
TPLP 23 (4): 918–932, 2023. c© The Author(s), 2023. Published by Cambridge University Press.

doi:10.1017/S1471068423000285 First published online 24 August 2023
918

Implementing Backjumping by Means of Exception
Handling∗

W�LODZIMIERZ DRABENT
Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland

(e-mail: drabent@ipipan.waw.pl)

submitted 4 June 2023; revised 25 June 2023; accepted 27 June 2023

Abstract

We discuss how to implement backjumping (or intelligent backtracking) in Prolog by using the
built-ins throw/1 and catch/3. We show that it is impossible in a general case, contrary to a
claim that “backjumping is exception handling.” We provide two solutions. One works for binary
programs; in a general case it imposes a restriction on where backjumping may originate. The
other restricts the class of backjump targets. We also discuss implementing backjumping by
using backtracking and the Prolog database. Additionally, we explain the semantics of Prolog
exception handling in the presence of coroutining.
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1 Introduction

In this note we first explain the incompatibility between backjumping (or intelligent back-

tracking) and the exception handling of Prolog. We show that in general it is impossible

to implement the former by the latter. Then show how to do this for some restricted

cases (Section 3). We present two approaches. The first one is applicable to a restricted

but broad class of cases, including binary programs with arbitrary backjumping. For non-

binary programs the restriction constrains from where the backjumping may originate. In

the second approach the class of available backjump targets is restricted, so the resulting

backjumping may only be an approximation of that intended. Section 4 presents an ex-

ample of each approach. The next section discusses implementing backjumping by means

of backtracking and the Prolog database. The report is concluded by a brief discussion

of the related work and conclusions (Section 6). In an appendix we explain the semantics

of Prolog exception handling in a presence of coroutining (also known as delays). The

main motivation for this work were opinions that exception handling was an ideal tool

to implement backjumping (Robbins et al . 2021).

Preliminaries. This paper employs the standard terminology and basic well-known no-

tions of logic programming (Apt 1997). So “atom” means atomic formula, and the nodes
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of SLD-trees are queries, that is sequences of atoms. Unless stated otherwise, we consider

LD-resolution, that is SLD-resolution under the Prolog selection rule. So we do not deal

with coroutining/delays. By a p-atom we mean an atom with the predicate symbol p.

Procedure p of a program P is the set of the clauses of P beginning with p. By an answer

(resp. computed answer) of a program P with a query Q we mean Qθ where θ is a correct

(computed) answer substitution for P and Q.

Now we formalize some concepts often seen as obvious. The rest of this section may be skipped
at the first reading, as it is only needed for formal aspects of few fragments of this paper.

Popular ways of explaining Prolog, like the Byrd box model (Byrd 1980), treat the atom
selected in a query as a procedure call. The issue of what is the execution of such atom is often
supposed to be obvious, and left unexplained. For instance the Prolog standard (Deransart et al .
1996) uses a notion “the execution of” but does not seem to define it (however some hint is
given in Fig. 4.5). Here we provide such a definition in terms of LD-trees, following the idea of
Drabent and Ma�luszyński (1988, Def. 5.1, 5.2).

Consider a (possibly infinite) LD-derivation D = Q0, Q1, . . . and a query Qi = A,B from D
(where A,B are sequences of atoms, and A is nonempty). The execution in D of (the occurrence
of) A in Qi is the part D′ of D consisting of those queries Qk (k ≥ i) which are of the form
Qk = A′, Bθ, and for i ≤ j < k, each query Qj is not an instance of B.

In other words, the execution D′ of A consists of the queries of D starting from Qi = A,B up
to the first query of the form Bθ, if such query exists. (So otherwise D′ contains Qi and all the
following queries.) If such query exists, the execution D′ = (A,B), . . . , (Bθ) is called successful.
We may assume that θ is the composition of the mgu’s used in the LD-derivation D′. Then Aθ
is the computed answer for A.

Now consider a query Ql = B′, A,B (with nonempty B′ and A) in D, and assume that D
contains a query Qj , l < j, which is an instance of A,B. Let Qi = (A,B)θ be the first such
query. Then by the execution in D of (the occurrence of) A in Ql we mean the execution in D
of (the occurrence of) Aθ in Qi.

Let Q = B′, A,B (with nonempty A) be a node in an LD-tree T . Consider the derivations that
are the branches of T containing Q. The execution of the occurrence A in Q in T (briefly, the
execution of A) is the subgraph of T consisting of the executions of A in Q in these derivations.
Note that if B′ is empty then the execution is a tree, otherwise it is a forest.

2 Backjumping and Prolog exception handling

In this section we present and compare backjumping and the Prolog exception handling.

2.1 Backjumping

A Prolog computation can be seen as a depth-first left-to-right traversal of an SLD-tree.

Each node with i children is visited i + 1 times (it is first entered from its parent and

then from each of its children). Moving from a node to its parent is called backtracking.

By backjumping we mean skipping a part of the traversal, by moving immediately from

a node to one of its non-immediate ancestors (called the backjumping target). Intelligent

backtracking (Bruynooghe and Pereira 1984) is backjumping in which it is known that

there are no successes in the omitted part of the SLD-tree.

Let us a have a more detailed look. Consider a node Q with k children Q1, . . . , Qk

(Figure 1). We may say that k backtrack points correspond to Q; backtracking from Qi

means arriving toQ at its i-th backtrack point. Obviously, this is followed by visitingQi+1

when i < k, and by backtracking to the parent of Q when i = k. Similarly, backjumping
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920 W. Drabent

Fig. 1. Backjumping to Q from the subtree S rooted in Qi (when i < k) is followed by visiting
Qi+1. For i = k the backjumping is followed by visiting the parent of Q.

Consider exception handling (implemented by making N to be catch(Q, s,H)). Exception s
raised in S (and not caught in S) results in skipping Qi+1, . . . , Qk and all their descendants.
Additionally, the LD-tree is extended by a subtree corresponding to executing the exception
handler H.

to Q from a node in the subtree rooted in Qi should arrive at the i-th backtrack point.

Thus such backjumping is followed by visiting Qi+1 when i < k, and the parent of Q

when i = k.

One may consider a generalization of backjumping, where not only a part of the subtree

rooted in Qi is skipped, but also the subtrees rooted in Qi+1, . . . , Qj (for some j ∈
{i+1, . . . , k}). We do not discuss such a generalization here.

2.2 Exception handling

Prolog provides an exception handling mechanism, consisting of built-in predicates

throw/1 and catch/3. Let us follow the Prolog standard and explain them in terms of

LD-trees. Assume that a catch-atom Ac = catch(Q , s ,Handler) is selected in a node N

of an LD-tree. This means the node is of the form N = Ac, N
′. It is required that Q and

Handler are queries. Informally, the execution of Ac means executing Q. More precisely,

node Ac, N
′ has a single child Q,N ′. A second child may however be created as a result

of exception handling.

An exception t is raised by invoking throw(t). Formally, the tree has a node Nt =

throw(t),N ′
t ; such node has no children. This is sometimes called throwing a ball t.

Visiting Nt starts a search along the path from Nt to the root. The search is for a

node Nc = catch(Q ′, s ′,Handler ′), N ′
c with one child such that

(a) a freshly renamed copy t′ of the ball t is unifiable with s′, with an mgu θ, and

(b′) “the ball is thrown during the execution of” Q′ (Deransart et al . 1996).

It is useful to provide a more formal wording for the latter (cf. Preliminaries, Section 1):

(b) no node between Nc and Nt (including Nt) is an instance of N ′
c (this means

that each of these nodes is of the form M,N ′
cσ, with a nonempty M).

The first (closest to Nt) such node Nc on the path is chosen, and a new child

(Handler ′,N ′
c)θ of Nc is added to the tree. The new child becomes the next visited node

of the tree. (It is an error if such node Nc is not found.)

2.3 Implementing backjumping

Prolog does not provide any way to directly implement backjumping. It may seem that ex-

ception handling is a suitable tool for this task. There is however an important difference.
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Backjumping to a query Q cannot be implemented by catch(Q, s,H), as this results in

arriving at the last backtrack point corresponding to Q (cf. Figure 1). All the unexplored

descendants of Q are omitted. (The same happens if we instead use catch(Q′, s,H), Q′′,
where Q = Q′, Q′′. Also, the omitted part of the tree cannot be explored by reconstruct-

ing it by the exception handler H, at least in the general case. Roughly speaking, the

handler may re-execute Q, but it does not have access to information making it possible

to skip the already visited children of Q.

This shows that backjumping to a node Q cannot be implemented by augmenting Q

with catch. In the next section we show how to obtain such backjumping by adding catch

(with fail as the handler) to each child of Q.

The scope of catch/3 is the reason of the main limitation; catch(Q , . . .) cannot intercept

an exception raised outside the execution of Q. Consider a query A,B and assume that

backjumping is to be performed from the execution of B to the execution of A. To

implement it by means of exception handling, catch has to appear in a clause used in the

execution of A. But then it cannot catch an exception raised in the execution of B.

This discussion shows that backjumping cannot be, in general, directly implemented

by means of Prolog exception handling.

We should also mention differences not related to implementing backjumping. In ex-

ception handling, after an exception is caught, the exception handler is activated. So

the search space is augmented. In backjumping there is nothing similar to an exception

handler; the search space is not modified. Also, in contrast to backjumping, exception

handling makes it possible to pass information (an arbitrary term) from the point where

the exception is raised to the one where it is caught. This is done by means of the

argument of throw/1.

3 Employing exception handling

This section introduces two restricted approaches to implement backjumping. Examples

are given in the next section. We consider Prolog without coroutining/delays.

3.1 Approach 1

Assume that we deal with a definite clause program P , which we want to execute with

backjumping. The target of backjumping is to be identified by a term id. So backjumping

is initiated by throw(id).

Assume that the target of backjumping is a node A,Q of the LD-tree, where A is an

atom. Assume that A,Q has k children, Q1, . . . , Qk. Let p be the predicate symbol of A

and

p(�t1)← B1.

· · ·
p(�tn)← Bn.

(1)

where k ≤ n, be the procedure p of program P (i.e. the clauses of P beginning with p).

Consider backjumping initiated by throw(id) in the subtree rooted in Qi. The subtree

should be abandoned, but the descendants of Qi+1, . . . , Qk should not. Thus we need to

restrict the exception handling to this subtree. A way to do this is to replace each Bj

by catch(Bj , id, fail). Then performing throw(id) while executing Bj results in failure of
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the clause body and backtracking to the next child of A,Q, as required. Assume that a

query btid(�t, Id) (bbackjump ttarget ididentifier) produces out of the arguments �t of p the

unique identifier of A,Q as the backjump target. Now, the backjumping is implemented

by a transformed procedure consisting of clauses

p(�tj)← btid(�tj , Id), catch(Bj , Id, fail). for j = 1, . . . , n (2)

(where Id is a variable).

Transforming a program in this way correctly implements backjumping, however with

an important limitation. Backjumping to a node p(�t ), Q must occur during the execution

of p(�t ). Otherwise the exception is not caught and the whole computation terminates

abnormally.

An important class of programs which satisfy this limitation are binary logic programs

(i.e. programs with at most one body atom in a clause). The approach presented here

works for such programs and arbitrary backjumping. It also works when each backjump

target is a node consisting of a single atom.

Sometimes (like in Example 2 below) it may be determined in advance that,

for some j, no exception will be caught by the catch/3 in (2). So in prac-

tice some clauses of (1) may remain unchanged (or a choice between Bj and

catch(Bj , Id , fail) may be made dynamically, for example by modifying the body of (2)

into btid(�tj , Id)→ catch(Bj , Id, fail) ;Bj).

Approach 1a. Here we present a variant of Approach 1. Roughly speaking, in the former

approach control is transferred to the next clause due to failure of a clause body. So

catching an exception causes an explicit failure. Here control is transferred to the next

clause by means of an exception (hence standard backtracking is to be implemented by

means of exceptions). To simplify the presentation we assume that in (1) all the clause

heads are the same, �t1 = · · · = �tn = �t.

Assume first that n = 2. Backjumping equivalent to that of Approach 1 can be imple-

mented by

p(�t )← btid(�t, Id), catch( (B1 ; throw(Id)),

Id,

catch(B2, Id, fail) ).

(3)

Invocation of B2 is placed in the exception handler, so we additionally raise an exception

when B1 (the first clause body) fails. For arbitrary n, the transformed procedure (1) is:

p(�t )← btid(�t, Id),

catch( (B1 ; throw(Id)),

Id,

catch( (B2 ; throw(Id)),

Id,

. . .

catch( (Bn−1 ; throw(Id)),

Id,

catch(Bn, Id, fail ) ) · · · )).

(4)

Generalizing this transformation to clauses with different heads is rather obvious. Note

that in this approach it is possible to augment backjumping by passing information (from

https://doi.org/10.1017/S1471068423000285 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000285


Implementing backjumping 923

Fig. 2. Dotted lines connect an atom sequence with a query from its execution. N,N ′ are of
the form N = A, . . . , (B1, Q0)θρ, N ′ = throw(id), . . . , Q0θρϕ.

the place where the backjump originates to the backjump target).1 Such augmenting is

impossible in Approach 1 and Approach 2 below.

3.2 Approach 2, approximate backjumping

We have shown how to implement backjumping to an LD-tree node N = A,Q (with

atomic A) from within the execution of A. It remains to discuss backjumping originating

in the execution of Q.

Assume that the initial query is atomic; dealing with arbitrary initial queries is similar.

In such case, the program contains a clause H←B0, B1 (where B0, B1 are nonempty),

such that, speaking informally, the backjumping is from within the execution of B1, and

its target N is within the execution of B0.

Let us prove that such clause exists. Assume that the backjumping target is N = A,Q (A is an
atom), and that the backjumping originates in a node N ′ in the execution of Q in N (Figure 2).
Let D be a branch of the LD-tree containing N and N ′.

Obviously N occurs in the execution in D of A in N , and N ′ does not. As the root of the
tree is atomic, there exist in D a node N0 and its child N1 such that N and N ′ (i) occur in the
execution in D of a single atom A0 in N0 and (ii) do not occur in the execution in D of a single
atom in N1. Note that A0 is the first atom of N0 (otherwise (ii) does not hold). The two nodes
are of the form N0 = A0, Q0 and N1 = (Q′, Q0)θ, and a clause H ← Q′ was used to obtain N1.

Now Q′ can be split as Q′ = B0, B1 (hence N1 = (B0, B1, Q)θ), so that N occurs in the
execution of B0θ in N1, and N ′ occurs in the execution of B1θ in N1. So H ← B0, B1 has the
required property.

We are going to implement backjumping from N ′ to the last node N ′′ of the execution of
B0θ in N1. To make N ′′ as close as possible to N , one should choose B0, B1 so that N is in the
execution of the last atom of B0θ.

As discussed in Section 2.3, such backjumping (from within the execution of B1 to a

target in the execution of B0) cannot be implemented by means of throw/1 and catch/3.

What can be done is to force B1 to fail when an exception is thrown. This means, speaking

informally, backjumping to the success of B0, instead of the original target N . This in a

sense approximates backjumping to N . In some cases such shorter backjumping may still

be useful. It may exclude from the search space a major part of what would be excluded

by backjumping to N .

1 To pass a term t, one may choose the backjump target identifier to be f(Xi) for clause i. Then
performing throw(f(t)) while executing Bi results in binding Xi to t when the exception is caught.
This makes t available in those bodies Bi+1, . . . , Bn that contain Xi. For example for n = 2 instead of
the body of (3) we obtain catch( (B1 ; throw(f (nobj ))), f (X1 ), catch(B2 , f (X2 ), fail) ); constant nobj
(for “no backjumping”) is passed when standard backtracking takes place.
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The success of B0 (formally of B0θ) is the topmost descendant of N of the form

N ′′ = (B1, Q0)θρψ (here θ, ρ, Q0, N
′, N ′′ are as in Figure 2 and the proof above). Node

N ′′ appears in the tree branch between N and node N ′ that originates the backjump.

To catch the exception at N ′′ we modify the program, so that the instance B1θρψ of

B1 in node N ′′ is replaced by catch(B1θρψ, id, fail). (The resulting backjumping may be

understood as arriving to the last backtrack point of N ′′, or – due to the handler fail –

to the parent of N ′′.) To obtain this, the clause

H ← B0, B1 is transformed to H ← B0, btid(. . . , Id), catch(B1, Id, fail)

where btid, as previously, is used to obtain the unique identifier for the backjump target.

4 Examples

We apply the approaches introduced above to a simple program, a naive SAT solver. It

uses the representation of clauses proposed by Howe and King (2012). (Note that we deal

here with two kinds of clauses – those of the program, and the propositional clauses of

a SAT problem.) A conjunction of clauses is represented as a list of (the representations

of) clauses. A clause is represented as a list of (the representations of) literals. A positive

literal is represented as a pair true-X and a negative one as false-X, where the Prolog

variable represents a propositional variable. For instance a formula (x∨¬y∨z)∧ (¬x∨v)

is represented as [[true-X,false-Y,true-Z],[false-X,true-V]]. In what follows we

do not distinguish literals, clauses, etc from their representations.

Thus solving a SAT problem for a conjunction of clauses sat means instantiating the

variables of sat in such way that each of the lists contains an element of the form t-t.

This can be done by a program P1:

sat_cl( [Pol-Pol|Pairs] ).

sat_cl( [H|Pairs] ) :- sat_cl( Pairs ).

sat_cnf( [] ).

sat_cnf( [Clause|Clauses] ) :-

sat_cl( Clause ), sat_cnf( Clauses ).

and a query sat cnf (sat). See the paper by Drabent (2018, Section 3) for further discus-

sion and a formal treatment of the program.

The examples below add backjumping to program P1. They are not intended to provide

a correct SAT solver, their role is only to illustrate Approaches 2 and 1. In the examples,

the backjumping is performed after a failure of sat cl(cl) (where cl is the representation

of a partly instantiated clause). The intended backjumping target is the last point where

a variable from clause cl was assigned a value.

Note that such backjumping does not correctly implement intelligent backtracking, some
answers are lost. For example for (x ∨ y) ∧ (¬z ∨ z) ∧ (¬x ∨ ¬y) ∧ (¬x ∨ y ∨ z) no solution with
z being true is found. An explanation is that, speaking informally, backjumping from the last
clause (with x, y, z instantiated to true, false, false or to true, false, false) arrives to the
previous one (where y or x was set), this causes backjumping to the first clause.

Example 1

Here we employ Approach 2 to program P1. Speaking informally, the required back-

jumping originates from within sat cnf (Clauses) in the last clause of the program,
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and its target is in sat cl(Clause). We approximate this backjumping by a failure of

sat cnf . (Note that in this case the approximation is good, the intended target is a

node of the form sat cl([v-V |t]), sat cnf (t′) and we implement backjumping to its child

sat cnf (t′{V/v}).)
We augment the values of variables; the value of a variable is going to be of the form

(l, v), where l is a number (the level of the variable) and v a logical value true or false.

The level shows at which recursion depth of sat cnf the value was assigned. The levels

will be used as identifiers for backjump targets. In such setting, a substitution θ assigning

values to variables makes a SAT problem sat satisfied when each member of list satθ

contains a pair of the form v-(l, v). This leads to transforming the first clause of P1 to

sat cl([Pol-(_,Pol)|Pairs ]).

We transform P1 into a program P2 which takes levels into account. We add the current

level as the second argument of sat cnf and of sat cl . A third argument is added to sat cl ;

it is used in finding the highest variable level in a clause. The declarative semantics of

the new program is similar to that of P1; the answers of P2 are as follows. If the first

argument of sat cl is a list then it has a member of the form t-(t′, t). Also, this condition

is satisfied by each element of the list that is the first argument of sat cnf .

Operationally, an invariant will be maintained that, whenever sat cl(cl , l , hl) is selected

in LD-resolution, cl is a list and l and hl are numbers, l > hl and l is greater than any

number occurring in cl. List cl is the not yet processed fragment of a clause cl0 (possibly

instantiated), l is the current level, and hl is the highest level of those variables that occur

in the already processed part of cl0 and have been bound to some values at previous levels;

hl = −1 when there is no such variable. In case of failure of sat cl(cl , l , hl), an exception

will be raised with the ball being the maximum of hl and the levels of the variables

occurring in cl (provided the maximum is ≥ 0).

Checking the value already assigned to a variable must be treated differently from

assigning a value to an unbound variable (as its level is set only in the latter case). This

leads to two clauses playing the role of the first clause of P1. So procedure sat cl of P1

is transformed into the following procedure of P2:

sat_cl( [Pol-V|_Pairs], _L, _HL ) :-

nonvar(V), V=(_,Pol).
(5)

sat_cl( [Pol-V|_Pairs], L, _HL ) :-

var(V), V=(L,Pol).
(6)

sat_cl( [_-V|Pairs], L, HL ) :-

new_highest( V, HL, HLnew ),

sat_cl( Pairs, L, HLnew ).

(7)

Predicate new highest takes care of updating the highest level of the variables from

the already processed part of the clause.

% new highest(var , h, hnew) – if var is a Prolog variable then h = hnew
% otherwise var = (l , v) and hnew = max(h, l)

new_highest( V, H, H ) :- var( V ). (8)
new_highest( V, H, H ) :- nonvar( V ), V=(L,_Value), H>=L. (9)
new_highest( V, H, L ) :- nonvar( V ), V=(L,_Value), H<L. (10)
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Procedure sat cnf is transformed into

sat_cnf( [], _L ). (11)

sat_cnf( [Clause|Clauses], L ) :-

sat_cl( Clause, L, -1 ),

Lnew is L+1,

sat_cnf( Clauses, Lnew ).

(12)

Program P2 consists of clauses (5)–(12). An initial query sat cnf (sat, 0) results in

checking the satisfiability of a conjunction of clauses sat.

Now we add backjumping to P2. The backjumping has to be triggered instead of a

failure of sat cl . The latter happens when the first argument of sat cl is [ ]. The new

program P3 contains the procedure sat cl of P2, and additionally a clause

sat_cl( [], _, HL ) :- HL>=0, throw( HL ). (13)

triggering a backjump. When HL < 0 then there is no target for backjumping, and

standard backtracking is performed.

The procedure sat cnf of the new program P3, is constructed out of that of P2 by

transforming clause (12) as described in Approach 2:

sat_cnf( [Clause|Clauses], L ) :-

sat_cl( Clause, L, -1 ),

Lnew is L+1,

catch( sat_cnf( Clauses, Lnew ),

L,

fail

).

(14)

So backjumping related to the variable with level l, implemented as throw(l), arrives

to an instance of clause (14) where L is l. The whole catch(. . .) fails, and the control

backtracks to the invocation of sat cl that assigned the variable. (An additional predicate

btid was not needed, as L is the unique identifier.)

Now program P3 consists of clauses (5)–(11) and (13)–(14). To avoid leaving un-

necessary backtrack points in some Prolog systems, each group of clauses with var/1

and nonvar/1 (clause (5) with (6), and (8) with (9) and (10)) may be replaced

by a single clause employing (var(V )→ . . . ; . . .) and, in the second case additionally

(H<L→ . . . ; . . .). To simplify a bit the initial queries, a top level predicate may be

added, defined by a clause sat(Clauses) :- sat_cnf(Clauses,0).

Example 2

Here we transform P1 from Example 1 to a binary program and apply Approach 1. The

binary program Pb is

sat_b( [] ).

sat_b( [[Pol-Pol|_]|Clauses] ) :- sat_b( Clauses ).

sat_b( [[_|Pairs]|Clauses] ) :- sat_b( [Pairs|Clauses] ).
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Note that in Example 1 the unprocessed part of the current clause was an argument of

sat cl , now it is the head of the argument of sat b. In what follows we do not explain

some details which are as in the previous example.

As previously we introduce levels, and represent a value of a variable by (l, v), where

l is a level and v a logical value. As previously, we first transform Pb into Pb2 dealing

with levels, and then add backjumping to Pb2. We add two arguments to sat b, they are

the same as the arguments added to sat cl in Example 1. The declarative semantics is

similar, the first argument of sat b (in an answer of Pb2) is as the first argument of sat cnf

in P2. An invariant similar to that of Example 1 will be maintained by the operational

semantics. Whenever sat b(cls , l , hl) is selected, l and hl are numbers, l > hl and l is

greater than any number occurring in cls . List cls is a conjunction of clauses (possibly

instantiated), and its head, say cl, is the not yet processed fragment of the current clause,

say cl0; number l is the current level, and hl is the highest level of variables from the

already processed part of cl0. Now program Pb2 is:

sat_b( [], _L, _HL ). (15)
sat_b( [[Pol-V|_] | Clauses], L, _HL ) :- nonvar(V),

V=(_,Pol), Lnew is L+1,

sat_b( Clauses, Lnew, -1 ).

(16)

sat_b( [[Pol-V|_] | Clauses], L, _HL ) :- var(V),

V=(L,Pol), Lnew is L+1,

sat_b( Clauses, Lnew, -1 ).

(17)

sat_b( [[_-V|Pairs] | Clauses], L, HL ) :-

Lnew is L+1,

new_highest( V, HL, HLnew ),

sat_b( [Pairs | Clauses], Lnew, HLnew ).

(18)

Procedure new highest/3 is the same as in the previous example. Program Pb2 with a

query sat b(sat, 0,−1) checks satisfiability of the conjunction of clauses sat.

Now we add backjumping to Pb2. Approach 1 is applicable, as each backjump target of

interest consists of a single atom sat b(. . .). As previously, backjumping originates when

an empty clause is encountered:

sat_b( [[] | _Clauses], _L, HL ) :- HL>=0, throw( HL ). (19)

Let us discuss backjump targets. Speaking informally, we backjump to a place where a

variable obtained a value; this happens only in clause (17). So only this clause has to be

modified to implement backjump target. For a proof, assume that the nodes of an LD-tree

satisfy the invariant. Consider the descendants of a node N = sat b(cls , l , hl) obtained

by first resolving N with clause (16) or (18). A ball thrown from such a descendant N2 is

not l.2 So (16), (18) transformed to the form (2) will never catch a ball, and transforming

them is unnecessary.

2 Consider a node N = sat b(cls, l, hl) and its closest descendant N ′ of the form sat b(. . .). So N ′ =
sat b(. . . , l+1 , . . .). If a number i occurs in a node between N and N ′, or in N ′, then i = l+1 or i
occurs in N . By induction, if i occurs in a descendant of N then i occurs in N or i > l. Additionally, if
N ′ was obtained by first resolving N with (16) or (18), then N ′ does not contain l. Thus no descendant
of N ′ contains l.
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Out of (17) we obtain:

sat_b( [[Pol-V|_] | Clauses], L, _HL ) :-

catch( ( var(V), V=(L,Pol), Lnew is L+1,

sat_b(Clauses, Lnew, -1)

),

L,

fail

).

(20)

The final program Pb3 consists of clauses (15), (16), (20), (18), (19), and (8)–(10).

In (20), the first atom var(V ) from the body of (17) can be moved outside of catch, trans-
forming the body of (20) to var(V ), catch(. . .). (This is because var(V ) is deterministic and
not involved in backjumping.) Now, similarly as in the previous example, some backtrack
points may be avoided by replacing clauses (20) and (16) by a single clause with the body
(var(V)->V=(L,Pol);V=(_,Pol)), Lnew is L+1, sat_b(Clauses,Lnew,-1).

Let us also mention that applying Approach 1a to Pb2 results in adding clause (19)

and replacing clauses (16)–(18) by

sat_b( [[Pol-V|Pairs] | Clauses], L, HL ) :-

catch( (nonvar(V), V=(_,Pol), Lnew is L+1, sat_b(Clauses, Lnew, -1)

; throw(L)

),

L,

catch( (var(V), V=(L,Pol), Lnew is L+1, sat_b(Clauses, Lnew, -1)

; throw(L)

),

L,

catch( (Lnew is L+1, new_highest(V, HL, HLnew),

sat_b([Pairs|Clauses], Lnew, HLnew)

; throw(L)

),

L,

fail

) ) ).

5 Simulating backjumping by backtracking

This section complements the current paper by presenting an approach not based on ex-

ception handling. We discuss simulating backjumping by means of Prolog backtracking,

as suggested by Bruynooghe (2004). A backjump is initiated by a failure preceded by

depositing in the Prolog database an identifier of the backjump target. At each back-

tracking step, the database is queried to check if backjumping is being performed and if

its target is reached; further backtracking is caused if necessary. This is done by some

extra code placed at the beginning of the body of each clause involved in backjumping.

(In the presented example (Bruynooghe 2004), there is only one such clause.)

The paper by Bruynooghe is focused on a single example, here we make it explicit how

to implement the idea in a general case. Let us introduce a predicate catch/1, to deal with

backtracking that simulates backjumping. The role of catch(t) is to succeed immediately,

unless during backjumping. In the latter case catch(t) fails if t is not unifiable with

(the identifier of) the backjumping target. In this way the backjumping is continued.
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Otherwise it removes the target from the database and succeeds (instantiating t in the

obvious way). This means completing the backjump.

We can use assert(target(t ′)), fail to cause a backjump, and define

catch(Id) ← target(_)→ retract(target(Id)) % within backjumping

; true % no backjumping

Query retract(target(t)) fails when t is not unifiable with the recorded target t′. Otherwise

it succeeds and removes the database item, in this way indicating the end of the backjump.

To maintain such simulated backjumping, we convert each clause p(�t ) ← B of the

program into

p(�t )← btid(�t, Id), catch(Id), B. (21)

where btid/2 is as in Section 3. Let us present an informal explanation. Note first that if

the database is empty then the behaviour of (21) does not differ from that of the original

clause. Assume now that backjumping has been initiated, so target(t′) is asserted and

backtracking has started. At each backtrack point, a clause of the form (21) is involved.

If catch finds that the backjumping target is reached, B is executed. Otherwise catch

fails, and the simulated backjump continues.

Often for many clauses of the program it is known that catch(Id) in (21) will not catch

any backjump. In such case the clause can be simplified to

p(�t )← \+(target(_)), B. (22)

Note that there are no restrictions in this approach on the origin or target of back-

jumping, in contrast to those discussed in Section 3.

6 Final comments

Related work. For the approach of Bruynooghe (2004), see the previous section. Robbins

et al . (2021) do not present any general approach, but they show a sophisticated example

of using Prolog exception handling to implement backjumping. (The main example is

preceded by a simple introductory one.) The program is a SAT solver with conflict-

driven clause learning. A learned clause determines the target of a backjump. Note that

the issue dealt with is not exactly backjumping, understood as in Section 2. In the SAT

solver, not only a fragment of the SLD-tree is to be skipped, but additionally the tree

has to be extended, as a new clause is added to the SAT problem.

The program employs Prolog coroutining in a fundamental way. It uses exception

handling also to deal with plain backtracking. It keeps the learned clauses in the Prolog

database, to preserve them during backjumping. The program is rather complicated;

it seems impossible to view it as some initial program with added backjumping. To

understand it one has to reason about the details of the operational semantics. This

is not easy, due to sophisticated interplay of coroutining and exception handling. (The

involved semantic issues are discussed here in Appendix A.)

That paper does not propose any general way of adding backjumping to logic programs.

The difference between backjumping and Prolog exception handling discussed here in
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Section 2 is not noticed.3 We cannot agree with the claims “backjumping is exception

handling” and that “catch and throw [provide] exactly what is required for programming

backjumping” (Robbins et al . 2021, the title, and pp. 142–143).

Conclusions. The subject of this paper is adding backjumping to logic programs. We dis-

cussed the differences between backjumping and Prolog exception handling, and showed

that implementing the former by the latter is impossible in a general case (Section 2.3).

We proposed two approaches to such implementation. The first approach imposes cer-

tain restrictions on where backjumping can be started. The second one – on the target of

backjumping. The restrictions seem not severe. The first approach is applicable, among

others, to binary programs with arbitrary backjumping. For the second approach, the

presented example shows that sometimes the difference between the required and the

actual target may be unimportant. As every program can be transformed to a binary

one (Maher 1988; Tarau and Boyer 1990), the first approach is indirectly applicable to

all cases.
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Appendix A Exception handling in the presence of coroutining

In this paper we considered Prolog without coroutining. Coroutining, also known as

delays, is a particular way of modifying the Prolog selection rule. The first atom of the

query may not be selected (we say that it is delayed, or blocked). The Prolog built-ins

to deal with delays are when/2, freeze/2 (and block declarations of SICStus).

The behaviour of exception handling combined with delays seems far from obvious.

Programs using both these features, like that of Robbins et al . (2021), may be difficult

to understand. Explanations are difficult to find. Delays are outside of the scope of the

Prolog standard. So it should be useful to provide a formal description. For this we first

describe the Prolog coroutining, in terms of SLD-resolution.

Semantics of coroutining. This description is restricted to the built-in when/2. The other

constructs modifying the selection rule can be expressed in terms of when/2.

A query when(C ,Q) blocks the query Q until the condition C is true. An example

condition is nonvar(X), it blocks Q until X is bound to a non-variable term. For the

possible form of the condition, we refer the reader to Prolog manuals.

The nodes of SLD-trees are queries; queries are, as usual, sequences of atoms. However

in addition to atoms of the underlying logical language, atoms of the form when(C ,Q)

can be used. (Note that this is a recursive definition, as Q is a query.) At the begin-

ning of a query there may appear some when-atoms that are known to be blocked. We

separate them by symbol & from the rest of the query, and we call them the blocked

part (or delayed part) of the query. We may skip & when the blocked part is empty.

The rest of the query is its active part. An invariant will be maintained that in a query

when(C1 ,Q1 ), . . . ,when(Cn ,Qn)&Q each condition Ci (1 ≤ i ≤ n) is not satisfied.

The selection rule of SLD-resolution selects in each query the first atom after &, i.e.

the first atom of the active part of a query. The atom will be called the selected atom of

the query. Now we are ready to describe a resolution step.

Definition 1

A successor Q′ of a query Q = D&A,Q, where A is the selected atom, is obtained by an

extension of an SLD-resolution step as follows.

1. If A is when(C ,Q ′) then

(a) if condition C is satisfied then Q′ is D&Q′, Q,

(b) otherwise Q′ is D,A&Q,

2. If A is not a when-atom then

(a) a standard SLD-resolution step is performed (unification of A with a clause

head, replacing A with the clause body B, applying the mgu to the resulting

query). This produces Q1 = (D&B,Q)θ.

(b) Let Dunbl be those when-atoms from Dθ whose conditions are true, and D′

be those whose conditions are false. Now Q′ is D′&Dunbl, Bθ,Qθ.

In this way we defined the notions of SLD-derivation and SLD-tree for Prolog in the

presence of coroutining. Note that the order of elements of Dunbl is not specified. So we

do not specify the order of unblocking when several queries are unblocked in the same
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resolution step. Such details are not described by the documentation of Prolog systems.

(SWI-Prolog seems to preserve in D′ and in Dunbl the order of atoms from D.)

Let us define (similarly as in Section 1) the execution of a query Q = D&A,Q (in an

SLD-derivation D) to be the part D′ of D consisting of Q and the following queries of

the form D′&Q′, Qθ, up to the first query of the form D′&Qθ, if such query exists. If the

last query of D′ is D′&Qθ (i.e. D′ is successful) and θ is the composition of the mgu’s

used in D′, then Aθ will be called a pseudo-answer for A (in D′). The Prolog debugger

displays such pseudo-answer at the Exit port corresponding to the Call port for A. If

D,Q are empty and Q = A is the initial query, then Prolog displays (in the standard

encoded form) a pseudo-answer Aθ, augmented with D′.

Semantics of exception handling. Now we can specify the semantics of Prolog exception

handling in the presence of delays, as described in Def. 1. The following modifications to

the description of Section 2.2 are sufficient.

• We consider Ac = catch(Q , s ,Handler) selected in a node D&Ac, N
′; its child is

D&Q,N ′.
• The node raising the exception is Nt = Dt&throw(t),N ′

t .

• The search is for a node Nc = D′&catch(Q ′, s ′,Handler ′), N ′
c.

• Condition (b) is modified to

(b) no node between Nc and Nt (including Nt) is of the form D′′&N ′
cθ.
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