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Amongst atomic-resolution scanning transmission electron microscopy (STEM) imaging modes, annular 

dark-field (ADF; shown schematically in Fig. 1(a)) is particularly popular since it produces directly 

interpretable images – with bright peaks indicating atomic columns – over a wide thickness range and is 

fairly robust against aberrations. The thickness-defocus tableaus of ADF images in Fig. 1(b) for SrTiO3 

and Fig. 1(c) for Al3Li are consistent with this. That ADF peak intensities scale roughly as the atomic 

number (Z) squared helps distinguish elements but also means low Z element columns may not be 

visible when high Z element columns are nearby – the O columns in Fig. 1(b) and Li columns in Fig. 

1(c) are not visible – necessitating other methods to identify low Z element columns. This talk with 

review some atomic-resolution STEM imaging modes better suited to observing low Z element columns. 

 

A decade ago it was found that so-called annular bright field (ABF) imaging, which uses an annular 

detector spanning the outer portion of the bright field disk, also produces directly interpretable images – 

with dark troughs indicating atomic columns – over a wide thickness range [1,2]. Moreover, the atomic 

number dependence is relatively weak and so both low and high Z element columns are visible 

simultaneously. The thickness-defocus tableaus of ABF images in Figs. 1(b) and (c) are consistent with 

this. ABF has since found many applications, including probing oxygen octahedra rotation in 

perovskites and charging/discharging in lithium battery materials. Further improvements have been 

suggested, such as so-called enhanced ABF (eABF) imaging [3] shown in the thickness-defocus tableaus 

in Figs. 1(b) and (c), and also more case-specific optimisations [4]. We overview some guiding 

principles and limitations of ABF imaging and its variants for imaging low Z elements. 

 

Recent developments in fast-readout pixel array detectors allow not only more scope for synthesizing 

optimal annular detector configurations [4] but also for new imaging modes. In particular, differential 

phase contrast (DPC) [5,6] and ptychography [7-9] methods allow good imaging of low Z element 

columns and are dose-efficient [6,8]. The thickness-defocus tableaus of phase reconstructions – 

integrated DPC (iDPC) images in the parlance of Ref. [6] – in Figs. 1(b) and (c) are consistent with this. 

DPC and ptychography yield quantitative reconstructions of the projected electrostatic potential when 

the phase object approximation holds, but this breaks down for crystals thicker than a few nanometers 

when using atomically-fine electron probes [10,11]. The thickness-defocus tableaus of iDPC images in 

Fig. 1(b) and (c) shows this breakdown once it is appreciated that the true projected electrostatic 

potential should increase linearly with thickness. Specifically, in the iDPC images around zero relative 

defocus (relative to the sample midplane, the conditions seemingly most favourable for DPC STEM 

[10]) the iDPC signal only increases for the first 50–100 Å. We overview some approaches and 

limitations to DPC imaging and other phase contrast imaging modes for imaging low Z elements [12]. 
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Figure 1.  (a) Schematic of STEM experiment showing two annular detectors (for ADF and ABF) in the 

diffraction plane. (b) Thickness-defocus tableaus for ADF, ABF, eABF and iDPC of SrTiO3 [001] 

simulated using an absorptive model. Accelerating voltage = 200 kV, probe-forming aperture semiangle 

= 23 mrad, HAADF detector range = 81–228 mrad, ABF detector range = 11.5–23 mrad. Whereas the 

ADF, ABF and eABF tableaus are given with defocus relative to the sample entrance surface, in the case 

of iDPC the defocus is given relative to the specimen mid-plane. (c) As for (b) but for Al3Li [001]. 
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