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Abstract
We study the vectorial length compactification of the space of conjugacy classes of maximal representations of the
fundamental group � of a closed hyperbolic surface � in PSL(2, R)n. We identify the boundary with the sphere
P((ML)n), where ML is the space of measured geodesic laminations on �. In the case n = 2, we give a geometric
interpretation of the boundary as the space of homothety classes of R2-mixed structures on �. We associate to such
a structure a dual tree-graded space endowed with an R

2
+-valued metric, which we show to be universal with respect

to actions on products of two R-trees with the given length spectrum.

1. Introduction

Let � be a connected closed oriented surface of genus g ≥ 2 and let � = π1(�) be its fundamental
group. For a real reductive Lie group G, we denote by �(�, G) := Homred(�, G)/G the character vari-
ety, namely the space of conjugacy classes of completely reducible representations ρ : � → G. The
third named author used Weyl chamber valued length functions to construct the Weyl chamber length
compactification of the character variety [25], a compactification that generalizes Thurston’s compact-
ification of the Teichmüller space T = T (�), for which G = PSL(2, R). The boundary ∂WL�(�, G) of
the character variety in the Weyl chamber length compactification is a compact subset of the set P(a+�

)
of homothety classes of nonzero functions −→

L : � → a+, where a+ is a fixed closed Weyl chamber of G.
Boundary points may be interpreted as projectivized a+-length functions of actions on R-buildings [25].

In the case of G = PSL(2, R), we know much more: Thurston proved that the boundary of this com-
pactification of Teichmüller space is the projectivizationP(ML) of the spaceML of measured geodesic
laminations on �, realized as the cone ML⊂R

�
+ of functions � →R+ that are intersection functions

of measured geodesic laminations (or equivalently, of measured foliations) on � [10, 2]. This allowed
him to prove that this boundary is a sphere of dimension 6g − 7 and the compactification is a closed ball
[10]. Boundary points may also be interpreted as projectivized length functions of actions on real trees
[1, 27, 17].

If G is of Hermitian type, that is, if the associated symmetric space admits a G-invariant complex
structure, the character variety contains a generalization of the Teichmüller space, the space of max-
imal representations, which we denote by �Max(�, G). We refer the reader to [3, 6] for the theory of
maximal representations. Maximal representations share many features with the subset of the character
variety consisting of Hitchin representations, which are defined for G real split, and whose character
variety we denote by �Hit(�, G). In [4, 5] we used geodesic currents to study the Weyl chamber length
compactification XWL(�, G) of X (�, G), where X (�, G) denotes either the Hitchin or the maximal
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character variety. We showed that, as soon as the group G has higher rank, the mapping class group
admits a non-empty open domain of discontinuity for its action on the boundary ∂WLX (�, G), the so-
called positive systole subset; moreover, for a dense subset of boundary points, the associated length
function can be computed as intersection with a weighted multicurve. Natural questions arise: to deter-
mine the topology of XWL(�, G); to interpret boundary points in terms of geometric structures on the
surface, in particular in the positive systole subset; and to relate such geometric structures with the asso-
ciated actions on R-buildings, for example, by finding a nice invariant subset following the third named
author’s work in the case of G = PSL(3, R) [26].

In this text, we address all the questions introduced above in the case of G = PSL(2, R)n for n ≥ 2.
The product structure of G lets us identify the space �Max(�, G) with the product T n of n copies of the
Teichmüller space T = �Max(�, PSL(2, R)). A model Weyl chamber for G is a+ =R

n
+, hence boundary

points are homothety classes of nonzero functions −→
L : � →R

n
+. Such functions can be identified with

n-tuples (Li)i=1,...,n of functions Li : � →R+.
We identify the boundary of T n in its vectorial length compactification with the projectivization of

(ML)n; in particular, we show that, being a join of n spheres, it is topologically a sphere of dimension
n(6g − 6) − 1. This also allows us to give a precise description of the open domain of discontinuity for
the mapping class group alluded to before; for this we denote by (ML)n

>0 the set consisting of n-tuples
of measured laminations with positive joint systole, namely n-tuples for which the function

∑n
i=1 Li(γ )

has a positive lower bound on �.

Theorem 1.1. The boundary ∂WL�Max(�, PSL(2, R)n) is P((ML)n), and MCG(�) acts properly dis-
continuously on P((ML)n

>0).

We refer the reader to Section 4, and in particular to Corollary 4.4 for applications of this result to the
study of compactifications induced by length functions on � associated to various PSL(2, R)n-invariant
distance functions on the product (H2)n of n hyperbolic planes.

Inspired by the work of Duchin–Leiniger–Rafi [9] and of Morzadec [18], we give a geometric inter-
pretation of boundary points in the case of n = 2. Duchin–Leiniger–Rafi introduced mixed structures
to give a geometric compactification of the space of Flat(�) of half translation structures on a com-
pact surface � up to isometry. For the purposes of this paper, we define an R

2-mixed structure1 on
� as a triple M = (� ′, K,

−→
λ ) where � ′ is an open geodesic subsurface of �, K is a half-translation

structure on � ′, extendible at boundary components regarded as punctures, and −→
λ = (
, ν1, ν2) is a

2-measured geodesic lamination, that is, a geodesic lamination 
 disjoint from � ′ and endowed with
a pair of transverse measures (ν1, ν2), with supp(ν1) ∪ supp(ν2) = 
. Note that the subsurface � ′ or the
lamination 
 may be empty, so the space

−−→
Mix(�) of mixed structures on � contains both the space−→

Flat(�) of half-translation structures (up to isotopy) and the space of 2-measured geodesic laminations.
The half-translation structure is equipped with a natural pair (F1, F2) of transverse vertical/horizontal
measured foliations. As a result, a mixed structure M defines a natural pair (λM,1, λM,2) of associated “ver-
tical/horizontal” measured geodesic laminations on �. Taking intersection functions, we obtain a map

I :
−−→
Mix(�) →ML×ML

extending the natural map
−→
Flat(�) →ML×ML. We show in Proposition 5.8 that I is a bijection,

under which
−→
Flat(�) corresponds to (ML)2

>0. Together with Theorem 1.1 this implies the following:

Theorem 1.2. Let −→
L : � →R

2
+ represent a point in the Weyl chamber length boundary of

�Max(�, PSL(2, R)2). Then

1 See Remark 5.6 in Section 5.2 for more details as well as a comparison with the structures considered in [9] and in [21, 20].
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(1) −→
L is the R2-length function of a unique R

2-mixed structure M = (� ′, K,
−→
λ ) on �.

(2) Every non-empty R
2-mixed structure on � arises in this way.

We now turn to the question of relating the geometric structures appearing in the boundary of
�Max(�, G) to the associated actions on R-buildings and finding nice invariant subsets. In the case of
G = PSL(2, R)n, the R-buildings appearing in the boundary of �Max(�, G) are products of n R-trees,
and hence boundary points are homothety classes of a+-length functions of actions of � on a product
of n R-trees.

Notice that in his thesis [18] Morzadec used tree-graded spaces to obtain a geometric compactifica-
tion of the space of flat structures and relate them with the mixed structures of [9]. Also, in the case of
G = PSL(3, R) and � a punctured surface group, the third named author associates in [26] to large fam-
ilies of boundary points of �WL

Hit (�, PSL(3, R)) explicit finite a+-simplicial complexes whose universal
cover, a tree-graded space with flat surface pieces, embeds equivariantly in the building preserving the
natural a+-metric.

Our last result takes these perspectives in the study of the compactification of the space of
PSL(2, R) × PSL(2, R)-maximal representations. To be more precise, a tree-graded R

2-space (X, d1, d2)
is for us a space X endowed with a pair (d1, d2) of pseudometrics such that d := d1 + d2 is a metric, the
�1-metric, with respect to which X is tree-graded in the sense of [8]; we furthermore require that X
admits an action of � preserving each pseudometric. The R2-length in X of γ ∈ � is then the pair

−→
L X(γ ) = (Ld1 (γ ), Ld2 (γ )

of translation lengths

Ldi (γ ) = inf
x∈X

di(x, γ x)

of γ for the pseudometric di.
We associate to each mixed structure M an R

2-tree-graded space (XM, d1, d2) dual to M, whose pieces
are either flat surfaces or R-trees:

Theorem 1.3. Let M = (� ′, K,
−→
λ ) be an R

2-mixed structure on � and −→
L : � →R

2
+ the associated

R
2-length function. Then there is a tree-graded R

2-space XM with length spectrum −→
L : � →R

2
+, and

satisfying the following universal property: for any two actions of � onR-trees T1, T2 with length function
(LT1 , LT2 ) = −→

L , there is an equivariant embedding

f : XM 	→ T1 × T2

preserving each pseudometric di (and isometric for the �1-metric).

In particular, for any point in the boundary ∂WL�Max(�, PSL(2, R)2), with associated mixed
structure M, the corresponding action on a R-building (here a product of two trees) preserves an
a+-isometrically equivariantly embedded copy of XM.

We construct the space XM by gluing the dual trees corresponding to the lamination components,
endowed with the pair of pseudometrics induced by the pair of transverse measures, together with the
completions of the flat components, endowed with the natural pair of horizontal and vertical pseudomet-
rics (see Section 6 for more details). We show that the �1-metric on XM corresponds to the path metric
induced by the �1-norm on the flat components (Lemma 5.3).

A more analytic and independent approach to compactifications of the space of maximal represen-
tations in rank 2 Hermitian Lie groups has been independently pursued by Ouyang [19], Ouyang–
Tamburelli [21, 22], and Martone–Ouyang–Tamburelli [16]. In their work, they consider the length
spectrum of the negatively curved metric induced on the unique invariant minimal surface associ-
ated to a maximal representation. They obtain in this way a compactification that they denote Ind(S).
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In the case of G = PSL(2, R) × PSL(2, R), Martone–Ouyang–Tamburelli [16] also consider a refined
compactification dominating Ind(S), which they prove is a ball of dimension 12g − 12. Their notion
of (A+

1 × A+
1 , 2)-mixed structure introduced in this work is equivalent to our of R

2-mixed structure
defined above. Moreover, they prove that also the boundary of �Max(�, PSL(2, R)2) in their refined
compactification can be identified with such structures.

Structure of the paper: The first two sections largely consist of preliminaries: we recall in
Section 2 the construction of the Weyl chamber length compactification for G = PSL(2, R)n, and we
discuss in Section 3 the relation between measured foliations, laminations, trees, and geodesic currents.
The only new material in Section 3 is in Section 3.5 where we introduce the key notion of the R

n-tree
dual to an n-measured geodesic lamination. With these at hand, we prove Theorem 1.1 in Section 4. We
introduce and study mixed structures in Section 5, where we also prove Theorem 1.2. We construct in
Section 6 the R

2-tree-graded space (XM, d1, d2) dual to a mixed structure M. We prove in Section 7 that
this tree-graded space embeds isometrically in any product of trees (Proposition 7.1), which concludes
the proof of Theorem 1.3.

2. The Weyl chamber length compactification
2.1. Weyl chamber-valued and R

n-valued metrics

Given a finite reflection group (a, W) and a fixed model closed Weyl chamber a+, we define a a+-valued
pseudometric on a space X as a function

−→
d : X × X → a+ satisfying

−→
d (x, x) = 0 and

Triangular inequality: −→
d (x, z) ≤ −→

d (x, y) + −→
d (y, z);

opp-symmetry: −→
d (y, x) = −→

d (x, y)opp,

where opp is the opposition involution on a, and a is endowed with the partial order with positive cone
the Euclidean dual (a+)∗ of a+. We will call

−→
d a a+-valued metric if in addition it is separated, namely−→

d (x, y) = 0 implies x = y.
In this article, we are interested only in the reflection group associated to the semisimple Lie group

G = PSL(2, R)n, which is a=R
n with Weyl group W = {±idR}n. The model closed Weyl chamber is

a+ =R
n
+. In this case, the involution opposition is trivial, (a+)∗ = a+ =R

n
+ so a a+-valued (pseudo)metric

amounts simply to a n-tuple

−→
d = (di)i=1,...,n

of usual R-valued (pseudo)metric di. This gives rise to the equivalent notion of a Rn-(pseudo)metric:

Definition 2.1. An R
n-pseudometric space is a set X together with an n-tuple

−→
d = (di)i=1,...,n of

pseudometrics. We say that (X,
−→
d ) is an R

n-metric space if d := ∑n
i=1 di is a metric.

Observe that even if (X,
−→
d ) is an R

n-metric space, it is possible that none of the pseudo-metrics di

is separated.

Example 2.2. Examples of Rn-metric spaces are products

X = X1 × . . . × Xn

of ordinary metric spaces, as well as subspaces thereof with the induced metric. Another example that
will play an important role in our paper are the R

2-metric naturally induced on the universal cover of
a half translation surface, see Section 5.1 for details. Another relevant example is given by simplicial
trees with R

2-valued edge lengths. This is discussed, and generalized, in Section 3.5.
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In our case of interest,2 it is easy to prove that, for any W-invariant norm N : a=R
n →R+, N is not

decreasing on each variable on a+ =R
n
+, that is, for the partial order introduced above. As a result, a

a+-valued (pseudo)metric
−→
d on X induces an R-valued (pseudo)metric by setting

dN(x, y) := N(
−→
d (x, y)) .

Note that
−→
d (x, y) = 0 if and only if dN(x, y) = 0, in particular

−→
d is separated if and only if dN is separated.

Norms N : Rn →R of particular interest to us are the �2 and �1 norms, which we denote, respectively,
by ‖ · ‖2 and ‖ · ‖1. They give the associated Euclidean (pseudo)metric

d‖·‖2 (x, y) :=
√√√√ n∑

i=1

di(x, y)2

and �1-(pseudo)metric

d1(x, y) :=
n∑

i=1

di(x, y)

on X. We will also denote d‖·‖2 by ‖−→d ‖2 and d1 by ‖−→d ‖1.

Remark 2.3. If X = X1 × . . . × Xn is a product, then d‖·‖2 is the usual product metric, in particular
(X, d‖·‖2 ) is CAT(0) if and only if each of the Xi are. However, in general, (X, d‖·‖2 ) is not a geodesic
metric space. For example, if X is a simplicial tree with R

2-valued edge lengths, the induced metric
space (X, d‖·‖2 ) is geodesic if and only if the two distance functions di are proportional.

2.2. The Weyl chamber valued length function on PSL(2, R)n

The symmetric space associated to PSL(2, R)n is the product X = (H2)n of n copies of the hyperbolic
plane H2. On X the natural Weyl-chamber valued distance

−→
d : X × X →R

n
+ is simply the product

distance
−→
d (x, y) = (d(xi, yi)i)i=1,...,n .

The Weyl chamber length (or Rn-length) of g = (gi)i=1,...,n ∈ PSL(2, R)n can be defined as
−→
L (g) := inf

x∈X

−→
d (x, gx) (1.1)

where the infimum is considered with respect to the partial order on R
n with positive cone R

n
+. As the

metric space X is a product, it boils down to taking the list of the usual lengths in each factor:
−→
L (g) = (L(gi))i=1,...,n.

Here L(g) := infx∈H2 d(x, gx) is the usual translation length of g on the hyperbolic planeH2. This ensures
in particular that the infimum in (1.1) exists.

The length function of a representation ρ : � → PSL(2, R) is

Lρ := L ◦ ρ : � →R+ .

Similarly, the Weyl chamber length function (or R
n-length function) of a representation ρ : � →

PSL(2, R)n is
−→
L ρ := −→

L ◦ ρ : � →R
n
+ .

Of course when ρ = (ρi)i=1,...,n, it holds −→
L ρ = (Lρi )i=1,...,n.

2 This is true for general finite reflection groups, but considerably harder to prove [23].
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2.3. The Weyl chamber length compactification

Here we define the Weyl chamber length compactification constructed in [25], which has a simpler
construction in our context. We endow the space (Rn

+)� of functions −→
L : � →R

n
+ with the topology of

pointwise convergence, and the space P((Rn
+)�) of homothety classes of nonzero functions −→

L with the
quotient topology. The map

−→L : Hom(�, PSL(2, R)n) → (Rn
+)�

ρ 	→ −→
L ◦ ρ

induces a continuous map

P
−→L : T n → P((Rn

+)�)

equivariant with respect to the mapping class group action. The injectivity of T → PR
�
+ implies that the

map P
−→L is injective as well. The Weyl chamber length compactification T n

WL
of T n is by definition the

closure of its image (which is a compact set). We denote

∂WL(T n) := T n
WL− P

−→L (T n) ⊂ P((Rn
+)�)

its boundary.

2.4. Other length compactifications

Recall from Section 2.1 that any W-invariant norm N : Rn →R induces a metric dN := N(
−→
d ) on

X = (H2)n, and thus a corresponding length function, the N-length function LdN . We use this to construct
the N-length compactification T n

N
of T n, associated to LdN .

It is easy to verify that, since N is not decreasing on each variable on a+ =R
n
+, and T n is a product,

it holds LdN (g) = N(
−→
L (g)). The Weyl chamber length compactification then dominates naturally T n

N
:

the restriction of the natural map

(Rn
+)� → R

�
+

−→
L 	→ N ◦ −→

L

induces a continuous Out(�)-equivariant surjective map

T n
WL → T n

N

restricting to identity on T n.

3. Trees dual to measured geodesic laminations

We refer the reader to [14, Chapter 11] for preliminaries on measured laminations, measured foliations,
and the identification between equivalence classes of measured foliations and measured geodesic lami-
nations on hyperbolic surfaces. The material in Sections 3.2, 3.3, and 3.4 is classical, while the viewpoint
in Section 3.5 is new and important for our paper.

3.1. Measured foliations

Let F be a transverse measured foliation on a topological surface � with fundamental group �. We
denote by i(F , c) the measure of a path c ⊂ � with respect to F . The intersection of F with γ ∈ � is
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defined as

iF (γ ) := inf
c

i(F , c)

where the infimum is taken over all closed loops c transverse to 
 and freely homotopic to γ . We
denote by

IF := i(F , ·) : � →R+

the corresponding intersection function.
This may be reformulated in terms of pseudometrics. We denote by dF the pseudometric on the

universal cover �̃ of � associated with the lift F̃ of F : it is defined by the formula

dF (x, y) := inf
c

i(F̃ , c)

where the infimum is taken on paths c joining x to y in �̃ and transverse to F̃ . The length function
Ld ∈ (R+)� of a pseudometric d on a �-space X is defined as

Ld(γ ) := inf
x∈X

d(x, γ x) .

By definition, the length function of dF on �̃ is the intersection function of F :

LdF = IF .

The dual tree of a measured foliation F is defined as the quotient metric space T(F) := �̃/dF of �̃

by the pseudometric dF . The tree T(F) inherits an action of � by isometries, with associated length
function

LT(F ) = IF .

3.2. Measured geodesic laminations

Let λ = (
, ν) be a measured lamination on �. As for measured foliations, we denote by i(λ, c) the
λ-measure of a path c : [0, 1] → � transverse to 
. The intersection of λ with γ ∈ � is defined as

i(λ, γ ) := inf
c

i(λ, c)

where the infimum is taken over all closed loops c transverse to 
 and freely homotopic to γ , and we
denote by

Iλ := i(λ, ·) : � →R+

the corresponding intersection function.
We denote by dλ the pseudometric on �̃ associated with λ: this is the pseudometric defined on

�̃ − 
̃0, where 
̃0 is the set of atomic3 leafs of the lift λ̃ = (
̃, ν) of λ, by the formula

dλ(x, y) := inf
c

i(λ̃, c)

where the infimum is taken on paths c joining x to y in �̃ and transverse to 
̃. By definition, the length
function of dλ on �̃ − 
̃0 is the intersection function of λ:

Ldλ
= Iλ.

We refer to [14] for the classical correspondence between measured foliations and measured geodesic
laminations on hyperbolic surfaces.

3 The leafs with positive weight.
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3.3. Geodesic currents

We refer to [2] or [15, Section 8] for the background material in the case of closed geodesic surfaces,
and for instance to [4] for the generalization to finite type surfaces.

A geodesic current on a finite type hyperbolic surface � =H2/� is a flip-invariant �-invariant posi-
tive Radon measure on the space of unoriented, unparametrized geodesics of H2, that may be identified
with the space

G(H2) := {(x, y) ∈ (∂H2)2: x �= y}
of distinct pairs of points in the boundary at infinity ∂H2 of H2. A basic example is the current δc

associated to a closed geodesic c in �, which is defined as the sum of the Dirac masses on the lifts of c
toH2. Recall that the Bonahon intersection i(μ, ν) of two geodesic currents μ, ν is defined as the (μ × ν)-
measure of any Borel fundamental domain for the �-action on the space DG(H2) ⊂ G(H2) × G(H2) of
pairs of transverse geodesics (g, h).

We refer for instance to [15, Section 8.3.4] for the bijective correspondence λ 	→ μλ between mea-
sured geodesic laminations λ = (
, ν) of full support 
 and geodesic currents μ on � with i(μ, μ) = 0,
equivalently currents μ such that no two geodesics in the support of μ intersect transversally. The
geodesic current μλ has support 
, and, for each geodesic arc c transverse to 
, the restriction of μλ to
the set of geodesics g of 
 intersecting c is the pullback of the λ-measure on c by the map g 	→ g ∩ c.
The notions of intersection then coincide as

i(μλ, δc) = i(λ, c) ,

for all closed geodesic c in �. Note that the union of two measured geodesic laminations with disjoint
support corresponds to the sum of the associated currents. From now on, we will freely identify λ with
μλ whenever convenient.

Given a geodesic current μ on � and a geodesic subsurface � ′ of �, we denote by μ|�′ the restriction
of μ to the subsurface � ′, namely the geodesic current

μ�′ := χG(�′)μ,

where χG(�′) is the characteristic function of the set G(� ′) of geodesics whose projection lies in � ′.
In general, a geodesic current of full support might restrict to the zero current on a proper subsurface
(this is the case when μ is the Liouville current of a hyperbolic structure), but if, for every boundary
component c of � ′, i(μ, δc) = 0, then for every γ ∈ π1(� ′), i(μ, δγ ) = i(μ|�′ , δγ ) [5, Proposition 4.13].

3.4. Dual tree of a measured geodesic lamination

Let λ = (
, ν) be a measured geodesic lamination on an hyperbolic surface �. We now recall the
construction of the associated dual R-tree. We follow the construction of [14, Section 11.12].

We first get rid of the atoms blowing-up along atomic leafs: for each isolated leaf c of 
, cut �

along c and insert an annulus B(c) = c × [0, 1], foliated by the parallel circles c × t. We endow �b with
the locally CAT(0) metric mb equal to the original metric m of � outside the annuli B(c) and to the
flat metric on B(c). This gives a locally CAT(0) surface (�b, mb) homeomorphic to �, with a geodesic
lamination 
b. We call (�b, 
b) the blow-up of (�, 
). The blow-up of the transverse measure ν on 


is the non-atomic transverse measure νb on 
b, obtained from ν by giving to each foliated annulus B(c)
the transverse measure ν(c)dt on [0, 1]. The pseudometric dλb associated to the measured lamination
λb := (
b, νb) is then a continuous and everywhere-defined path pseudometric on �̃b. The R-tree dual
to λ is defined as the quotient metric space T(λ) := �̃b/db

λ
, whose metric will be denoted by dλ.

It is easy but crucial to see that the geodesics of T(λ) are the projections of the mb-geodesics of �̃b.
In the following lemma, and in the rest of the article, when we write geodesic we mean a path t 	→ c(t)
that is additive for the distance d, namely such that d(c(t1), c(t3)) = d(c(t1), c(t2)) + d(c(t2), c(t3)) for all
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t1 ≤ t2 ≤ t3. Observe that c may then be constant on some subset of its domain of definition and needs
not be parametrized at constant speed.

Proposition 3.1. Let c : I → �̃b be a mb-geodesic. Then c is a minimizing curve for dλb , and the
projection of c on the tree T(λ) is a geodesic.

Proof. Let x, y be points of �̃b and c : [0, 1] → �̃b be the constant speed geodesic segment from
x to y. As the leafs of 
̃b are geodesics, and CAT(0) spaces are uniquely geodesic, the path c cannot cross
twice the same leaf of 
̃b, hence i(λb, c) is minimal and dλb (x, y) = i(λb, c). Denote by p : �̃b → T(λ) the
canonical projection. The projection c = p ◦ c of c in the dual tree T(λ) does not backtrack, hence is a
geodesic.

The tree T(λ) inherits an action of � by isometries, with associated length function

LT(λ) = Iλ .

Note that when � is closed the tree T(λ) is then minimal for the action of �, namely there is no
invariant proper subtree. Indeed an invariant proper subtree will lift as a proper closed invariant convex
subset in �̃b, and taking the closure in the CAT(0) compactification we will then obtain a proper closed
invariant subset of the boundary at infinity ∂∞�̃b � ∂H2, which is impossible.

Note that the tree T(λ) is essentially determined by its length function ; more generally, we will
use the length rigidity of actions on minimal trees with length functions in ML: It is easily seen that
for λ �= 0 the action of � on T(λ) has no global fixed point in ∂∞T , where ∂∞T denotes the boundary
at infinity of T . This in fact depends only on the length function, since having a fixed point at infin-
ity is equivalent to the length function being of the form γ 	→ |h(γ )|, where h:� →R is a morphism
[7, Corollary 2.3]. In particular, all minimal �-trees with nonzero length function in ML have no fixed
point at infinity, in particular are semisimple and not shifts in the sense of [7]. It follows then from the
length rigidity for minimal semisimple �-trees [7, Theorem 3.7] that if T and T ′ are any two minimal
�-trees with the same length function in ML, then there is a unique equivariant isometry T → T ′.

3.5. The Rn-tree dual to a n-measured geodesic lamination

Let n ∈N.

Definition 3.2. A R
n-tree is a R

n-metric space (X,
−→
d = (di)i=1,...,n) which is a R-tree for the associated

�1-metric d1(x, y) := ∑
i di(x, y).

Observe that, while we only assume that di are pseudodistances, we require that their sum d1 is a
distance, namely it separates points.

Definition 3.3. A n-measured lamination −→
λ = (
, −→ν ) on a surface � is a lamination 
 on �, endowed

with a n-tuple −→ν = (ν1, . . . , νn) of transverse measures of full joint support, namely 
 is the union of
the supports 
i of the measures νi for i = 1, . . . , n.

It can equivalently be seen as a n-tuple of parallel measured laminations (λ1, . . . , λn), that is, such
that any two leafs of λi and λj are either disjoint or equal.

When � is endowed with a locally CAT(0) metric, a n-measured geodesic lamination −→
λ = (
, −→ν )

is called geodesic when 
 is geodesic.
When � is a closed hyperbolic surface, seeing measured geodesic laminations as geodesic currents,

a n-tuple (λ1, . . . , λn) of measured geodesic laminations is parallel if and only if

i(λi, λj) = 0 for all i, j
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or equivalently that

λ :=
n∑

i=1

λi is a measured lamination.

Let −→
λ = (
, −→ν ) be a n-measured lamination on a closed hyperbolic surface �. We now construct

the associated dual Rn-tree, adapting the construction of Section 3.4.
We take the R-tree T(λ) := �̃b/db

λ
dual to the measured lamination λ = (
, ν) where ν = ∑

i νi.
Recall from Section 3.4 that (�b, 
b) is the blow-up of (�, 
), which is a locally CAT(0) surface

(�b, mb) homeomorphic to �, with a geodesic lamination 
b, and that λb = (
b, νb) where νb is the
non-atomic transverse measure on 
b obtained by blowing up ν, and that dλb the associated continuous
path pseudometric on �̃b.

Taking the blow-ups νb
i of the transverse measure νi, we obtained a n-tuple −→ν b := (νb

i )i of non-
atomic transverse measures on λb (not necessarily of full support), namely a n-measured lamination−→
λ b = (
b, −→ν b) on �b, which we will call the blow-up of −→

λ = (
, −→ν ).
Each of the measured laminations λb

i = (
b, νb
i ) then induces a continuous everywhere-defined path

pseudometric dλb
i

on �̃b.

Definition 3.4. The R
n-tree T(

−→
λ ) dual to −→

λ is defined as the R-tree T(λ) := �b/db
λ

dual to the
measured lamination λ, endowed with the Rn-pseudometric given by the n-tuple

−→
d λ := (dλi )i=1,...,n

of quotient pseudometrics dλi induced by dλb
i
.

It inherits an action of � preserving
−→
d λ, that is preserving each pseudometric dλi .

Proposition 3.5. (T(λ),
−→
d λ) is an R

n-tree with associated �1-metric ‖−→d λ‖1 = dλ.

Proof. The crucial fact is that, by Proposition 3.1, the infima involved in the definition of the pseudo-
metrics dλi are in fact all realized simultaneously for a same path c in �̃b, the mb-geodesic. In particular,
c is a minimizing curve for dλb and its projection on T(λ) is a minimizing path for

−→
d λ. This ensures that

dλ = ∑
i dλi on T(λ).

The separation of
−→
d λ on T(λ) follows: if

−→
d λ(x, y) = 0 then dλ(x, y) = ∑

i dλi (x, y) = 0, hence
x = y.

Remark 3.6. Proposition 3.5 is special for the �1-metric, and does not work for other distances, not even
locally. For example, consider a minimal lamination λ that supports two mutually singular measured
laminations. Then the distance function ‖−→d λ‖2 is not geodesic, not even locally.

4. The boundary of �Max(�, PSL(2, R)n) is P((ML)n)

In this section, we prove Theorem 1.1, that identifies ∂WLT n with P((ML)n), and deduce some
consequences for other length spectra compactifications.

4.1. Proof of Theorem 1.1

Theorem 1.1 is classical when n = 1 and follows from the work of Thurston. Thurston furthermore
proved [10, Expose 8] that ML is homeomorphic to R

6g−6, that it is projectivization PML is homeo-
morphic to S

6g−7, and that the resulting compactification is homeomorphic to a closed ball [15, 8.3.13].
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Using the latter fact, we can prove the following lemma, which ensures that given L in ML, one can
choose a sequence in T converging to [L] with a fixed scale sequence. It will be crucial in the proof of
Theorem 1.1.

Lemma 4.1. Let L ∈ML. Let (λk) be any increasing diverging sequence of positive real numbers. Then
there exists a sequence of maximal representations ρk : � → PSL(2, R) such that 1

λk
Lρk converges to L

in (R+)�.

Proof. Given a finite generating set S ⊂ � and an isometric action ρ of � on a metric space X, the
minimal displacement of ρ with respect to the generating set S is defined by

λS(ρ) := inf
x∈X

√∑
s

d(x, ρ(s)x)2 .

This defines a nonzero proper and continuous function λS : T →R+ (this is for example proven—in a
much more general context—in [24, Prop. 25]).

We may suppose that L is nonzero (otherwise we can take a constant sequence ρk). Let T be a
R-tree with minimal �-action, with length function L. Let D be the minimal displacement of � on
T with respect to the generating set S.

Fix a point [ρ0] in the Teichmüller space T . As the compactification T of T is a closed ball, there
exists a path r(t), t ∈ [0, 1] from [ρ0] to [L] in T such that r(t) belongs to T for t ∈ [0, 1[. Let ρt be a
representation with [ρt] = r(t). Then, as the map

[0, 1[ → R+

t 	→ λS(r(t))

is continuous and diverges as t goes to 1, there exists an increasing sequence (tk)k≥K in [0, 1[ with limit 1
such that λS(r(tk)) = Dλk. Since [ρk] = r(tk) converges to [L] in T , we have that 1

λS(ρk)
Lρk converges to sL

for some s ∈R+. Taking the asymptotic cone of this sequence (see for example [25]), we also have that sL
is the length function of an action of � on a real tree Tω with minimal displacement 1 with respect to S.4
Let T ′ ⊂ Tω be the minimal invariant subtree. As T ′ is a convex subset of Tω, the minimal displacement
of � in T ′ is the same as in Tω. By length rigidity of actions on minimal trees with length function in
ML, the trees T and 1

s
T ′ are equivariantly isometric, hence have same minimal displacement s = 1

D
. So

we have that 1
λk

Lρk → L as wanted.

We now have the ingredients needed to prove Theorem 1.1, which we recall for the reader’s
convenience:

Proposition 4.2. The boundary of �Max(�, PSL(2, R)n) = T n in the Weyl chamber length compactifica-
tion is P((ML)n).

Proof. It is easy to see that ∂WL(T n) ⊂ P((ML)n). Let indeed ρk = (ρk,i)i=1,...,n, k ∈N, be a sequence
in Hom(�, PSL(2, R)n), which we identify with Hom(�, PSL(2, R))n. We write a nonzero function−→
L : � →R

n as −→
L = (Li)i=1,...,n with Li : � →R. The sequence of conjugacy classes [ρk] converges to the

homothety class [
−→
L ] in the Weyl chamber length compactification if and only if there exists a sequence

of positive real numbers λk → ∞ (scale sequence) such that the renormalized Weyl chamber length
function 1

λk

−→
L ρk converges to −→

L , that is, if 1
λk

Lρk,i converges to Li for all i = 1, . . . , n [25, Theorem 5.6].
Then either Li = 0 or [ρk,i] converges to [Li] in the length compactification T of T . As ∂T = P(ML),
we have that each Li belongs to ML, hence [

−→
L ] belongs to P((ML)n).

4 See proof of Thm 5.6 in [25].
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The converse implication is a consequence of Lemma 4.1. Let −→
L = (Li)i=1,...,n ∈ (ML)n. Using

Lemma 4.1 with scale sequence λk = k, we can construct for each i = 1, . . . , n a sequence of max-
imal representations ρk,i:� → PSL(2, R), k ∈N, whose renormalized length function 1

k
Lρk,i converges

to the length function Li in (R+)� as k → ∞. We now consider for k ∈N the product representation
ρk := (ρk,i)i=1,...,n : � → PSL(2, R)n, which, being a product of maximal representations, is a maximal
representation. Then 1

k

−→
L ρk = ( 1

k
Lρk,i )i=1,...,n converges to (Li)i=1,...,n = −→

L as k → ∞. Hence, [
−→
L ] belongs

to ∂WL(T n).

As a result, we deduce that P((ML)n) ⊂ P((R�
+)n) is a sphere of dimension n(6g − 6) − 1, being the

topological join of n spheres:

Corollary 4.3. The boundary of �Max(�, PSL(2, R)n) = T n in the Weyl chamber length compactification
is homeomorphic to S

n(6g−6)−1.

4.2. Applications to other length compactifications

As an application of Proposition 4.2, we can also understand various other compactifications of
�Max(�, PSL(2, R)n):

Corollary 4.4. For any W-invariant norm N : Rn →R
n
+, the boundary of �Max(�, PSL(2, R)n) in the

N-length compactification is the projectivization P(N((ML)n)) of the image N((ML)n) of (ML)n by
the map sending −→

L : � →R
n to N ◦ −→

L : � →R.

In particular, the boundary of T n in the �1-length compactification is the projectivization P(
∑n

i=1 ML)
of the space of geodesic currents that can be decomposed as the sum of n measured laminations.

Remark 4.5. While the map (ML)2 → (
∑2

i=1 ML) has fibers of cardinality 2 on the set of geodesic
currents with positive systole, the fiber over minimal measured laminations (and more generally over
geodesic currents that admit a Bonahon-orthogonal decomposition μ = μ1 + μ2 with μ1 a minimal
measured lamination) is higher dimensional. As a result it is, in general, not clear how to determine
the topology of P(

∑2
i=1 ML). Indeed it follows from the arguments in [9, Theorem 2] that no finite set

of simple closed curves is sufficient to separate points in P(
∑2

i=1 ML). This is in strong contrast to
P((ML)2): there is a collection of 9g − 9 simple closed curves on � whose R2-length function already
separate points in P((ML)2).

5. R
2-mixed structures

The purpose of this section is to prove Theorem 1.2 from the introduction, which interprets points in
ML×ML as length functions of mixed structures. For this we introduce the notion of flat structures
in Section 5.1, mixed structures in Section 5.2, and their associated length functions in Section 5.3, and
prove the result in Section 5.4.

5.1. Flat structures

We will consider flat structures on a punctured finite type surfaces, namely the complement of a finite set
of marked points considered as punctures in a compact topological surfaces. When dealing with mixed
structures, the finite type surfaces will typically be obtained from geodesic subsurfaces of the original
surface � by collapsing each boundary components to a cusp point.
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Definition 5.1. A half-translation structure K on a finite type surface � is a (R2
�Z/2Z, R2)-structure

on �, with conical singularities of angle kπ , k ≥ 2, extendible at punctures, with possibly angle π

singularities at the punctures.

With a slight abuse of notation we denote by
−→
Flat(�) the moduli space of half-translation structures on

�, where two such structures are identified if they are isotopic. Note that the flat structures we consider
here are directed (i.e.„ with a preferred vertical direction).

Remark 5.2. Duchin−Leiniger−Rafi [9], as well as Ouyang−Tamburelli [21] consider, instead, the
space of flat structures on �, where they identify isometric marked structures. As a result, we have
fibrations

−→
Flat(�) → Flat(�) → T (�).

The fiber of
−→
Flat(�) → Flat(�) is the circle S

1, which acts on a half-translation surface by rotation.
Since our structures are marked, and any half-translation structure induces a conformal structure on
the surface, the space

−→
Flat(�) fibers over the Teichmüller space. We will never need this fact, but it

is well known that the fiber over X in this fibration identifies with the space of holomorphic quadratic
differentials over the Riemann surface X.

Let K be a flat structure on �, and let F1, F2 be the vertical and horizontal measured foliations of K.
This is a pair of transverse measured foliations. For i = 1, 2, we denote by

�K,i(c) = i(Fi, c) =
∫

c

|dxi|

and by dK,i := dFi the associated pseudometric on �̃ This defines the natural R2-metric
−→
d K = (dK,i)i

on �̃. We denote LK,i := IFi : � →R the corresponding length function. Let T(Fi) := �̃/dK,i be the dual
tree of Fi, and pi : �̃ → T(Fi) the corresponding projection.

The universal cover �̃ of � is a CAT(0) metric space for the flat metric associated to K, which we will
denote by dCAT(0). Note that dCAT(0) is not in general equal to the metric ‖−→d K‖2 induced from theR2-metric−→
d by taking the �2-norm, nevertheless it is the associated length metric. We denote �̃c the completion

of �̃ with respect to dCAT(0), which consists in adding one fixed point x̃c for each parabolic subgroup �c̃

of � = π1(�) (corresponding to lifts c̃ of punctures c of �), see for example [18, Lemma 7.2]. The flat
structure extends on �̃c. It is easy to see that Fi, dK,i, and pi extend naturally to the completion �̃c of �̃.

We define the �1-length metric on �̃, as the Finsler metric dK induced by the �1-norm ||x||1 = |x1| +
|x2| on R

2. This metric is clearly equivalent to the CAT(0) metric dCAT(0), in particular extends to �̃c. We
denote by

LK(γ ) := LdK (γ )

the corresponding length of γ ∈ �. We now establish some basic properties of the �1-metric that we will
need. Recall that in the following lemma, a geodesic is an additive path t 	→ c(t) for the distance d.

Lemma 5.3. Let K be a flat structure on a finite type surface �. The following properties hold:

(1) For any CAT(0) geodesic c : I → �̃c, the projections ci = pi ◦ c of c in the dual trees T(Fi) are
geodesics;

(2) We have dK = dK,1 + dK,2 = ‖−→d K‖1 on �̃c. In particular, the CAT(0) geodesics are geodesics
for dK;

(3) We have LK(γ ) = LK,1(γ ) + LK,2(γ ) for all γ ∈ �.
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Proof. We prove (1). Let i ∈ {1, 2}. As T(Fi) is a tree, we only need to prove that the path ci does not
backtrack. Let t1 ≤ t2 ≤ t3 be real parameters in I such that ci(t1) = ci(t3). Then the points c(t1) and c(t3)
are in a common leaf of the foliation Fi. As the leafs of the foliation are geodesic for the CAT(0) metric
d on �̃, we can deduce, by uniqueness of geodesics in CAT(0) metric spaces, that the point c(t2) is on
the same leaf, hence that ci(t1) = ci(t2) = ci(t3). This proves that ci is a geodesic in the tree T(Fi). We
now prove (2). The �1-length of a path c is, by definition, �1(c) = ∫

c
|dx1| +

∫
c
|dx2| = �1(c) + �2(c). We

then clearly have that d(x, y) ≥ d1(x, y) + d2(x, y). On the other hand, if c is the CAT(0) geodesic in �̃c

from x to y, we know by (2) that both projections ci = pi ◦ c of c are geodesic. So for i = 1, 2 we have
di(x, y) = d(pi(x), pi(y)) = l(ci) = �i(c) and hence �(c) = d1(x, y) + d2(x, y).

We finally prove (3). As d = d1 + d2 we clearly have LK(γ ) ≥ LK,1(γ ) + LK,2(γ ). If LK(γ ) = 0, then we
are done. Otherwise, γ has no fixed point in �̃c and, since �̃c/� is compact, there is a CAT(0) geodesic
c in �̃c translated by γ . By (2) both projections ci = pi ◦ c of c are geodesics translated by �. So, for any
x on c, and i = 1, 2

di(x, γ x) = di(pi(x), γ pi(x)) = LT(Fi)(γ ) = LK,i(γ ).

Then d(x, γ x) = LK,1(γ ) + LK,2(γ ).

5.2. R2-mixed structures on a surface

In this section, we introduce a natural notion of R
2-mixed structure on a surface. This generalizes

flat structures and refines the notion of mixed structure introduced by Duchin−Leininger−Rafi and
Morzadec [9, 18]. The definition follows the point of view of [9], see Section 6 for the metric view-
point analoguous to [18]. Note that an equivalent notion has been independently introduced in [16,
Definition 6.4].

Definition 5.4. A R
2-mixed structure on a compact hyperbolic surface � with boundary is a triple

M = (� ′, K,
−→
λ ) where

• � ′ is a (possibly disconnected, possibly empty) open geodesic subsurface of �, namely a union
of complementary components of a collection of disjoint simple closed geodesics.

• K is a flat structure on � ′ extendible at punctures (when � ′ is compactified as a punctured
surface),

• −→
λ = (
, −→ν ) is a 2-measured geodesic lamination on � − � ′, that is, 
 is a geodesic lamina-
tion on �, included in � − � ′, and −→ν = (ν1, ν2) is a pair of transverse measures on 
 of full
support, that is, 
 = supp(ν1) ∪ supp(ν2).5

This imposes topological restrictions on the subsurface � ′: no connected component of � ′ can be a pair
of pants, since a pair of pants does not support any non-trivial flat structure.

Example 5.5. We illustrate an example of an R
2-mixed structure on a surface of genus 3 in Figure 1.

In this case, the support of the lamination 
 consists of the three colored curves c1, c2, c3, each with
the given pair of weights (xi, yi) ∈R

2
+ − {(0, 0)}. Observe that in this example supp(ν1) = {c1, c2} and

supp(ν2) = {c2, c3}. The subsurface � ′ is the disjoint union of a thrice punctured torus � ′
1, bounded by

the curve c0 and the curve c1, and a twice punctured torus � ′
2, endowed with the flat structures K1, K2

illustrated above in the picture. In the flat pictures, the parallel sides are identified, and the colored
points correspond to punctures (corresponding to the curves, in �, of the same color). In particular,
the two black punctures p0, p0

′ in K1 come from the same curve. Observe that, while c0 is a boundary

5 We allow the supports of νi to overlap, but don’t require that one of the νi is fully supported.
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Figure 1. An R
2-mixed structure on a surface of genus 4.

component of � ′, it does not belong to the lamination 
, since the curve is not contained in the support
of neither transverse measure.

We denote by
−−→
Mix(�) the moduli space of R2-mixed structures, where two R

2-mixed structures are
identified if the subsurfaces and the laminations agree and the flat structures are equivalent, namely
isotopic to each other.

Remark 5.6. Following up on Remark 5.2, observe that in theR2-mixed structures we consider here, the
flat part is always directed. Forgetting the vertical direction we obtain a map

−−→
Mix(�) → Mix(�), where

Mix(�) denotes the mixed structures studied in [9]. In general, the map
−−→
Mix(�) → Mix(�) has fibers

(S1)k where k denotes the number of connected components of � ′. In [9], the set Mix(�) is identified
with the corresponding set of geodesic currents, a perspective that is generalized in [21, 20], where the
flat metrics associated to cubic (resp. quartic) differentials are considered.

5.3. The R2-length function of a mixed structure

Let M = (� ′, K,
−→
λ ) be a R2-mixed structure on �. Denote by (F1, F2) the vertical and horizontal mea-

sured foliations on � ′ associated with the flat structure K. Let λK,i be the measured geodesic lamination
on � ′ corresponding to Fi, namely, with the same intersection function. It can be seen as a measured
geodesic lamination on �. Let λM,i be the measured geodesic lamination on � obtained by taking the
union of λK,i and of the measured geodesic lamination λi = (
i, νi) on � − � ′, where 
i := supp(νi).
Regarding measured geodesic laminations as geodesic currents on �, we have

λM,i := λK,i + λi

The R2-length of γ ∈ � with respect to the mixed structure M is then defined as the pair:

−→
L M(γ ) := (i(λM,i, γ ))i=1,2.

We denote LM,i(γ ) := i(λM,i, γ ) the factors. Note that if � ′ = �, then the length LM,i agrees with LK,i.
This gives a map

−→
L :

−−→
Mix(�) →ML×ML.

We will show in the next subsection that this is indeed a bijection.
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5.4. Interpretation of ML×ML as −−→
Mix(�)

The goal of the section is to provide an identification of ML×ML with
−−→
Mix(�), thus obtaining a geo-

metric interpretation of the boundary ∂WL�Max(�, PSL(2, R)n) for the case n = 2. The main ingredient
for this is the following application of the decomposition result of [4] to a sum of measured geodesic
laminations (seen as geodesic currents), a result that works for general n:

Proposition 5.7. Let −→
L = (Li)i=1,...,n ∈ (ML)n, and denote by μi the measured lamination with inter-

section function Li. Then there exists a canonical open geodesic subsurface � ′, such that each μi

decomposes as a disjoint union μi = μi
�′ ∪ μi



of measured laminations, and

(1) μi
�′ is supported in � ′, μi



in its complement;

(2) (μi
�′)i have positive joint systole;

(3) (μi



)i are parallel, namely the union of their support is a geodesic lamination 
 (contained in
� \ � ′).

Proof. Let μi = (
i, νi) be the measured lamination on � corresponding to Li, that is, such that
i(μi, ·) = Li on �.

As in [4], we consider the collection E = Eμ of closed μ-short solitary geodesics. This is the collec-
tion, canonically associated to μ, of simple closed geodesics in � that have 0-intersection with μ, and
that do not intersect any geodesic that does not intersect the support of μ. Applying the decomposition
theorem [4, Corollary 1.9] to the geodesic current μ = ∑n

i=1 μi, we get that the surface decomposes
along the collection E = Eμ in a finite number of open connected subsurfaces with geodesic boundary
� − E = ⋃

v∈V �v, and the current μ decomposes as a sum

μ =
∑
v∈V

μv +
∑
c∈E

tcδc

where μv = μ|�v is the restriction of μ to �v (recall Section 3.3).
Furthermore, for every v ∈ E for which μv �= 0 precisely one of the following holds:

(1) either Syst�v
(μv) > 0,

(2) or μv is a measured lamination.

where

Syst�v
(μv) := inf{i(μv, c)| c ⊂ �v closed geodesic }.

Let i ∈ {1, . . . , n}. We first see that no closed geodesic c ∈ E intersects transversally the support of μi:
indeed, since i(μ, c) = i(μ1, c) + i(μ2, c) = 0, we have i(μi, c) = 0. So the measured geodesic lamination
μi decomposes as the union of measured geodesic laminations μv,i included in the open subsurface �v,
and possibly closed leafs c ∈ E with transverse measure tc,i ∈R+. That is, seeing all those measured
geodesic laminations as geodesic currents on �:

μi =
∑
v∈V

μv,i +
∑
c∈E

tc,iδc

By uniqueness of the decomposition of μ along E , for each v ∈ V we have

μv =
∑

i

μv,i

and for each c ∈ E

tc =
∑

i

tc,i
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Let v ∈ V . If μv is a measured lamination, then the measured laminations μv,i, i = 1, . . . , n are parallel:
indeed, as i(μv, μv) = ∑

1≤i,j≤n i(μv,i, μv,j) = 0, and i(μv,i, μv,j) ≥ 0, we get that i(μv,i, μv,j) = 0 for all i, j ∈
{1, . . . , n}.

We can now prove the main result of the section.

Proposition 5.8. Any −→
L = (L1, L2) in ML×ML is the R

2-length function of a unique R
2-mixed

structure (� ′, K,
−→
λ ) on �.

Note that a similar identification has been independently established in [16], see for instance
Theorem 6.8 therein.

Proof. As above we denote by μi the geodesic current corresponding to the lamination (
i, νi) with
length function Li. We use Proposition 5.7 to decompose μi := μi

�′ + μi


.

For any connected component �v of the positive systole subsurface � ′, we denote by �v = π1(�v)
and Lv,i : �v →R+ the intersection function of μv,i on �v. Then Lv,i is the intersection function IFi of a
measured foliation Fi on the surface �v. Denote C = Syst�v

(μv). We have that, for all non parabolic γ

in �v,

max (i(F1, γ ), i(F2, γ )) ≥ C

2
> 0.

It is known (see for example [12, Theorem 7]) that the two measured foliations F1, F2 are then trans-
versely realisable, that is, up to replacing Fi by an equivalent measured foliation (an operation that
does not change the length function), they arise as the vertical and horizontal measured foliation of a
flat structure Kv on the surface �v. In particular, the measured geodesic laminations on �v associated
with Kv are

λKv ,i = μv,i

for i = 1, 2. We denote by K the flat structure on � ′ equal to Kv on each �v.
Let λi be the measured geodesic lamination obtained by taking the union of μv,i, for the v such that μv

is a lamination, and of the closed geodesics c ∈ E with weight tc,i. Then −→
λ = (λ1, λ2) is a pair of parallel

measured geodesic laminations on �, and M = (� ′, K,
−→
λ ) is a mixed structure on �, with associated

pair of laminations

λM,i = λK,i + λi = μi.

In particular, taking intersection functions on � we have Li = LM,i for each i.
The uniqueness of M (up to isotopy of the flat part) is given by the uniqueness of the decomposition

in Corollary 1.9 of [4] and by the injectivity of the natural map from quadratic differentials to pairs of
equivalence classes of measured foliations [11, Theorem 3.1].

6. The R2-tree-graded space dual to a mixed structure

In this section, we construct the R2-tree-graded space XM dual to a R2-mixed structure M = (� ′, K,
−→
λ )

on a closed hyperbolic surface �. In Section 6.1, we recall the definition of tree-graded space and discuss
a general construction to glue pseudometrics which we use in Section 6.2 to construct the tree-graded
space XM dual to a mixed structure M. In Section 6.3, we prove that space is indeed tree-graded and
discuss its relevant geometric properties.
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6.1. Generalities on R
n-tree-graded spaces.

Recall from [8] the notion of tree-graded metric space:6

Definition 6.1. A geodesic metric space (X, d) is tree-graded with respect to a collection P of geodesic
subsets called pieces if

(TG1) Any two different pieces have at most one common point.
(TG2) Any simple geodesic triangle in X is contained in one piece.

Here a geodesic triangle is simple if its sides meet only in the respective endpoints.

We now adapt this to define an tree-graded R
n-space, recall from Definition 2.1 the notion of an

R
n-metric space:

Definition 6.2. A R
n-metric space (X,

−→
d = (di)i=1,...,n) is tree-graded with respect to a collection P of

subsets if X is tree-graded (with respect to P) for the associated �1-metric d := ∑n
i=1 di.

In the next subsection, we will construct the tree-graded space associated with a mixed structure on
a surface � as a quotient of a blowup �̃b of � by pseudometrics defined by gluing. We now recall the
general construction of a global pseudometric on a CAT(0) surface �̃ obtained by gluing pseudometrics
defined on geodesic pieces, the initial ingredient for the construction in the next section.

Let � be a locally CAT(0) surface, and E be a set of disjoint simple closed geodesics on �. We
denote by Ẽ the set of their lifts to the universal cover �̃. A piece of �̃ is defined as the closure P̃ of
a complementary component W̃ of Ẽ in �̃. Two different pieces are adjacent if they have non-empty
intersection (which is then a geodesic in Ẽ bounding each of the pieces). We denote by P(�̃) the set of
pieces of �̃.

Definition 6.3. A chain between two points x, y in �̃ is a sequence C = (x0 = x, x1, . . . , xk+1 = y) in �̃

such that any two consecutive points xj and xj+1 are in a same piece P̃j, with P̃j �= P̃j+1.

For j = 1, . . . , k the pieces P̃j−1 and P̃j are then adjacent and xj is on their common boundary geodesic
c̃j. Such a chain defines a path in the simplicial tree dual to Ẽ . We call the chain straight if this path
is geodesic, that is, if and only if c̃j−1 �= c̃j for j = 1, . . . , k. Then c̃1, . . . c̃k is the ordered sequence of
geodesics in Ẽ separating x and y (going from x to y).

Given a pseudometric dP̃ on each piece P̃ of �̃, we define the d-length of a chain C as

�d(C) =
k+1∑
j=0

dP̃j (xj, xj+1)

The induced pseudometric on �̃ is then defined by

d(x, y) = inf
C

�d(C)

where the infimum is taken over all chains C joining x to y. It is easy to see that we may restrict to straight
chains C. If the restriction of dP̃ to the geodesics c̃ of Ẽ is 0 for each piece P̃, then the pseudo-distance
d(xj, xj+1) does not depend on the choice of xj on c̃j, and thus all straight chains have the same length. In
this case, we may alternatively define d(x, y) as the d-length of any straight chain, thus in particular d
restricts to the original pseudometric dP̃ on each piece P̃.

6 Observe, however, that in [8] the tree-graded spaces are additionally assumed to be complete. We relax this assumption because
the tree-graded space associated to a mixed structure will, in general, not be complete: it is well known that the R-tree dual to a
measured lamination λ is only complete when λ has no minimal component, and these R-trees are examples of tree-graded spaces
associated to mixed structures.
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6.2. Construction of the R2-space XM

Let M = (� ′, K,
−→
λ ) be a R

2-mixed structure on a closed hyperbolic surface �. Here, as always,−→
λ = (
, ν1, ν2).

We first resolve the atoms in the lamination part, by taking the blowup (�b,
−→
λ b) of (�,

−→
λ ) as in

Section 3.5. Recall from Sections 3.4 and 3.5 that �b denotes the CAT(0) surface obtained inserting in
� a flat foliated annulus B(c) = c × [0, 1] at each isolated leaf c of 
, and 
b is the associated lamination
whose non-atomic transverse measure νb

i is obtained by extending νi with the transverse measure νi(c)dt
on [0, 1] for each foliated annulus B(c).

Our next goal is to define a R2-pseudometric
−→
d M on �̃b associated with M, that is, a pair of pseudo-

metrics (dM,i)i on �̃b. We first define the pieces which we will glue as outlined in Section 6.1. We denote
by �

′
b the open subsurface of �b corresponding to � ′, and denote by Eb its set of boundary geodesics

in �b. We denote by Ẽ b the set of their lifts to �̃b.

Definition 6.4. A piece of �̃b is the closure P̃ of a complementary component W̃ of Ẽ b in �̃b. We will
call such a piece

• a flat piece if W̃ projects in �
′
b, and

• a lamination piece otherwise.7

Example 6.5. If M is the mixed structure described in Example 5.5, the locally CAT(0) surface (�b, mb)
is obtained by endowing � with an hyperbolic metric and then gluing three flat cylinders Ci = [0, 1] × ci

to the hyperbolic surface � \ {c1, c2, c3}. The pieces in its universal cover �̃b have four types: flat pieces
isometric to the universal covers of the completion of � ′

1 and � ′
2 (up to now these pieces are endowed

with a complete hyperbolic metric with geodesic boundary), lamination pieces of annular type, isometric
to the universal cover of C1, namely to the Euclidean strip [0, 1] ×R⊂R

2, with measured geodesic
lamination equal to the vertical foliation with transverse measures ν1 = x1dx, ν2 = y1dx, and lamination
pieces isometric the universal cover of (� \ (� ′ ∪ c3)) ∪ C2 ∪ C3.

We now define a new pseudometric on each piece. Let i ∈ {1, 2}. On each lamination piece P̃ of �̃b,
we define dP̃

M,i as the restriction to P̃ of the pseudometric dλb
i
associated to the non-atomic measured lami-

nation λb
i := (
b, νb

i ). On each flat piece P̃ of �̃b we, instead, define the pseudometric dP̃
M,i as intersection

with the horizontal (resp. vertical) measured foliation of K. More precisely we consider the canonical
projection P̃ = W̃ → W̃c to the completion W̃c of W̃ with respect to the CAT(0) metric given by the flat
structure K, and we define the pseudometric dP̃

M,i as the pullback of the pseudo-distance dK,i introduced
in Section 5.1 through this projection. Note that the restriction of dP̃

M,i to any boundary geodesic of a
piece P̃ is always 0.

We define the pseudometric dM,i on �̃b as the gluing of the pseudometrics dP̃
M,i on the pieces P̃ ∈P(�̃b)

as in Section 6.1. We denote by

−→
d M = (dM,i)i

the corresponding R
2-pseudometric on �̃b, and by

dM := dM,1 + dM,2

the associated �1-pseudometric on �̃b. It follows from the construction that dM is the gluing of the
�1-pseudometrics dP̃

M = ∑
i dP̃

M,i on the pieces P̃ ∈P(�̃b).

7 Beware that the metric mb is hyperbolic on flat pieces.
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Definition 6.6. The R2-metric space XM associated with M is the quotient

XM := �̃b/dM

of �̃b by the �1-pseudometric dM, endowed with the R
2-metric induced by

−→
d M, that is, the pair of

pseudometrics induced by dM,i, i = 1, 2.

The action of � on �̃b induces an action of � on XM preserving the R2-metric
−→
d M.

Example 6.7. The pieces in the tree-graded R
2-space XM associated to the mixed structure M described

in Example 5.5 have 4 isometry types:

• flat pieces isometric to the completion of the universal cover of K1 \ {p1, p0, p0
′}.

• flat pieces isometric to the completion of the universal cover of K2 \ {p1, p2},
• closed segments of R2-length (x1, 0),
• R

2-simplicial trees of infinite valence, obtain by attaching, to the dual tree to the curve c3 in
the subsurface � \ � ′, a segment of R2-length (x2, y2) to the fixed points of the elements of �

corresponding to the curve c2.

Observe that, in particular, the tree associated to the lamination pieces are, in this example, not
minimal.

6.3. Basic properties of XM

In this section, we prove that XM is indeed tree-graded, that its induced R
2-length function corresponds

to the pair (λM,1, λM,2) of measured geodesic laminations associated with the mixed structure M, and we
discuss the isometry types of the pieces of XM.

Recall that we defined the laminations λM,i as the sum of two measured geodesic laminations on �

λM,i := λK,i + λi

where (λK,i)i=1,2 are the measured geodesic laminations supported in � ′ induced by the horizontal (resp.
vertical) foliation of the flat structure K and λi = (
, νi).

We denote by LXM,i , i = 1, 2 the length function of dM,i on XM, namely

LXM,i (γ ) := inf
x∈XM

dM,i(x, γ x).

We denote by π : �̃b → XM the canonical projection. The pieces of XM are the images XP̃ := π (̃P) in
XM of the pieces P̃ of �̃b. We denote by P(XM) the set of pieces of XM. When a lamination piece P̃ ⊂ �̃b

does not meet the lamination 
b, then the corresponding piece XP̃ is reduced to a point. We will call the
space (XM,

−→
d M = (dM,1, dM,2)) the tree-graded R

2-space dual to M.

Proposition 6.8.

(1) The R
2-metric space (XM,

−→
d M) is tree-graded with respect to P(XM).

(2) If P̃ is a lamination piece, (XP̃,
−→
d M) is isometric to the image of P̃ in theR2-tree T(

−→
λ ) := �b/db

λ

dual to the 2-measured geodesic lamination −→
λ . In particular XP̃ is then a R

2-tree.
(3) If P̃ is a flat piece, then XP̃ is isometric to the complete flat surface W̃c, the pseudomet-

rics dM,i = dK,i are the vertical/horizontal pseudometrics, and dM is the �1-metric dK (see
Section 5.1).

(4) For all γ ∈ �,

LXM,i (γ ) = i(λM,i, γ ) = LM,i(γ )
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Proof. The projection π : �̃b → XM sends each geodesic c̃ ∈ Ẽb to a point x̃c of XM.
We first prove (2) and (3). By construction, the piece XP̃ is the biggest Hausdorff quotient of P̃ with

respect to the �1-pseudometric dM, endowed with the quotient pseudometrics dM,i. As a result (3) holds.
To check (2) observe that if P̃ is a lamination piece, since dM,i is the restriction of dλb

i
, then dM is

the restriction of the pseudometric db
λ

induced by the measured lamination λb = (
b, νb
1 + νb

2 ) on �b,
and (XP̃, dM,1, dM,2) identifies with the image of P̃ in the R2-tree T(

−→
λ ) := �b/db

λ
dual to the 2-measured

geodesic lamination −→
λ (see Section 3.5).

We now prove (1). Since all pieces XP̃ are geodesic for the �1-metric, it follows easily that (XM, dM) is
geodesic (a geodesic between x and y is obtained by concatenating geodesics in the separating pieces).

We first prove (TG1), by showing that if two pieces XP̃, XP̃
′ meet, then XP̃ ∩ XP̃

′ = x̃c where c̃ is the
boundary component of P̃ separating P̃ from P̃′: we denote by x the image in XP̃ of a point x in P̃. Suppose
that x = y with y ∈ P̃′. Then

dM(x, y) = 0 =
k+1∑
j=0

d
P̃j
M (xj, xj+1) (6.1)

where (x0, . . . , xk+1) is a straight chain from x to y. Recall that this means that x0 = x, xk+1 = y and, for all
j = 1, . . . , k, the point xj belongs to the geodesic c̃j, where (̃cj)j=1,...,k is the ordered sequence of geodesics
in Ẽb separating x and y, and we denote by P̃j the piece containing xj and xj+1. Then c̃1 = c̃ and equation
(6.1) implies that dP̃0

M (x, x1) = 0 proving that x = x̃c = y.
We now verify (TG2). Consider a simple nontrivial geodesic triangle with vertices x, y, z in XM, and

lift its vertices to three points x, y, z in �̃b. If x, y, z are not in a common piece of �̃b, then there is a
geodesic c̃ in Ẽb separating one of the three points, say x, from the others. Then the corresponding point
x̃c in XM lies on each geodesic from x to y and on each geodesic from x to z in XM. Hence, either the
geodesic triangle is not simple or x̃c = x. In the second case, we can change representative and obtain
a geodesic triangle in �̃b with shorter lengths (for the CAT(0) distance). Since the elements in Ẽ b are
uniformly separated, the process terminates and shows that we can find preimages in the same piece.
We conclude proving (4). We have that LdM,i (γ ) = infx∈�̃b dM,i(x, γ x). Let x ∈ �̃b. Let c be the geodesic
segment from x to γ x in �̃b for the CAT(0) metric mb. It crosses the decomposing geodesics Ẽ b in a
straight chain (x0 = x, x1, . . . , xk+1 = γ x), hence

dM,i(x, γ x) =
k∑

j=0

d
P̃j
M,i(xj, xj+1) .

(see Section 6.1). Let JF be the set of j ∈ J = {0, . . . , k} such that P̃j is a flat piece and JL be the set of
j ∈ J such that P̃j is a lamination piece. Recall that the measured geodesic lamination on (�b, mb) cor-
responding to λi is λb

i = (
b, νb
i ). Denote by λb

K,i the measured geodesic lamination on (�b, mb) induced
by λK,i (which is included in the flat pieces).

As the geodesic lamination λb
i is supported on lamination pieces, we have

∑
j∈JL

d
P̃j
M,i(xj, xj+1) =

∑
j∈JL

dλb
i
(xj, xj+1)

=
∑
j∈J

dλb
i
(xj, xj+1)

= dλb
i
(x, γ x)

≥ i(λb
i , γ ) .
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Similarly, since for any x, y in (possibly different components of) the boundary ∂P̃ of a flat piece P̃ it
holds dP̃

M,i(x, y) = dλK,i (x, y), and the geodesic lamination λb
K,i is supported on flat pieces, we have∑

j∈JF

d
P̃j
M,i(xj, xj+1) =

∑
j∈J

dλb
K,i

(xj, xj+1)

= dλb
K,i

(x, γ x)

≥ i(λb
K,i, γ ).

Hence:

dM,i(x, γ x) ≥ i(λb
K,i, γ ) + i(λb

i , γ )

= i(λK,i, γ ) + i(λi, γ )

= i(λM,i, γ ).

If x is on an axis of γ in the CAT(0) surface (�̃b, mb), then there is equality.

7. Embeddings in products of trees

If X is a product X = X1 × · · · × Xn of metric spaces (Xi, di), the ith-factor pseudometric is the pseudo-
metric di(x, y) = di(xi, yi) obtained by pulling back the metric on Xi via the canonical projection. The
�1-metric on X is the metric given by d = ∑

i di.

Proposition 7.1. Consider a R
2-mixed structure M on � with R

2-length function −→
L , and a pair of

isometric actions of � on R-trees T1, T2 with length functions (LT1 , LT2 ) = −→
L . Let (XM, (d1, d2)) be the

tree-graded R
2-space associated with M. There is an equivariant embedding

f : XM 	→ T1 × T2

preserving each factor pseudometric di. In particular, f is isometric for the �1-metric d = d1 + d2.

Example 7.2. If M is a flat surface, equivalently � ′ = �, the associated tree-graded R
2-space is the

flat surface given by the universal cover M̃ of M. The map f gives an embedding of M̃ in any product
of trees with the correct length functions. Such embedding is isometric for the �1-metric, and bilipschitz
for the CAT(0) metric (compare [13, Example 4, Section 2.3]). Such embedding is never isometric for
the CAT(0) metric.

If, instead, M is a 2-lamination, namely in the cases in which � ′ = ∅, (XM, d) is a tree. The map f gives
an equivariant embedding of this tree in any product of trees that induce the correct length function. This
map is isometric if the product of trees is endowed with the �1-metric. Observe, however, that there are
laminations 
 that support mutually singular transverse measures. For these the image of the R

2-tree
will not be a geodesic subset of T1 × T2 if T1 × T2 is endowed with the CAT(0) metric. In general, when
T1 × T2 is endowed with the CAT(0) metric, it is possible to show that the embedding is isometric if and
only if all the laminations are homothetic.

Proof of Proposition 7.1. We first use rigidity of lengths in R-trees to reduce to the case where
each Ti is the tree T(λM,i) dual to the measured geodesic lamination λM,i on � associated with M: Let
T ′

i denote the minimal subtree of Ti invariant by �. The actions of � on the trees T ′
i and T(λM,i) are

minimal and have same length function, which belongs to ML. Hence there is an equivariant isometry
hi : T(λM,i)

∼→ T ′
i ⊂ Ti. Then the diagonal map h = (hi)i is an equivariant embedding

∏
i T(λM,i) → ∏

i Ti

preserving each factor pseudometric di.
We now construct the canonical map pi : XM → T(λM,i). We denote TM,i := XM/dM,i the biggest

Hausdorff quotient of XM with respect to the pseudometric dM,i and by pi : XM → TM,i the correspond-
ing projection. The tree TM,i can be identified with T(λM,i): since TM,i is tree-graded with R-trees pieces
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pi(XP̃) = P̃/dM,i, it is itself anR-tree. Since the action of � on �̃b is minimal, the action on TM,i is minimal
as well. The length function of this action is

LXM ,i = LdM,i = i(λM,i, ·)
In particular, by rigidity of length functions for actions on minimal trees, there is an equivariant isom-
etry TM,i

∼→ T(λM,i). Then the diagonal map p = (pi)i from XM to
∏

i T(λM,i) sends each pseudometric
dM,i on the factor pseudometric di, hence it takes the metric dM = ∑

i dM,i to the �1-metric d = ∑
i di on∏

i T(λM,i). The results follow taking the map f = h ◦ p.
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