bs(xi))
to s

m(Bs(x)) in L1([1, ∞), H 1). Thus theorem 3.12 shows that
bxi

W 1,2-strongly converge to bx on B2s(z). Therefore (4.13) with (4.10) implies∫
--

B2s(z)

|∇bx|2dm = C 2
Nμ

2
N−2 � C 2

Nν
2

N−2
x . (4.14)

In particular theorem 3.22 shows μ = limi→∞ νxi
= νx and

|∇bx| = CNν
1

N−2
x , for m-a.e. in B2s(z). (4.15)

Thus, theorem 4.1 allows us to conclude that the limit space is isomorphic to the
N -metric measure cone over an RCD(N − 2, N − 1) space, which contradicts (4.8)
and (4.9). �

Next we provide an almost rigidity to a Euclidean space on a non-collapsed space.

Corollary 4.4. For any integer N � 3, all 0 < ε < 1, 0 < r < R and ϕ ∈
L1([1, ∞), H 1) there exists δ := δ(N, ε, r, ϕ) > 0 such that if a pointed non-
parabolic non-collapsed RCD(0, N) space (X, d, H N , x) satisfies

s

H N (Bs(x))
� ϕ(s), for H 1-a.e. s ∈ [1,∞) (4.16)

and

|∇bx|2(y) � CNω
1

N−2
N − δ (4.17)

for some y ∈ BR(x) \Br(x), then (X, d, H N , x) is ε- pmGH close to
(RN , dRN , H N , 0N ).

Proof. The first statement is a direct consequence of (the proof of) theorem 4.3
with the Bishop inequality νx � ωN . �

Remark 4.5. Let us remark that the conclusion of corollary 4.4 cannot be replaced
by a stronger one;

VX � ωN − ε. (4.18)

Find an open N -manifold (MN , g) with the maximal volume growth which is not
isometric to R

N (for instance the Eguchi-Hanson metric on the cotangent bundle
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T ∗
S

2 of S
2 gives such an example with vanishing Ricci curvature, see [24]). Then

since the tangent cone at infinity is not isometric to R
N , the asymptotic N -volume

VMN is away from ωN . Fix x ∈MN . Take any convergent sequence xi → x with
xi �= x and then recall

|∇bx|(xi) → CNω
1

N−2
N . (4.19)

Thus considering the rescaled distance di := d(x, yi)−1d, the pointed Riemannian
manifolds (MN , di, x) satisfies (4.19) for some yi ∈ ∂Bdi

1 (x), but the asymptotic
N -volume is away from ωN because of the scale invariance of VMN . In particular
(4.18) is not satisfied in this case.

In connection with this remark, we prove the following.

Theorem 4.6. For any integer N � 3, all 0 < ε < 1 and τ > 0 there exists δ =
δ(N, ε, τ) > 0 such that if a pointed non-parabolic non-collapsed RCD(0, N) space
(X, d, H N , x) satisfies VX � τ and

CNω
1

N−2
N − |∇bx|(yi) � δ (4.20)

for some sequence yi ∈ X with d(x, yi) → ∞, then

VX � ωN − ε (4.21)

In particular if ε is sufficiently small depending only on N and τ , then X is home-
omorphic to R

N , moreover in addition, if X is smooth, then the homeomorphism
can be improved to be a diffeomorphism.

Proof. Let ri := d(x, yi) and consider a rescaled pointed non-parabolic non-
collapsed RCD(0, N) space;

(Xi, di,H
N

di
, xi) :=

(
X,

1
ri

d,
1
rN
i

H N
d , x

)
. (4.22)

Recalling (3.30) we have for any r � 1

FXi
xi

(r) =
FX

x (rri)
r2−N
i

� r2−N

(N − 1)τ
, (4.23)

where we used (3.5) in the final inequality. Thus corollary 4.4 allows us to conclude
that (Xi, di, H N

di
, xi) is pmGH close to the N -dimensional Euclidean space. In par-

ticular a tangent cone at infinity is also pmGH close to theN -dimensional Euclidean
space. Therefore the volume convergence result, [20, Theorem 1.3], implies (4.21).
Thus we get the first statement. The remaining statements come from this with the
same arguments as in [14, Theorems A.1.11]. �

Remark 4.7. In the theorem above, in order to get the same conclusion, we cannot
replace the existence of divergent points by the existence of a point which is far
from x. The reason is the same to remark 4.5.
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5. Examples

In this section we see that theorems 3.12 and 4.3 are sharp via simple examples.
Moreover we also discuss a related sharpness and open problems.

5.1. Sharpness I

In this subsection we prove that theorem 4.3 is sharp, namely this cannot be
improved to the case when p = ∞. The following arguments also allow us to
conclude that (1.12) and (1.13) in theorem 1.2 are also sharp.

Step 1. Consider S
2(r) := {x ∈ R

3||x|R3 = r} for r < 1 with the standard Rieman-
nian metric and denote by X = C(S2(r)) the 3-metric measure cone with the
3-dimensional Hausdorff measure H 3

X(= mC(S2(r))). Assume that r is close to 1, and
take a point y ∈ X which is close to the pole x ∈ X with x �= y. Since (X, d, H 3, y)
is pmGH close to the 3-dimensional Euclidean space, theorem 4.3 yields that

∫
B1(y)

||∇by| − 4π|dH 3
X (5.1)

is small, where the Lipschitz constant can be calculated by (3(3 − 2)ω3)
1

3−2 = 4π.
On the other hand, we have

|∇by|(x) = lim
r→0+

(∫
--

Br(x)

|∇by|2dH 3
X

)1/2

= 0 (5.2)

because of the same trick observed in [21]. Namely, thanks to lemmas 3.7, 3.9 and
the stability of the Laplacian [3, Theorem 4.4], under any blow-up at x, bx W

1,2
loc -

strongly converge to a linear growth harmonic function on C(S2(r)). Recalling that
any such function must be a constant because r < 1, we have (5.2).

Then recalling the upper semicontinuity of |∇by|, we know that |∇by| is small
around x. In particular

4π − |∇by| � 3π (5.3)

near x, thus

‖|∇by| − 4π‖L∞(B1(y)) � 3π. (5.4)

Step 2. Let

(Zi, di,mi, zi)
pmGH→ (Z, d,m, z) (5.5)

be a pmGH convergent sequence of pointed RCD(K, N) spaces and let fi ∈
L∞(BR(xi), mi) Lp-strongly converge to f ∈ L∞(BR(x), m) for any p <∞ with
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supi ‖fi‖L∞ <∞. Then

lim inf
i→∞

‖fi‖L∞ � ‖f‖L∞ . (5.6)

Because for any p <∞, since

lim inf
i→∞

‖fi‖L∞ � lim
i→∞

(∫
--

BR(zi)

|fi|pdmi

)1/p

=

(∫
--

BR(z)

|f |pdm

)1/p

, (5.7)

letting p→ ∞ completes the proof of (5.6).

Step 3. Let us consider X = C(S2(r)) again as in Step 1. Note that it is easy to
find a sequence of manifolds of dimension 3, (M3

i , gi, H 3, yi), pmGH-converge
to (X, d, H 3, y) (actually (X, d, H 3, x) is the tangent cone at infinity of a
3-dimensional complete Riemannian manifold (M3, g) with VM3 = VX > 0). Then
applying (5.6) for fi = 4π − |∇byi

|, f = 4π − |∇by| with corollary 3.23 implies

lim inf
i→∞

‖4π − |∇byi
|‖L∞(B1(yi)) � ‖4π − |∇by|‖L∞(B1(y)) � 3π. (5.8)

This observation shows that we cannot improve theorem 4.3 to the case when
p = ∞.

5.2. Sharpness II

In the rest two subsections 5.2 and 5.3, we prove that several results we obtained
previously under assuming;

s

m(Bs(x))
� ϕ(s) (5.9)

do not hold if we replace (5.9) by a weaker one;

Fx(1) � C <∞ (5.10)

based on examples discussed in the previous subsection. Namely the assumption
(5.9) is sharp in these results.

The first one is about theorem 3.12, namely we provide an example of pmGH
convergent sequences of non-parabolic RCD(0, 3) spaces whose Green functions do
not converge to the limit one, though the corresponding Fxi

(1) are bounded.
For fixed 0 < r < 1,5 let X = C(S2(r)) with the pole x, the cone distance d =

dC(S2(r)) and the 3-dimensional Hausdorff measure H 3
X . For anyR > 0, let us denote

by XR the glued space of a closed ball BR(x) and a cylinder ∂BR(x) × [0, ∞)
along the boundary ∂BR(x) := {y ∈ X|d(x, y) = R}. Then it is trivial that both
X and XR with the canonical intrinsic distance dR can be canonically realized
as boundaries ∂D, ∂DR of closed convex subsets D, DR in R

4 with x = 04 and
DR ⊂ D, respectively. In particular (XR, dR, H 3

XR
) is an RCD(0, 3) space. Note

that (XR, dR, H 3
XR

) is not non-parabolic.

5It is not difficult to see that the following arguments are also justified even in the case when
r = 1 after choosing a suitable projection π.
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Under the conventions above, denote by πR : X → XR the canonical projection in
R

4 (thus πR|BR(x) = idBR(x)). For any 0 � t � 1, define πR,t : X → D by πR,t(y) :=
(1 − t)y + tπR(y), and put XR,t := πR,t(X) which is also the boundary of a covex
closed subset in R

4.
Choose R0 > 1 with ∫ ∞

R0

s

H 3
X(Bs(x))

ds < 1 (5.11)

because of the non-parabolicity of (X, d, H 3
X). Fix R � R2

0. Since∫ ∞

R

s

H 3
XR,t

(Bs(x))
ds→

∫ ∞

R

s

H 3
XR

(Bs(x))
ds = ∞, t→ 1− (5.12)

because (XR, dR, H 3
XR

) is not non-parabolic, we can find tR ∈ (0, 1) with∫ ∞

R

s

H 3
XR,tR

(Bs(x))
ds = 1. (5.13)

Then let us consider a pmGH-convergent sequence of non-parabolic RCD(0, 3)
spaces; (

XR,tR
, dR,tR

,H 3
XR,tR

, x
)

pmGH→ (
X, d,H 3

X , x
)
, R→ ∞, (5.14)

where dR,tR
denotes the canonical intrinsic distance on XR,tR

. Since

F
XR,tR
x (1) =

∫ R

1

s

H 3
XR,tR

(Bs(x))
ds+ 1

=
∫ R

1

s

s3H 3
X(B1(x))

ds+ 1 → FX
x (1) + 1, R→ ∞, (5.15)

Theorem 3.12 tells us that the Green functions do not converge to the limit one.
Actually we can see this directly as follows.

Fix y ∈ X \ {x}. Then for any sufficiently large R, Gaussian estimates (2.20)
show

GXR,tR (x, y) =
∫ R

0

pXR,tR
(x, y, t)dt+

∫ ∞

R

pXR,tR
(x, y, t)dt

�
∫ R

0

pXR,tR
(x, y, t)dt+

1
C

∫ ∞
√

R

s

H 3
XR,tR

(Bs(x))
ds

=
∫ R

0

pXR,tR
(x, y, t)dt+

1
C

(5.16)

for some C > 1. Thus letting R→ ∞ with Fatou’s lemma and (3.48) yields

lim inf
R→∞

GXR,tR (x, y) �
∫ ∞

0

pX(x, y, t)dt+
1
C

= GX(x, y) +
1
C
. (5.17)
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5.3. Sharpness III

The final sharpness result is related to corollary 3.27. An immediate conse-
quence of corollary 3.27 states that if a pointed non-parabolic RCD(0, N) space
(X, d, m, x) with the finite N -volume density νx <∞ is pmGH-close to the N -
metric measure cone over an RCD(N − 2, N − 1) space, then |∇bx| attains the

maximum CNν
1

N−2
x almostly at some point which is bounded and away from x,

whenever (5.9) holds. In the sequel we prove that (5.9) cannot be replaced by
(5.10) to get the same conclusion.

To do so, under the same notations as in subsection 5.2, let us discuss the
behaviour of b

XR,tR
x as R→ ∞. Our claim is that if r is small, then there exists no

sequence yRi
∈ XRi,tRi

as Ri → ∞ such that yRi
is bounded and is away from x

and that

|∇b
XRi,tRi
x |(yRi

) → C3νx(=3νx) (5.18)

The proof is done by a contradiction. If such sequence yRi
exists, then after passing

to a subsequence, with no loss of generality we can assume that yRi
converge to some

y ∈ X \ {x} and that b
XRi

, tRi
x locally uniformly converge to some b̃ ∈ Lip(X, d).

Note that thanks to lemma 3.7 and the stability of the Laplacian [3, Theorem 4.4],
we know that b̃ ∈ D(Δ, X \ {x}) and b̃2 ∈ D(Δ) hold with

Δb̃ = 2
|∇b̃|2

b̃
, Δb̃2 = 6|∇b̃|2. (5.19)

On the other hand, applying a weak Harnack inequality, theorem 6.5, for (3νx)2 −
|∇b

XRi,tRi
x |2 as in (3.105) proves∫

BR(x)\Br(x)

∣∣∣∣(3νx)2 − |∇b
XRi,tRi
x |2

∣∣∣∣ dH 3
XRi,tRi

→ 0 (5.20)

for all 0 < r < R <∞. Thus we know

Δb̃2 = 6(3νx)2. (5.21)

Then since b̃2 − (3νx)2d2
x is a harmonic function on X with polynomial growth of

degree at most 2, any such function must be a constant if r is small. Thus we have
b̃2 = (3νx)2d2

x + d for some d ∈ R. Since b̃(x) = 0 by definition, we know d = 0,
namely

b̃ = 3νxdx. (5.22)

In particular we have b̃−1 = GX
x which contradicts (5.17). Thus the observation

above allows us to conclude for all 0 < r1 < r2 <∞

lim inf
R→∞

(
inf

Br2 (x)\Br2 (x)

(
C3νx − |∇b

XR,tR
x |

))
> 0. (5.23)

Remark 5.1. We do not know whether we can replace (5.9) by (5.10) to get the
same conclusions in theorems 1.2 and 1.7.
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6. Appendix; analysis on a drifted Laplace operator L

In this appendix, we provide detailed proofs of the regularity results for L -
sub/super harmonic functions (recall definition 3.18), coming directly from the
general theory on PI spaces. It is emphasized that these techniques can be applied
to more general operators, including, of course, our Laplacian Δ. We refer [9, Section
8.5] as a main reference on this topic.

Let (X, d, m, x) be a pointed non-parabolic RCD(0, N) space. The first result
is about the weak Harnack inequality for L -subharmonic functions. This is jus-
tified by applying [9, Theorem 8.4] to an (incomplete) metric measure space
(B100r(y), d, mGx

) because of (3.16) and (3.70).

Proposition 6.1 Weak Harnack inequality for L -subharmonic functions. Let u be
an L -subharmonic function on a ball B100r(y) for some r � 1 with B100r(y) ⊂ X \
Bs(x) for some s � 1. Then for all k ∈ R and p > 1, there exists C = C(N, s, p) >
0 such that6

ess sup
B r

2
(y)

u+ k � C

(∫
--

Br(y)

(u+ k)p
+ dm

) 1
p

. (6.2)

Proof. First let us assume that p > 2. For arbitrary l > 0, let û = ûk := (u+ k)+,
and denote by ū = ūk,l := min{ûk, l}. For 1

2r � r1 < r2 � r, take the cutoff function

η(z) := min
{

1,
r2 − d(z, y)
r2 − r1

}
+

. (6.3)

Then we have 0 � η � 1, |∇η| � 1
r2−r1

in Br2(y), η ≡ 1 in Br1(y), and η ≡ 0 outside
Br2(y). For any β > p− 2 > 0, define

v = vk,l,β := η2ūβû ∈W 1,2
0,+(B100r(y)). (6.4)

By direct calculation

∇v = 2ηūβû∇η + η2ūβ(β∇ū+ ∇û). (6.5)

Substitute ϕ = v in (3.79),∫
Br2 (y)

(
2ηūβû〈∇η,∇u〉+η2ūβ(β|∇ū|2+|∇û|2) − 2η2ūβû〈∇ logGx,∇u〉

)
dm � 0.

(6.6)

6When we apply directly [9, Theorem 8.4], then the conclusion should be written in terms
of mGx instead of m in (6.2). The difference can be understood as follows. Recalling dmGx =
G2

xdm = exp(2 log Gx)dm, for fixed y as in the statement, under assuming ‖∇ log Gx‖L∞ � L on
the domain, we have

1

L
� Gx(z)

Gx(w)
� L (6.1)

because of applying the upper gradient inequality for log Gx. This inequality, (6.1), allows us to
compare m with mG quantitatively. Thus we can state the conclusion in terms of m. The same
observation can be applied in the sequel.
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Let Ek := {u � −k}, noting that û ≡ 0 outside Ek, the integrand above vanishes in
Br2(y) \ Ek. Using Young’s inequality, noticing that fact that |∇û| = |∇u| in Ek,

χEk
|2ηūβû〈∇η,∇u〉| � χEk

(
1
3
η2ūβ |∇û|2 + 3ūβû2|∇η|2

)
, (6.7)

χEk

∣∣2η2ūβû〈∇ logGx,∇u〉
∣∣ � χEk

(
1
3
η2ūβ |∇û|2 + 3η2ūβû2|∇ logGx|2

)
. (6.8)

Combining (6.6), (6.7) and (6.8), it holds that

∫
Br2 (y)

η2ūβ(β|∇ū|2 + |∇û|2) dm � 9
∫

Br2 (y)

ūβû2(|∇η|2 + η2|∇ logGx|2) dm.

(6.9)
Set w := ū

β
2 û, noting that û � ū and |∇ū| vanishes in {û > l}, it is easy to check

|∇w|2 �
(
β

2
ū

β
2 −1û|∇ū| + ū

β
2 |∇û|

)2

� (1 + β)ūβ
(
β|∇ū|2 + |∇û|2) . (6.10)

Therefore,

∫
Br2 (y)

η2|∇w|2 dm � 9(1 + β)
∫

Br2 (y)

w2(|∇η|2 + η2|∇ logGx|2) dm. (6.11)

By the Sobolev inequality

(∫
Br2 (y)

(ηw)2ξ dm

) 1
ξ

� C(N)
r22

m(Br2(y))
2
N

∫
Br2 (y)

|∇(ηw)|2 dm

� C(N)
(1 + β)r22

m(Br2(y))
2
N

∫
Br2 (y)

w2(|∇η|2 + η2|∇ logGx|2) dm,

(6.12)

where ξ = ξ(N) := N
N−2 . Recall that |∇ logGx|2 is bounded above by C(N, s), by

the choice of η,

‖w‖L2ξ(Br1 (y),m) � C(N, s)
(1 + β)

1
2

m(Br2(y))
1
N

r2
r2 − r1

‖w‖L2(Br2 (y),m). (6.13)

For any γ > 2 and t ∈ [12r, r], set the quantity

A(γ, t) :=

(∫
Br(y)

ūγ−2û2 dm

) 1
γ

. (6.14)
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Then (6.13) yields that

A(ξ(β + 2), r1) =

(∫
Br1 (y)

ūξ(β+2)−2û2 dm

) 1
ξ(β+2)

�
(∫

Br1 (y)

w2ξ dm

) 1
ξ(β+2)

�
(
C(N, s)

(1 + β)
1
2

m(Br(y))
1
N

r

r2 − r1

) 2
β+2

A(β + 2, r2), (6.15)

where we used the following fact from Bishop–Gromov inequality:

r2

m(Br2(y))
1
N

� r

m(Br(y))
1
N

. (6.16)

Let βn = pξn − 2 > 0, γn := βn + 2 > 2, tn := (2−1 + 2−n−1)r, iterating (6.15),

A(γn, tn) �
n∏

i=1

(
2i+1C(N, s)(γi − 1)

1
2

) 2
γi

m(Br(y))
− 2(ξ−ξ−n)

Np(1−ξ) A(p, r), (6.17)

Let n→ ∞, recalling by definition

‖ū‖Lγ(Bt(y),m) � A(γ, t) � ‖û‖Lγ(Bt(y),m), (6.18)

it holds that

‖ūk,l‖L∞(B r
2
(t),m) � C(N, s, p)m(Br(y))−

1
p ‖ûk‖Lp(Br(y),m). (6.19)

Since the right-handed side of the inequality is independent on l, we may let l → ∞,
namely

‖ûk‖L∞(B r
2
(t),m) � C(N, s, p)m(Br(y))−

1
p ‖ûk‖Lp(Br(y),m), (6.20)

which finishes the proof under the assumption p > 2.
The case where 1 < p � 2 can be treated via a similar iteration process provided

û ∈ L∞(Br(y), m). Indeed, for any β > p− 1 > 0, we can choose a simpler test
function without truncation:

vk,β := η2(u+ k)β
+ ∈W 1,2

0,+(B100r(y)), (6.21)

which can further simplify the proof. Here we omit the details. �

Next let us discuss about L -superharmonic functions. The corresponding results
for PI spaces can be found in [9, Theorem 8.10]. In order to establish a weak Harnack
inequality for L -superharmonic functions, we first recall the definition of bounded
mean oscillating (BMO) functions on metric measure spaces and John–Nirenberg’s
lemma.
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Definition 6.2 BMO. Let (X, d, m) be a measure-doubling metric measure space,
namely there exists a constant Cd > 0 such that

m(B2r(x)) � Cdm(Br(x)), ∀ x ∈ X, ∀ r > 0. (6.22)

For any open subset Ω ⊂ X and any function f ∈ L1
loc(Ω, m), we set

‖f‖BMO(Ω) := sup
B

∫
--

B

|f − fB | dm, (6.23)

where the supremum is taken over all open balls B with B ⊂ Ω. The class of BMO
functions on Ω is the collection

BMO(Ω) :=
{
f
∣∣ ‖f‖BMO(Ω) <∞} . (6.24)

Remark 6.3. Note that the doubling assumption is naturally fulfilled for
RCD(0, N) spaces because of the Bishop–Gromov inequality. In particular, in this
case, the doubling constant Cd is only dependent on N .

John–Nirenberg’s lemma we refer is stated as follows, see [9, Theorem 3.20].

Theorem 6.4 John–Nirenberg’s lemma. Let (X, d, m) be as in definition 6.2 and
let f ∈ BMO(B5r(x)) for some x ∈ X and r > 0. Then for any 0 < ε � A :=
log 2/(4C15

d ), ∫
--

Br(x)

exp
(

ε|f − fBr(x)|
‖f‖BMO(B5r(x))

)
dm � A+ ε

A− ε
. (6.25)

We are now in a position to prove a weak Harnack inequality (see [9, Theorem
8.10]).

Proposition 6.5 Weak Harnack inequality for L -superharmonic functions. Let u
be a non-negatively valued L -superharmonic function on a ball B100r(y) for some
r � 1 with B100r(y) ⊂ X \Bs(x) for some s � 1. Then there exist p = p(N, s) > 0
and C = C(N, s) > 1 such that

C ess inf
Br(y)

u �
(∫

--
B2r(y)

updm

) 1
p

. (6.26)

Proof. First let us assume u is bounded away from 0. For any fixed ε > 0, there
exists a piecewise linear function ψ in the form

ψ(t) := max
1�i�k

(ait+ bi), (6.27)

where ai < 0, such that

1
t

� ψ(t) � 1
t

+ ε, ∀t > ε. (6.28)
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Applying proposition 6.1 to ψ ◦ (u+ ε), we obtain that for any p > 0,

1
ess inf
Br(y)

u+ ε
� ess sup

Br(y)

ψ ◦ (u+ ε) � C(N, s, p)

(∫
--

B2r(y)

(ψ ◦ (u+ ε))p dm

) 1
p

�

C(N, s, p)

(∫
--

B2r(y)

(
1

u+ ε
+ ε

)p

dm

) 1
p

� C(N, s, p)

(∫
--

B2r(y)

(
1
u

+ ε

)p

dm

) 1
p

.

(6.29)

Letting ε→ 0, we obtain that

ess inf
Br(y)

u � C(N, s, p)

(∫
--

B2r(y)

u−p dm

)− 1
p

= C(N, s, p)

(∫
--

B2r(y)

u−p dm

∫
--

B2r(y)

up dm

)− 1
p
(∫

--
B2r(y)

up dm

) 1
p

.

(6.30)

Now it suffices to show that there exists some p = p(N, s) > 0 such that∫
--

B2r(y)

u−p dm

∫
--

B2r(y)

up dm � C(N, s). (6.31)

On the other hand, recalling (3.79), we can establish an analogue of (6.11) similarly
as in the proof of proposition 6.1 for w := log u treating the test function v := η2

∫
B100r(y)

η2|∇w|2 dm � C(N)
∫

B100r(y)

(|∇η|2 + η2|∇ logGx|2
)

dm, (6.32)

where η is any cut-off function with supp η ⊂ B100r(y). Thus choosing η with η ≡ 1
on B50r(y), we obtain ∫

--
B50r(y)

|∇w|2 dm � C(N, s)
r2

. (6.33)

Thus using the Poincaré inequality (2.22), for any z ∈ B10r(y) and r′ < 20r, we
have

∫
--

Br′ (z)

∣∣∣∣∣w −
∫
--

Br′ (z)

w dm

∣∣∣∣∣ dm � C(N)r

(∫
--

Br′ (z)

|∇w|2 dm

) 1
2

� C(N, s), (6.34)

which implies

‖w‖BMO(B10r(x)) � C(N, s). (6.35)

On the other hand, for this C(N, s) in (6.35), applying John–Nirenberg’s lemma,
theorem 6.4, to w with ε := A · C(N, s)/2 (recall A is taken as a dimensional
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constant in this setting), we have

∫
--

B2r(y)

eε|w−w0| dm � 3, (6.36)

where

w0 :=
∫
--

B2r(y)

w dm. (6.37)

Thus∫
--

B2r(y)

u−ε dm

∫
--

B2r(y)

uε dm

=
∫
--

B2r(y)

eεw dm

∫
--

B2r(y)

e−εw dm =
∫
--

B2r(y)

eε(w−w0) dm

∫
--

B2r(y)

eε(w0−w) dm

�
(∫

--
B2r(y)

eε|w−w0| dm

)2

� 9. (6.38)

By (6.30),

ess inf
Br(y)

u � C(N, s)

(∫
--

B2r(y)

uε dm

) 1
ε

. (6.39)

Therefore, recalling our choice of ε and (6.35), we have the desired inequality.
Finally let us assume u is not bounded away from 0. We can consider uδ = u+ δ

(δ > 0) instead, and then let δ ↓ 0. �

We are now in a position to introduce a regularity result on (L -)superharmonic
functions. See [9, Subsection 8.5], in particular, proposition 8.24 therein.

Proposition 6.6. Let u be as in proposition 6.1. Assume that u is locally bounded.
Then there exists a unique representative ū of u such that every z ∈ B100r(y) is a
Lebesgue point of ū. Moreover ū is upper semi-continuous satisfying that for any
z ∈ B100r(y)

ū(z) = lim sup
w→z

ū(w). (6.40)

Indeed, such a representative can be realized by

ū(z) := lim
ρ→0

ess sup
w∈Bρ(z)

u(w). (6.41)

Proof. Let ū be as in (6.41). Firstly, since it is easily checked that the set {z | ū(z) <
a} is open for any a ∈ R, ū is upper semicontinuous.
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Secondly, let us check ū = u m-a.e. Take a Lebesgue point z ∈ B100r(y) of u.
Since u is locally bounded, we have

lim
ρ→0

∫
--

Bρ(z)

|u− u(z)|q dm = 0, ∀ q > 0. (6.42)

For any ε > 0, there exists r0 > 0 such that for all 0 < ρ < r0, Bρ(z) ⊂ B100r(y)
and (∫

--
Bρ(z)

|u− u(z)|p dm

)1/p

< ε, (6.43)

where p is as in proposition 6.1. Applying proposition 6.1 proves

ū(z) − u(z) � ess sup
w∈B ρ

2
(z)

(u(w) − u(z)) � C

(∫
--

Bρ(z)

|u− u(z)|p dm

) 1
p

� Cε.

(6.44)
Thus ū(z) � u(z). On the other hand

ū(z) = lim
ρ→0

ess sup
w∈Bρ(z)

u(w) � lim
ρ→0

∫
--

Bρ(z)

u dm = u(z). (6.45)

We obtain that ū(z) = u(z). Thus the Lebesgue differentiation theorem allows us
to conclude ū = u for m-a.e. Moreover, observe that

ū(z) � lim sup
w→z

ū(w) � lim
ρ→0

ess sup
w∈Bρ(z)

ū(w) = ū(z), (6.46)

therefore we obtain (6.40).
Thirdly, let us show that every point in the domain is a Lebesgue point of

ū. Without loss of generality we may assume 0 < ū < 1 in B100r(y) since u is
locally bounded. Fix any z ∈ B100r(y). For any ε > 0 with u(z) < 1 − ε, by the
upper semicontinuity, there exists ρ > 0 sufficiently small such that 0 < u(w) <
u(z) + ε < 1 for any w ∈ Bρ(z). Let v := −u+ u(z) + ε, then 0 < v < 1 in Bρ(z).
Applying the weak Harnack inequality (6.26) to v, there exist p = p(N, s) > 0 and
C = C(N, s) > 0 such that∫

--
Bρ(z)

|ū− ū(z)|dm =
∫
--

Bρ(z)

|v − v(z)|dm � ε+
∫
--

Bρ(z)

v1−pvp dm

� ε+
∫
--

Bρ(z)

vp dm � ε+ C

(
inf

Bρ(z)
v

)p

� ε+ Cεp. (6.47)

Letting ρ→ 0, we conclude because ε is arbitrary.
Finally, the uniqueness is obvious because every point in the domain is a Lebesgue

point. �

In view of this, we always assume that any L -subharmonic function u is actually
the canonical representative as obtained in proposition 6.6. Therefore, for example,
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by (6.40), the ‘ess sup’ in proposition 6.1 (‘ess inf’ in proposition 6.5, respectively)
can be replaced by ‘sup’ (‘inf’, respectively). Under this convention, finally let us
provide the strong maximum principle for L -subharmonic functions.

Proposition 6.7 Strong maximum principle for L -subharmonic functions. Let
u be a L -subharmonic function on a connected open subset Ω in X \ {x}. If its
supremum in Ω attains at a point in Ω, then u is constant.

Proof. Denote by A := supΩ u and put D := {x ∈ Ω|u(x) = A}. It is trivial that
D is closed in Ω. On the other hand, for any y ∈ D, applying proposition 6.5 to
ū = A− u proves

0 = inf
Br(y)

ū � C

(∫
--

B2r(y)

ūp dm

) 1
p

, (6.48)

namely ū = 0 m-a.e. in B2r(y) for any sufficiently small r > 0, thus ū ≡ A on B2r(y)
because of the lower semicontinuity of ū. This shows that D is open in Ω, Thus
D = Ω because Ω is connected. �
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estimates and the local-to-global property of RCD∗(K, N) metric measure spaces. J. Geom.
Anal. 26 (2016), 24–56.
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28 N. Gigli, A. Mondino and G. Savaré. Convergence of pointed non-compact metric measure
spaces and stability of Ricci curvature bounds and heat flows. Proc. Lond. Math. Soc. 111
(2015), 1071–1129.

29 N. Gigli and E. Pasqualetto. Lectures on Nonsmooth Differential Geometry. SISSA Springer
Series 2 (New York, USA: Springer International Publishing, 2020).

30 N. Gigli and C. Rigoni. A note about the strong maximum principle on RCD spaces. Canad.
Math. Bull. 62 (2019), 259–266.

31 N. Gigli and I. Y. Violo. Monotonicity formulas for harmonic functions in RCD (0, N)
spaces. J. Geom. Anal. 33 (2023), 100. https://doi.org/10.1007/s12220-022-01131-7

32 N. Gigli, The splitting theorem in non-smooth context. ArXiv preprint 1302.5555.

33 N. Gigli, On the differential structure of metric measure spaces and applications. Mem.
Amer. Math. Soc. (Vol. 236, 2015, 1113).

34 N. Gigli, Nonsmooth differential geometry – An approach tailored for spaces with Ricci
curvature bounded from below. Mem. Amer. Math. Soc. (Vol. 251, 2018, 1196).

35 N. Gigli, De Giorgi and Gromov working together. ArXiv preprint: 2306.14604.

36 A. Grigor’yan. Heat kernels on weighted manifolds and applications. Amer. Math. Soc. 398
(2006), 93–191.

https://doi.org/10.1017/prm.2024.131 Published online by Cambridge University Press

https://doi.org/10.1007/s12220-022-01131-7
https://doi.org/10.1017/prm.2024.131


54 S. Honda and Y. Peng

37 P. Haj�lasz and P. Koskela, Sobolev met Poincaré. Mem. Amer. Math. Soc. (Vol. 145, 2000,
688).

38 J. Heinonen, P. Koskela, N. Shanmugalingam and J. Tyson, Sobolev spaces on metric
measure spaces, New Mathematical Monographs, Vol. 27 (Cambridge University Press,
Cambridge, 2015).

39 S. Honda. Ricci curvature and Lp-convergence. J. Reine Angew. Math. 705 (2015), 85–154.

40 S. Honda. New differential operators and RCD spaces. Geom. Topol. 24 (2020), 2127–2148.

41 Z. Huang. Isometric immersions of RCD (K, N) spaces via heat kernels. Calc. Var. PDEs.
62 (2023), 121. https://doi.org/10.1007/s00526-023-02460-3

42 R. Jiang. Cheeger-harmonic functions in metric measure spaces revisited. J. Funct. Anal.
266 (2014), 1373–1394.

43 R. Jiang, H. Li and H.-C. Zhang. Heat kernel bounds on metric measure spaces and some
applications. Potent. Anal. 44 (2016), 601–627.

44 C. Ketterer. Cones over metric measure spaces and the maximal diameter theorem. J. Math.
Pures Appl. (9). 103 (2015), 1228–1275.

45 K. Kuwada and X.-D. Li. Monotonicity and rigidity of the W-entropy on RCD (0, N) spaces.
Manuscr. Math. 164 (2021), 119–149.

46 J. Lott and C. Villani. Ricci curvature for metric-measure spaces via optimal transport.
Ann. Math. 169 (2009), 903–991.

47 A. Lytchak and S. Stadler. Ricci curvature in dimension 2. J. Eur. Math. Soc. 25 (2023).
https://doi.org/10.4171/JEMS/1196

48 A. Mondino and A. Naber. Structure theory of metric measure spaces with lower Ricci
curvature bounds. J. Eur. Math. Soc. 21 (2019), 1809-–1854.

49 J. Pan and G. Wei. Examples of Ricci limit spaces with non-integer Hausdorff dimension.
Geom. Funct. Anal. 32 (2022), 676–685.

50 Y. Peng, H.-C. Zhang and X.-P. Zhu, Weyl’s lemma on RCD (K, N) metric measure spaces,
arXiv:2212.09022.

51 A. Petrunin. Alexandrov meets Lott–Villani–Sturm. Münst. J. Math. 4 (2011), 53–64.
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