COMMUTATORS OF MATRICES WITH PRESCRIBED DETERMINANT

R. C. THOMPSON

1. Introduction. Let K be a commutative field, let $G L(n, K)$ be the multiplicative group of all non-singular $n \times n$ matrices with elements from K, and let $\operatorname{SL}(n, K)$ be the subgroup of $G \mathrm{~L}(n, K)$ consisting of all matrices in $G \mathrm{~L}(n, K)$ with determinant one. We denote the determinant of matrix A by $|A|$, the identity matrix by I_{n}, the companion matrix of polynomial $p(\lambda)$ by $C(p(\lambda))$, and the transpose of A by A^{T}. The multiplicative group of nonzero elements in K is denoted by K^{*}. We let GF $\left(p^{n}\right)$ denote the finite field having p^{n} elements.

The goal of this paper is to prove Theorem 1.
Theorem 1. Let $x, y \in K^{*}$ and let $A \in \operatorname{SL}(n, K)$. Then $X, Y \in \operatorname{GL}(n, K)$ exist such that

$$
\begin{equation*}
A=X Y X^{-1} Y^{-1} \tag{1}
\end{equation*}
$$

with

$$
\begin{equation*}
|X|=x, \quad|Y|=y \tag{2}
\end{equation*}
$$

unless: (i) $n=2, K$ is $\mathrm{GF}(2)$, or $\mathrm{GF}(3), x=y=1$, and A is similar within GL(2,K) to $C\left((\lambda \pm 1)^{2}\right)$; or (ii) $A=f I_{n}$ where f has order n in K^{*} and K has infinitely many elements.

The cases (i) and (ii) are genuinely exceptional. In case (i) the matrices $C\left((\lambda \pm 1)^{2}\right)$ do not lie in the commutator group of SL $(2, K)$. Whether (1) and (2) possess a solution $X, Y \in G L(n, K)$ in case (ii) depends very much on the field K. In Theorems 2 and 3 and their corollaries we produce criteria that can be used to determine the solvability of (1) and (2) in case (ii).

Theorem 1, in the case $x=y=1$, was the result obtained in $(\mathbf{1} ; \mathbf{2} ; \mathbf{3})$. The methods used to prove Theorem 1 are extensions of the methods of $(\mathbf{1} ; \mathbf{2})$. It does not, however, appear to be the case that Theorem 1 follows from the results of $(\mathbf{1} ; \mathbf{2} ; \mathbf{3})$. Without further explanation we use notation, terminology, and results from (1; 2; 3).
2. The scalar case. Let $f \in K^{*}$ have order n and let $A=f I_{n}$. Suppose (1) and (2) hold. Let $x_{1}=(-1)^{n-1} x, y_{1}=(-1)^{n-1} y$. From (1) we get

The preparation of this paper was supported in part by the U.S. Air Force under Contract 698-65.
$f Y=X Y X^{-1}$. Let ξ be an eigenvalue of Y in some extension field of K. Then $f \xi$ is an eigenvalue of $f Y$, hence of Y also as $f Y$ is similar to Y. Thus $\xi, f \xi, \ldots, f^{n-1} \xi$ are all eigenvalues of Y. Since f has order n and $\xi \neq 0$, these eigenvalues are distinct and therefore are all the eigenvalues of Y. Thus Y must be non-derogatory and is therefore similar within $\mathrm{GL}(n, K)$ to the companion matrix of its characteristic polynomial. Note that, if n is even, $f^{n(n-1) / 2}=\left(f^{n / 2}\right)^{n-1}=(-1)^{n-1}$; and if n is odd, $f^{n(n-1) / 2}=\left(f^{n}\right)^{(n-1) / 2}=1=(-1)^{n-1}$. Multiplying together the eigenvalues of Y we find that

$$
|Y|=(-1)^{n-1} y_{1}=(-1)^{n-1} \xi^{n}
$$

Thus $\xi^{n}=y_{1}$ and so each eigenvalue of Y is a zero of the polynomial $\lambda^{n}-y_{1}$. Consequently $\lambda^{n}-y_{1}$ is the characteristic polynomial of Y, and so

$$
S Y S^{-1}=C\left(\lambda^{n}-y_{1}\right)
$$

for some $S \in \operatorname{GL}(n, K)$. Now from (1) we get

$$
f I_{n}=\left(S X S^{-1}\right)\left(S Y S^{-1}\right)\left(S X S^{-1}\right)^{-1}\left(S Y S^{-1}\right)^{-1}
$$

and so, after a change of notation, we may assume that $Y=C\left(\lambda^{n}-y_{1}\right)$. Let

$$
\begin{equation*}
\Delta=\left(f^{n-1}\right) \dot{+}\left(f^{n-2}\right) \dot{+} \ldots \dot{+}(f) \dot{+}(1) \tag{3}
\end{equation*}
$$

Then $|\Delta|=(-1)^{n-1}$ and $f Y=\Delta Y \Delta^{-1}$. So (1) becomes $\Delta Y \Delta^{-1}=X Y X^{-1}$ and thus $Z=\Delta^{-1} X$ commutes with Y. Conversely, if for any non-singular Z commuting with Y we put $X=\Delta Z$, then $f I_{n}=X Y X^{-1} Y^{-1}$. Since Y is non-derogatory, the only matrices commuting with Y are polynomials in Y. This completes the proof of Theorem 2.
Theorem 2. Let $f \in K^{*}$ have order n. Let $y \in K^{*}$, and put $y_{1}=(-1)^{n-1} y$. Then all solutions of

$$
\begin{equation*}
f I_{n}=X Y X^{-1} Y^{-1} \tag{4}
\end{equation*}
$$

with $|Y|=y$ are given by

$$
\begin{align*}
& Y=S C\left(\lambda^{n}-y_{1}\right) S^{-1} \\
& X=S \Delta\left(\sum_{i=0}^{n-1} z_{i} C\left(\lambda^{n}-y_{1}\right)^{i}\right) S^{-1} \tag{5}
\end{align*}
$$

where $z_{0}, z_{1}, \ldots, z_{n-1}$ are arbitrary elements of K (such that X is non-singular), S is an arbitrary element of $\mathrm{GL}(n, K)$, and Δ is defined by (3).

Corollary 1. Let $x_{1} \in K^{*}$. The necessary and sufficient condition that (4) have a solution $X, Y \in \operatorname{GL}(n, K)$ with $|X|=(-1)^{n-1} x_{1},|Y|=(-1)^{n-1} y_{1}$ is that the polynomial equation

$$
\begin{equation*}
\left|\sum_{i=0}^{n-1} z_{i} C\left(\lambda^{n}-y_{1}\right)^{i}\right|=x_{1} \tag{6}
\end{equation*}
$$

have a solution $z_{0}, z_{1}, \ldots, z_{n-1} \in K$.

Corollary 2. (i) Let y be fixed in K^{*}. The set of all $x_{1} \in K^{*}$ such that (4) has a solution $X, Y \in G L(n, K)$ with $|X|=(-1)^{n-1} x_{1},|Y|=y$ forms a multiplicative group G_{y} in K^{*} containing y and z^{n} for each $z \in K^{*}$. (ii) Let x be fixed in K^{*}. The set of all $y_{1} \in K^{*}$ such that (4) has a solution $X, Y \in G L(n, K)$ with $|X|=x,|Y|=(-1)^{n-1} y_{1}$ forms a multiplicative group H_{x} in K^{*} containing x and z^{n} for each $z \in K^{*}$.

Proofs. Corollary 1 is clear from (5). Corollary 2(i) is also immediate since all X are given by $X=S \Delta Z S^{-1}$ where Z runs over the multiplicative group of matrices in GL (n, K) commuting with $C\left(\lambda^{n}-y_{1}\right)$, with $y_{1}=(-1)^{n-1} y$. If we put $Z=C\left(\lambda^{n}-y_{1}\right)$ or $Z=z I_{n}$ we find that $|Z|=y$ or $|Z|=z^{n}$. This proves (i). We may deduce (ii) from (i) by noting that (4) holds if and only if $f I_{n}=Y^{-1} X Y X^{-1}$ holds, since from (4), we get

$$
f I_{n}=Y^{-1}\left(f I_{n}\right) Y=Y^{-1}\left(X Y X^{-1} Y^{-1}\right) Y=Y^{-1} X Y X^{-1}
$$

Theorem 3. Let $f \in K^{*}$ have order n. Let $m \mid n$ and let $x, \gamma \in K^{*}$. Then (4) has a solution $X, Y \in \mathrm{GL}(n, K)$ with

$$
\begin{equation*}
|X|=(-1)^{n-1} x, \quad|Y|=(-1)^{n-1} \gamma^{n / m} \tag{7}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
f^{n / m} T_{m}=X Y X^{-1} Y^{-1} \tag{8}
\end{equation*}
$$

has a solution $X, Y \in \operatorname{GL}(m, K)$ with

$$
\begin{equation*}
|X|=(-1)^{m-1} x, \quad|Y|=(-1)^{m-1} \gamma \tag{9}
\end{equation*}
$$

Proof. Let $\xi, f \xi, \ldots, f^{n-1} \xi$ be the eigenevalues of $C\left(\lambda^{n}-\gamma^{n / m}\right)$, where we choose ξ so that $\xi^{m}=\gamma$. Then, by Corollary 1, (4) has a solution $X, Y \in G L(n, K)$ satisfying (7) if and only if

$$
\sum_{j=1}^{n} z_{j-1} C\left(\lambda^{n}-\gamma^{n / m}\right)^{j-1}
$$

has determinant equal to x. Since the eigenvalues of $C\left(\lambda^{n}-\gamma^{n / m}\right)$ are $f^{i-1} \xi$, $1 \leqslant i \leqslant n$, this condition is equivalent to

$$
\begin{equation*}
x=\prod_{i=1}^{n}\left(\sum_{j=1}^{n} z_{j-1} f^{(i-1)(j-1)} \xi^{j-1}\right) \tag{10}
\end{equation*}
$$

Put $j-1=t-1+m(\sigma-1)$ and $i-1=\rho-1+(\mu-1) n / m$, where $\mathbf{1} \leqslant \rho, \sigma \leqslant n / m, 1 \leqslant t, \mu \leqslant m$. Then, upon setting $\zeta=f^{n / m}$ and using $\xi^{m}=\gamma$ and $f^{n}=1$, (10) becomes

$$
\begin{equation*}
x=\prod_{\mu=1}^{m} \prod_{\rho=1}^{n / m}\left(\sum_{t=1}^{m} \xi^{(\mu-1)(t-1)} \xi^{t-1} \sum_{\sigma=1}^{n / m} f^{(\rho-1)(t-1+m(\sigma-1))} \gamma^{\sigma-1} z_{t-1+m(\sigma-1)}\right) \tag{11}
\end{equation*}
$$

Introduce new variables $w_{t \rho}$ by setting, for each fixed $t, 1 \leqslant t \leqslant m$, and variable $\rho, 1 \leqslant \rho \leqslant n / m$:

$$
\begin{equation*}
\sum_{\sigma=1}^{n / m} f^{(\rho-1)(\imath-1+m(\sigma-1))} \gamma^{\sigma-1} z_{t-1+m(\sigma-1)}=w_{t \rho} . \tag{12}
\end{equation*}
$$

If we view (12) as a linear system linking variables $\gamma^{\sigma-1} z_{l-1+m(\sigma-1)}, 1 \leqslant \sigma \leqslant n / m$, with variables $w_{t \rho}, 1 \leqslant \rho \leqslant n / m$, then the coefficient matrix

$$
\left(f^{(\rho-1)(t-1+m(\sigma-1))}\right)_{1 \leqslant \rho, \sigma \leqslant n / m}
$$

is non-singular since, upon removing $f^{(\rho-1)(t-1)}$ from row ρ, the resulting matrix $\left(f^{(\rho-1)(\sigma-1) m}\right)_{1 \leqslant \rho, \sigma \leqslant n / m}$ is a Vandermonde matrix and is non-singular because f^{m} is a primitive root of unity of order n / m. Thus for fixed t, as the $z_{t-1+m(\alpha-1)}, 1 \leqslant \sigma \leqslant n / m$, run freely over K, so also do the $w_{t \rho}, 1 \leqslant \rho \leqslant n / m$. We now write (11) as

$$
\begin{equation*}
x=\prod_{\rho=1}^{n / m}\left\{\prod_{\mu=1}^{m}\left(\sum_{t=1}^{m} \xi^{(\mu-1)(t-1)} w_{t \rho} \xi^{t-1}\right)\right\} . \tag{13}
\end{equation*}
$$

The expression in braces in (13) is the determinant of the matrix

$$
\begin{equation*}
\sum_{t=1}^{m} w_{t \rho} C\left(\lambda^{m}-\gamma\right)^{t-1} \tag{14}
\end{equation*}
$$

So we may rewrite (13) as

$$
\begin{equation*}
x=\prod_{\rho=1}^{n / m}\left|\sum_{t=1}^{m} w_{t \rho} C\left(\lambda^{m}-\gamma\right)^{t-1}\right| . \tag{15}
\end{equation*}
$$

Since any polynomial in $C\left(\lambda^{m}-\gamma\right)$ has the form

$$
\sum_{t=1}^{m} W_{t-1} C\left(\lambda^{m}-\gamma\right)^{t-1}
$$

it follows that if (4), (7) hold, then

$$
\begin{equation*}
x=\left|\sum_{t=1}^{m} W_{t-1} C\left(\lambda^{m}-\gamma\right)^{t-1}\right| \tag{16}
\end{equation*}
$$

has a solution $W_{0}, W_{1}, \ldots, W_{m-1} \in K$. By Corollary 1 , this implies that ($(\$)$ has a solution $X, Y \in \operatorname{GL}(m, K)$ satisfying (9). Conversely, if X, Y exist in GL $(m, K$) satisfying (8) and (9), then Corollary 1 implies that (16) has a solution $W_{0}, W_{1}, \ldots, W_{m-1} \in K$. From this solution we construct a solution of (15): simply put $w_{i 1}=W_{t-1}$ for $1 \leqslant t \leqslant m, w_{1 \rho}=1$ for all $\rho>1, w_{t \rho}=0$ for t and $\rho>1$. With this choice of the $w_{t \rho}$, (16) coincides with (15). We may then use (12) to find values for the $z_{t-1+m(\sigma-1)}, 1 \leqslant \sigma \leqslant n / m, 1 \leqslant t \leqslant m$, for which (10) holds. Corollary 1 and (10) then imply that X, Y exist in $\mathrm{GL}(n, K)$ satisfying (4) and (7).

Corollary 3. Let $n \equiv 0(\bmod 2)$, let f have order n in K^{*}, and let $x, \gamma \in K^{*}$. Then $X, Y \in \mathrm{GL}(n, K)$ exist satisfying (4) and $|X|=-x,|Y|=-\gamma^{n / 2}$ if and only if

$$
\begin{equation*}
x u^{2}+\gamma v^{2}=1 \tag{17}
\end{equation*}
$$

has a solution $u, v \in K$.
Proof. By Theorem 3, with $m=2$, (4) holds with $|X|=-x,|Y|=-\gamma^{n / 2}$ if and only if $-I_{2}=X Y X^{-1} Y^{-1}$ has a solution $\in \operatorname{GL}(2, K)$ with $|X|=-x$, $|Y|=-\gamma$. By Corollary 1 this latter event will hold if and only if

$$
\left|\begin{array}{rr}
z_{0} & z_{1} \\
\gamma z_{1} & z_{0}
\end{array}\right|=x
$$

has a solution in K. This equation in turn is $z_{0}{ }^{2}-\gamma z_{1}{ }^{2}=x$ and is easily shown to have a solution $z_{0}, z_{1} \in K$ if and only if (17) has a solution $u, v \in K$. (Consider separately the cases $z_{0}=0, z_{0} \neq 0 ; u=0, u \neq 0$.)

If we put $x=\gamma=-1$, then we find from Corollary 3 that for $n \equiv 2(\bmod 4)$, $f I_{n}$ is a commutator of $\operatorname{SL}(n, K)$ if and only if -1 is a sum of two squares in K. This is part of Theorem 1 of (1).

Corollary 4. Let $n \equiv 0(\bmod 2)$, let $x \gamma \in K^{*}$, and let fave order n in K^{*}. Suppose that (17) does not have a solution $u, v \in K$. Then (4) does not have a solution $X, Y \in \mathrm{GL}(n, K)$ with $|X|=-x,|Y|=-\gamma$.

Proof. Suppose $\gamma^{n / 2} \in H_{-x}$. Then (4) would have a solution $X, Y \in \operatorname{GL}(n, K)$ with $|X|=-x,|Y|=-\gamma^{n / 2}$. By Corollary 3 this implies that (17) has a solution $u, v \in K$. This contradiction implies $\gamma^{n / 2} \notin H_{-x}$. If $\gamma \in H_{-x}$, then, as H_{-x} is a group, $\gamma^{n / 2} \in H_{+x}$. Hence $\gamma \notin H_{-x}$.

Corollaky 5. Let Q be the rational number field Let $x, \gamma \in Q^{*}$. Let f be a primitive root of unity of order $n \equiv 0(\bmod 2)$ in the complex number field. If there exists a prime $p \equiv 1(\bmod n)$ such that (17) does not have a solution in the p-adic number field, then (4) has no solution $X, Y \in \operatorname{GL}(n, Q(f))$ with $|X|=-x,|Y|=-\gamma$.

Proof. Let Q_{p} be the p-adic number field. It is known that if $n \mid(p-1)$ then $Q_{p}{ }^{*}$ contains an element of order n. So we may assume that $f \in Q_{p}{ }^{*}$, and hence $Q(f) \subset Q_{p}$. If (17) does not have a solution in Q_{p}, then surely it has no solution in $Q(f)$.

We remark that well-known techniques are available for determining the solvability of (17) in Q_{p}. These techniques and Corollary 5 suffice to show that many combinations of determinants cannot be reached in $Q(f)$ to satisfy (1) and (2).

Theorem 4. Let $K=G F\left(p^{k}\right)$ be a finite field. Let $n \mid\left(p^{k}-1\right)$. Let $x, y \in K^{*}$. Then (4) has a solution $X, Y \in \operatorname{GL}(n, K)$ with $|X|=x,|Y|=y$.

Note that GF $\left(p^{k}\right)^{*}$ contains an element f of order n if and only if $n \mid\left(p^{k}-1\right)$.
Proof. Let Ψ be a generator of the cyclic multiplicative group K^{*}. First note by Corollary 2 that $\Psi \in H_{\Psi}$. Since H_{Ψ} is a group, this implies that $H_{\Psi}=K^{*}$. Thus $(-1)^{n-1} y \in H_{\Psi}$. Hence there exist elements $X, Y \in \operatorname{GL}(n, K)$ such that (4) holds with $|X|=\Psi,|Y|=y$. In turn this says that $(-1)^{n-1} \Psi \in G_{y}$. Consequently G_{y} contains the cyclic group generated by $(-1)^{n-1} \Psi$. If K has characteristic 2 or if n is odd, we have $(-1)^{n-1}=1$ and hence $G_{y}=K^{*}$. Thus $(-1)^{n-1} x \in G_{y}$ so that a solution of (4) with $|X|=x,|Y|=y$ exists in GL (n, K). Now let n be even and p be odd. Let $m=p^{k}-1$ be the order of K^{*}. Then $\Psi^{m}=1$ and $-1=\Psi^{m / 2}$. The order of $(-1)^{n-1} \Psi=-\Psi=\Psi^{1+m / 2}$ is $m /(m, 1+m / 2)=m$ if $4 \mid m,=m / 2$ if $2|\mid m$. Thus if $m \equiv 0(\bmod 4)$, $(-1)^{n-1} \Psi$ is also a generator of K^{*}; consequently $G_{y}=K^{*}$ and hence again we may solve (4) within $\operatorname{GL}(n, K)$ with $|X|=x,|Y|=y$. Now let $m \equiv 2$ (mod 4). In this case G_{y} contains the cyclic group of order $m / 2$ generated by $-\Psi$; therefore $\left[K^{*}: G_{y}\right] \leqslant 2$. Since the order of Ψ^{2} is $m /(m, 2)=m / 2$, the cyclic group generated by $-\Psi$ is also generated by Ψ^{2}, hence consists of exactly the even powers of Ψ. We now find an odd power of Ψ in G_{y}. Note the following chain of equivalences: $f I_{n}=X Y X^{-1} Y^{-1}$ with $|X|=-\Psi^{n / 2}$, $|Y|=y \Leftrightarrow f I_{n}=Y^{-1} X Y X^{-1}$ with $\left|Y^{-1}\right|=y^{-1}$,

$$
|X|=-\Psi^{n / 2} \Leftrightarrow-y^{-1} u u^{2}+\Psi v^{2}=1
$$

has a solution in $K \Leftrightarrow-y u^{2}+\Psi v^{2}=1$ has a solution in K. That this equation always has a solution in a finite field is well known and can be seen as follows: the map $u \rightarrow u^{2}$ is $2: 1$ in K^{*} and $0 \rightarrow 0$. Thus $-y u^{2}$ assumes $1+m / 2$ values as u runs over K. So also does $1-\Psi v^{2}$ as v runs over K. If these two sets of values were disjoint, K would have $m+2$ elements. Since K has only $m+1$ elements, $-y u^{2}=1-\Psi v^{2}$ has a solution in K. Consequently we know that $\Psi^{n / 2} \in G_{y}$. But $m \equiv 2(\bmod 4)$ and n even implies $n \equiv 2$ $(\bmod 4)$; thus $\Psi^{n / 2}$ is an odd power of Ψ. Hence G_{y} is properly larger than the subgroup of index two in K^{*}, and hence $G_{y}=K^{*}$.

Now let K be again an arbitrary field.
Theorem 5. Let f have order n in K^{*}, let $m>1$, and let $x, y \in K^{*}$. Then $f I_{m n}=X Y X^{-1} Y^{-1}$ has a solution $X, Y \in \mathrm{GL}(m n, K)$ with $|X|=x,|Y|=y$.

Proof. Since for any $\alpha, 1 \in H_{\alpha}$ and for any $\beta, 1 \in G_{\beta}$, it follows that we can find $X_{1}, Y_{1}, X_{2}, Y_{2}, X_{3}, Y_{3} \in \operatorname{GL}(n, K)$ such that

$$
f I_{n}=X_{1} Y_{1} X_{1}^{-1} Y_{1}^{-1}=X_{2} Y_{2} X_{2}^{-1} Y_{2}^{-1}=X_{3} Y_{3} X_{3}^{-1} Y_{3}^{-1}
$$

with $\left|X_{1}\right|=(-1)^{n-1},\left|Y_{1}\right|=(-1)^{n-1} y,\left|X_{2}\right|=(-1)^{(m-1)(n-1)} x,\left|Y_{2}\right|=(-1)^{n-1}$, $\left|X_{3}\right|=(-1)^{n-1},\left|Y_{3}\right|=1$. Put

$$
\begin{aligned}
X & =X_{1}+X_{2} \dot{+} X_{3}+X_{3}+\ldots \dot{+} X_{3} \\
Y & =Y_{1}+Y_{2}+Y_{3} \dot{+} Y_{3}+\ldots+Y_{3}
\end{aligned}
$$

(X_{3}, Y_{3} each appear $m-2$ times.) Then $f I_{m n}=X Y X^{-1} Y^{-1}$ and $|X|=x$, $|Y|=y$.
3. The non-scalar case. Let $A \in \mathrm{SL}(n, K)$. To avoid conflict with notation used in ($\mathbf{1} ; \mathbf{2}$) we now let $\phi, \tau \in K^{*}$ and we attempt to find matrices S, D such that

$$
\begin{gather*}
A=S D S^{-1} D^{-1}, \quad S, D \in \operatorname{GL}(n, K) \tag{18}\\
|S|=\phi, \quad|D|=\tau \tag{19}
\end{gather*}
$$

Following the discussion in $(1, \S 4)$ we let $A=A_{1} \dot{+} \ldots \dot{+} A_{m}$ where $A_{i} \in \mathrm{GL}(j(i), K)$ is a companion matrix, $1 \leqslant i \leqslant m$, and

$$
j(1) \leqslant j(2) \leqslant \ldots \leqslant j(m) .
$$

If we can locate a matrix $D \in \operatorname{GL}(n, K)$ with $|D|=\tau$, possessing a linear elementary divisor $\lambda-\alpha$ where $\alpha \in K$, and such that $A D$ is similar to D, then (1, Lemma 6) can be used to find $S \in \operatorname{GL}(n, K)$ with $|S|=\phi$ such that $A D=S D S^{-1}$. Hence (18) and (19) will hold. The rest of this paper is devoted to locating matrix D.

Note that, in several places in $(\mathbf{1} ; \mathbf{2})$, the determinant of a direct sum $A_{1} \dot{+} \ldots \dot{+} A_{m}$ is written as $\left|A_{1} \ldots A_{m}\right|$ when a better notation would be $\left|A_{1}\right| \ldots\left|A_{m}\right|$ or $\left|A_{1}+\ldots+A_{m}\right|$.

Case 1. $m=1$. If $\tau \neq 1$ construct, by (1, Lemma 4) a standard matrix $D \in G L(n, K)$ such that both D and $A D$ have elementary divisors $\lambda-\tau$, $(\lambda-1)^{n-1}$. This finishes the case $m=1, \tau \neq 1$ for any field. This argument also works if $\tau=1$ and $n=1$. If $n>1$ and $\tau=1$ choose $\rho \in K^{*}$ such that $\rho^{2} \neq 1$. This is possible if $K \neq \mathrm{GF}(2)$ or $\mathrm{GF}(3)$. By (1, Lemma 4) construct $D \in \operatorname{SL}(n, K)$ such that both D and $A D$ have elementary divisors $\lambda-\rho$, $\lambda-\rho^{-1},(\lambda-1)^{n-2}$. This finishes the case $m=1, \tau=1, n>1$ over any field except GF (3) or GF (2).

Case 2. $m>1, j(m) \geqslant 3$ or $j(m)=j(m-1)=2, K$ has more than six elements. These cases go almost exactly the same as cases 2 and 3 of (1). We need only make the following small changes: replace equations (13) and (15) of (1) by (13') and (15') below:

$$
\begin{align*}
& \left(\prod_{i=1}^{m} \delta_{i}\right)\left(\prod_{i=1}^{m-1} \gamma_{i}^{j(i)-1}\right) \gamma_{m}^{j(m)-2} \gamma^{\prime \prime \prime}=\tau \\
& \left(\prod_{i=1}^{m} \delta_{i}\right)\left(\prod_{i=1}^{m-1} \gamma_{i}^{j(i)-1}\right){\gamma_{m}}^{j(m)-3} \gamma^{\prime} \gamma^{\prime \prime}=\tau .
\end{align*}
$$

Construct matrices D_{1}, \ldots, D_{m} as in (1, Cases 2 and 3). Put

$$
D=D_{1}+\ldots+D_{m}
$$

Then D and $D A$ are similar. D has a linear elementary divisor, and $|D|=\tau$. This finishes Case 2.

Case 3. As in the discussion at the end of Case 3 of (1), it only remains to consider the case $A=f I_{n-2} \dot{+} C((\lambda-f)(\lambda-g))$ where $f, g \in K$ and $f^{n-1} g=1, n \geqslant 3$. The following proof is valid if $K \neq \mathrm{GF}(2)$ or (GF (3). First let $f \neq 1$. Let a_{2} be any element of K^{*} such that $a_{2} \neq 2+2(-1)^{n} \tau-n$. Put $a_{3}=1+(-1)^{n} \tau-a_{2}$ and let $p(\lambda)=\lambda^{n}-a_{3} \lambda^{2}-a_{2} \lambda+(-1)^{n} \tau$. Then $p(1)=0$ and $d p(\lambda) / d \lambda \neq 0$ when $\lambda=1$. Thus $\lambda=1$ is a simple zero of $p(\lambda)$. Set $x=\left(a_{2}\left(1-f^{-1}\right) f^{2-n}, \quad y=a_{3}\left(1-f^{-2}\right) f^{3-n}\right.$. Then $x \neq 0$, Let $B=\left(b_{i j}\right) \in \operatorname{SL}(n, K)$ where $b_{i i}=f$ for $1 \leqslant i \leqslant n-1, b_{n n}=g, b_{n 1}=x$, $b_{n 2}=y$; and all other $b_{i j}=0$. Then B is similar to A. This is most easily seen by reducing $\lambda I_{n}-B$ to Smith canonical form. In $\lambda I^{n}-B$ add $x^{-1}(\lambda-f)$ times row n and $y x^{-1}$ times row 2 to row 1 . Then add $x^{-1}(\lambda-g)$ times column 1 to column n. Finally multiply column 1 by $-x^{-1}$ and row 1 by x. Interchange rows 1 and n and add y times column one to column two to display invariant factors $\lambda-f, \ldots, \lambda-f(n-2$ times) together with the invariant factor $(\lambda-f)(\lambda-g)$. Thus B is similar to A. Now $\Delta^{-1} B C(p(\lambda)) \Delta=C(p(\lambda))$. Thus $B C(p(\lambda))$ is similar to $C(p(\lambda))$ and has $\lambda-1$ as an elementary divisor. Moreover, $|C(p(\lambda))|=\tau$. Thus B, and hence and A, is a commutator of the required type. The case $f=1$ follows from Lemma 1 below.

Lemma 1. Let $K \neq \operatorname{GF}(2)$ or $\operatorname{GF}(3)$, let $\phi, \tau \in K^{*}$, and let $A \in \operatorname{SL}(n, K)$ have $\lambda-1$ as an elementary divisor. Then S, D may be found to satisfy (18) and (19).

Proof. Within GL $(n, K), A$ is similar to a matrix of the form $W \dot{+} I_{1}$ where W is a direct sum of companion matrices: $W=W_{1} \dot{+} W_{2} \dot{+} \ldots \dot{+} W_{k}$, where $W_{i} \in \operatorname{GL}(w(i), K)$, say, $1 \leqslant i \leqslant k$. Select $\delta_{1} \in K^{*}$, define $\delta_{i+1}=\left|W_{i}\right| \delta_{i}$ for $1 \leqslant i \leqslant k-1$, select $\gamma_{i} \in K^{*}$ such that $\gamma_{i} \neq \delta_{i}, \delta_{i+k}$. Construct, by (1, Lemma 4), a standard matrix $D_{i} \in\left(i \mathrm{~L}(w(i), K)\right.$ such that D_{i} has elementary divisors $\lambda-\delta_{i},\left(\lambda-\gamma_{i}\right)^{x(i)-1}$ and such that $W_{i} D_{i}$ has elementary divisors $\lambda-\mid W_{i} \mathrm{I} \delta_{i},\left(\lambda-\gamma_{i}\right)^{x(i)-1}$, for $1 \leqslant i \leqslant k$. Put $E=D_{1} \dot{+} \ldots \dot{+} D_{k}$. Then $W E$ is similar to E, so that $W E=T E T^{-1}$ for some $T \in(\therefore L(n-1, K)$. Put $S=T \dot{+}\left(|T|^{-1} \phi\right), D=E \dot{+}\left(|E|^{-1} \tau\right)$. Then $W \dot{+} I_{1}=S D S^{-1} D^{-1}$ and $|S|=\phi,|D|=\tau$, as required.

Theorem 1 is now completely estallished, except when K has five or fewer elements. The rest of this paper is devoted to finishing the proof of Theorem 1 when K is one of the exceptional fields GF (3), GF (2^{2}), GF(5). The case $K=$ C.F (2) was treated completely in (3).
4. The case $K=\operatorname{GF}(3)$. We use the notation of (2).

Lemma 2. Let $K=G F(3)$ and let $A \in \operatorname{SL}(n, K)$ be a companion matrix. Then mutrices S, D satisfying (18), (19) exist where $(\phi, \tau)=(1,-1),(-1,1)$, $(-1,-1)$, as demanded. If $A \neq C\left((\lambda \pm 1)^{2}\right)$, then we may also have $(\phi, \tau)=(1,1)$.

Proof. By §3, case 1 above with $\tau=-1$ we have (18), (19) with $(\phi, \tau)=(1,-1)$ or $(-1,-1)$, at will. If we apply this result to A^{T} (which
is similar to A) we achieve (18), (19) with $(\phi, \tau)=(-1,1)$. By (2, Lemma 5) we obtain (18), (19) with $\phi=\tau=1$, if $n \neq 2$. Finally

$$
C\left(\lambda^{2}+1\right)=S D S^{-1} D^{-1}
$$

where

$$
S=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right], \quad D=\left[\begin{array}{rr}
0 & 1 \\
-1 & 1
\end{array}\right] .
$$

Lemma 3. Let $K=\operatorname{GF}(3)$. Let $A=A_{1}+A_{2} \in \operatorname{SL}(n, K)$ where A_{i} is similar to the companion matrix of a power of a polynomial irreducible over K and $\left|A_{i}\right|=-1, i=1,2$. Then (18), (19) hold where, as demanded, we have $(\phi, \tau)=(1,1),(1,-1),(-1,1),(-1,-1)$.

Proof. That we can achieve $(\phi, \tau)=(1,1)$ is the result of (2, Lemma 7). The proof of (2, Lemma 8) shows how to construct a matrix $D \in \operatorname{CL}(n, K)$ such that D and $A D$ have elementary divisors $\lambda+1,(\lambda-1)^{n-1}$. This shows we can achieve $\phi= \pm 1, \tau=-1$. Applying this result to A^{T}, we achieve $\phi=-1, \tau=1$.

Lemma 4. Let $K=\operatorname{GF}(3)$. Let $A=C\left((\lambda \pm 1)^{2}\right)+C\left((\lambda \pm 1)^{2}\right)$, where either sign may appear in each direct summand. Then (18), (19) hold, where, at will, $(\phi, \tau)=(1,1),(1,-1),(-1,1),(-1,-1)$.

Proof. Let C_{1}, C_{2} each be either $C\left((\lambda+1)^{2}\right)$ or $C\left((\lambda-1)^{2}\right)$. By Lemma 2, $C_{1}=S_{1} D_{1} S_{1}^{-1} D_{1}^{-1}$ where $\left(\left|S_{1}\right|,\left|D_{1}\right|\right)=(-\phi,-1)$, and $C_{2}=S_{2} D_{2} S_{2}^{-1} D_{2}^{-1}$ where $\left(\left|S_{2}\right|,\left|D_{2}\right|\right)=(-1,-\tau)$. Put $S=S_{1}+S_{2}, \quad D=D_{1}+D_{2}$. Then $A=S D S^{-1} D^{-1}$ and $(|S|,|D|)=(\phi, \tau)$.

We now prove Theorem 1 in the case $K=\mathrm{GF}(3)$ and A not scalar. Let $A=A_{1} \dot{+} \ldots \dot{+} A_{m}$ where, here, either A_{i} is the companion matrix of a power of a polynomial irreducible over GF(3) and $\left|A_{i}\right|=1$, or else $A_{i}=A_{i 1}+A_{i 2}$ where $A_{i 1}$ and $A_{i 2}$ are each companion matrices of powers of polynomials irreducible over (${ }^{2} \mathrm{~F}(3)$ and $\left|A_{i 1}\right|=\left|A_{i 2}\right|=-1$. If an A_{i} appears which is not $C\left((\lambda \pm 1)^{2}\right)$, choose the notation so that A_{m} is not $C\left((\lambda \pm 1)^{2}\right)$. If each A_{i} is $C\left((\lambda \pm 1)^{2}\right)$, then $m \geqslant 2$. (Since, if $m=1$, the result follows from Lemma 2 above.) In this event change notation so that $A_{m}=C\left((\lambda \pm 1)^{2}\right) \dot{+} C\left((\lambda \pm 1)^{2}\right)$. By Lemmas 2,3 we may find S_{i}, D_{i} with elements in GF (3) so that $A_{i}=S_{i} D_{i} S_{i}^{-1} D_{i}^{-1}, 1 \leqslant i \leqslant m-1$. By Lemmas 2,3,4 we may express $A_{m}=S_{m} D_{m} S_{m}^{-1} D_{m}^{-1}$, where

$$
\left|S_{m}\right|=\left|S_{1}\right| \ldots\left|S_{m-1}\right| \phi, \quad\left|D_{m}\right|=\left|D_{1}\right| \ldots\left|D_{m-1}\right| \tau
$$

Put $S=S_{1} \dot{+} \ldots \dot{+} S_{m}, D=D_{1} \dot{+} \ldots \dot{+} D_{m}$. Then (18), (19) are satisfied. This proves Theorem 1 when $K=\mathrm{CF}(3)$.
4. Some lemmas. To handle the cases $K=G F(4)$ and $G F(5)$ we require the following rather complicated lemmas. The proofs of these lemmas are extensions of the method used to prove Lemmas 7 and 8 of (2). For the moment K will still be an arbitrary field. Let $e_{i}=(0,0, \ldots, 0,1)$ have i components, of which all but the last are zero.

Lemma 5. Let $t \geqslant 2$. Suppose matrices $A_{i}, U_{i}, \Delta_{i} \in \mathrm{GL}(j(i), K)$ and polynomials $p_{i}(\lambda)$ over K are given satisfying $U_{i} A_{i} \Delta_{i} U_{i}^{-1}=C\left(p_{i}(\lambda)\right)$, such that A_{i} is a companion matrix, the last column of U_{i} is $e_{j(i)}{ }^{T}$, and Δ_{i} is upper triangular, $1 \leqslant i \leqslant t$. Suppose also that vectors v_{i} with $j(i+1)$ components from K are given, such that whenever $j(i)=1, v_{i}=\left|A_{i}\right|^{-1} \rho_{i+1}, \rho_{i+1}$ being the first row of $U_{i+1}, 1 \leqslant i \leqslant t-1$. Let D be a triangular matrix, presented in partitioned form as

$$
D=\left[\begin{array}{ccccc}
\Delta_{1} & D_{12} & D_{13} & \ldots & D_{1 t} \\
0 & \Delta_{2} & D_{23} & \ldots & D_{2 t} \\
0 & 0 & \Delta_{3} & \ldots & D_{3 t} \\
. & . & . & . & . \\
. & . & . & . & . \\
. & . & . & . & . \\
0 & 0 & 0 & \ldots & \Delta_{t}
\end{array}\right]
$$

We suppose that v_{i} is the last row of $D_{i, i+1}, 1 \leqslant i \leqslant t-1$. Let $A=A_{1} \dot{+} \ldots \dot{+} A_{t}$. Then it is possible to select the as yet unspecified elements in $D_{12}, D_{13}, \ldots, D_{t-1, t}$ from K in such a manner that $A D$ is non-derogatory and has $p_{1}(\lambda) \ldots p_{i}(\lambda)$ as its characteristic polynomial.

Proof. Let $v_{i}=\left(v_{i 1}, v_{i 2}, \ldots, v_{i, j(i+1)}\right)$. Let α be fixed, $\alpha<t$. We first specify the elements of $D_{\alpha, \alpha+1}$. If $j(\alpha)=1$, this has already been done by the hypotheses. Let $j(\alpha)>1$ and for this fixed α let $R_{1}, R_{2}, \ldots, R_{j(\alpha+1)}$ denote the rows of $A_{\alpha+1} \Delta_{\alpha+1}$, and let

$$
D_{\alpha, \alpha+1}=\left[\begin{array}{cccc}
d_{11} & d_{12} & \ldots & d_{1, j(\alpha+1)} \\
d_{21} & d_{22} & \ldots & d_{2, j(\alpha+1)} \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
d_{j(\alpha)-1,1} & d_{j(\alpha)-1,2} & \ldots & d_{j(\alpha)-1, j(\alpha+1)} \\
v_{\alpha 1} & v_{\alpha 2} & \ldots & v_{\alpha, j(\alpha+1)}
\end{array}\right]
$$

Let δ_{α} denote the bottom right corner element of Δ_{α}. As Δ_{α} is triangular and non-singular, $\delta_{\alpha} \neq 0$. Let C_{α} be the last column of $A_{\alpha} \Delta_{\alpha}$. Because A_{α} is a companion matrix, the next to bottom element of C_{α} is δ_{α}. Now $A_{\alpha} D_{\alpha, \alpha+1}$ has the form

$$
A_{\alpha} D_{\alpha, \alpha+1}=\left[\begin{array}{cccc}
d_{21} & d_{22} & \ldots & d_{2, j(\alpha+1)} \\
d_{31} & d_{32} & \ldots & d_{3, j(\alpha+1)} \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
d_{j(\alpha)-1,1} & d_{j(\alpha)-1,2} & \ldots & d_{j(\alpha)-1, j(\alpha+1)} \\
v_{\alpha 1} & v_{\alpha 2} & \ldots & v_{\alpha, j(\alpha+1)} \\
z_{1} & z_{2} & \ldots & z_{j(\alpha+1)}
\end{array}\right]
$$

where

$$
\begin{align*}
& z_{s}=(-1)^{j(\alpha)-1}\left|A_{\alpha}\right| d_{1 s}+\text { a fixed linear combination of } \tag{20}\\
& \qquad d_{2 s}, d_{3 s}, \ldots, d_{j(\alpha)-1, s}, v_{\alpha s}, \quad 1 \leqslant s \leqslant j(\alpha+1) .
\end{align*}
$$

We now impose the following condition upon the elements of $D_{\alpha, \alpha+1}$:

$$
\begin{align*}
{\left[\begin{array}{c}
O_{j(\alpha)-1, j(\alpha+1)} \\
\rho_{\alpha+1}
\end{array}\right] } & +\delta_{\alpha}^{-1}\left(v_{\alpha 1} C_{\alpha}, v_{\alpha 2} C_{\alpha}, \ldots, v_{\alpha, j(\alpha+1)} C_{\alpha}\right) \tag{21}\\
& -\delta_{\alpha}^{-1}\left[\begin{array}{l}
O_{j(\alpha)-1, j(\alpha+1)}^{j(\alpha+1)} \\
\sum_{\mu=1}^{j+1} v_{\alpha \mu} R_{\mu}
\end{array}\right]=A_{\alpha} D_{\alpha, \alpha+1} .
\end{align*}
$$

Here, in (21), the first matrix in the left member has $j(\alpha)$ rows, the first $j(\alpha)-1$ of which are zero vectors and the last $\rho_{\alpha+1}$; the second matrix on the left has $j(\alpha+1)$ columns, each of which is the indicated multiple of C_{α}; the third matrix on the left has $j(\alpha)-1$ rows of zeros, followed by a row which is the indicated linear combination of $R_{1}, \ldots, R_{j(\alpha+1)}$. From an examination of the form of $A_{\alpha} D_{\alpha, \alpha+1}$, we see that (21) immediately determines all rows of $D_{\alpha, \alpha+1}$ except the first; and then (20) can be used to determine the first row of $D_{\alpha, \alpha+1}$ in such a manner that (21) is satisfied. All this can be done for $\alpha=1,2, \ldots, t-1$. Hence $D_{12}, D_{23}, \ldots, D_{t-1, t}$ are now constructed.

Now form $A D$. We find that

$$
A D=\left[\begin{array}{cccccc}
A_{1} \Delta_{1} & A_{1} D_{12} & E_{13} & E_{14} & \ldots & E_{1 t} \\
0 & A_{2} \Delta_{2} & A_{2} D_{23} & E_{24} & \ldots & E_{2 t} \\
0 & 0 & A_{3} \Delta_{3} & A_{3} D_{34} & \ldots & E_{3 t} \\
. & . & . & . & . & . \\
\cdot & . & . & . & . & . \\
. & . & . & . & . & . \\
0 & 0 & 0 & 0 & \ldots & A_{t} \Delta_{t}
\end{array}\right]
$$

Here $E_{\alpha \beta}=A_{\alpha} D_{\alpha \beta}$. Let α be fixed, $1 \leqslant \alpha \leqslant t-1$. We now perform the following similarity transformations on $A D$. If $j(\alpha)=1$, we do nothing. If $j(\alpha)>1$, we subtract $\delta_{\alpha}^{-1} v_{\alpha s}$ times column $j(1)+j(2)+\ldots+j(\alpha)$ of $A D$ from column $j(1)+j(2)+\ldots+j(\alpha)+s$, then add $\delta_{\alpha}{ }^{-1} v_{\alpha s}$ times row $j(1)+j(2)+\ldots+j(\alpha)+s$ to row $j(1)+\ldots+j(\alpha)$, for $s=1,2, \ldots$, $j(\alpha+1)$. Owing to (21) this results in converting the block $A_{\alpha} D_{\alpha, \alpha+1}$ into a block whose last row is $\rho_{\alpha+1}$ and whose other rows are all zero. If $j(\alpha)=1$, it is already true that $A_{\alpha} D_{\alpha, \alpha+1}$ has $\rho_{\alpha+1}$ for its only row. In addition observe that these similarity transformations leave all diagonal blocks $A_{1} \Delta_{1}, \ldots, A_{t} \Delta_{t}$ unchanged. The only block in the block diagonal just above and parallel to the main block diagonal that changes is $A_{\alpha} D_{\alpha, \alpha+1}$. Also observe that while certain of the E matrices change, they do so only in the following way. If an E matrix, say $E_{p q}$, becomes altered, the only alteration is to add to the
elements of $E_{p q}$ certain known linear combinations of elements from matrices which lie in block row p and which are to the left of $E_{p q}$, or to add to some of the elements of $E_{p q}$ certain known linear combinations of elements from matrices which lie in block column q and which are below $E_{p q}$.
We now perform the above similarities on $A D$ with $\alpha=t-1$, then on the result perform the above similarities with $\alpha=t-2$, then $t-3, \ldots, 1$. The result of all of this is to find a non-singular W such that

$$
W A D W^{-1}=\left[\begin{array}{cccccc}
A_{1} \Delta_{1} & F_{12} & G_{13} & G_{14} & \ldots & G_{12} \\
0 & A_{2} \Delta_{2} & F_{23} & G_{24} & \ldots & G_{2 t} \\
0 & 0 & A_{3} \Delta_{3} & F_{34} & \ldots & G_{32} \\
. & \cdot & \cdot & \cdot & . & . \\
. & . & . & . & . & . \\
. & . & . & . & . & . \\
0 & 0 & 0 & 0 & \ldots & A_{i} \Delta_{l}
\end{array}\right] .
$$

Owing to our construction of $D_{\alpha, \alpha+1}$, we have

$$
F_{\alpha, \alpha+1}=\left[\begin{array}{c}
O_{j(\alpha)-1, j(\alpha+1)} \\
\rho_{\alpha+1}
\end{array}\right], \quad 1 \leqslant \alpha \leqslant t-1 .
$$

Now set $G_{13}=0, G_{24}=0, \ldots, G_{t-2, t}=0$. Because of the manner in which the G matrices arise from the E matrices, this amounts to setting

$$
A_{\alpha} D_{\alpha, \alpha+2}=T_{\alpha}, \quad 1 \leqslant \alpha \leqslant t-2,
$$

where the T_{α} are some matrices of known elements. So we may solve for $D_{13}, D_{24}, \ldots, D_{t-2, t}$ such that $G_{13}=0, G_{24}=0, \ldots, G_{t-2, t}=0$. Now set $G_{14}=0, G_{2 \overline{5}}=0, \ldots, G_{t-3, t}=0$. By the same kind of argument this amounts to putting $A_{\alpha} D_{\alpha, \alpha+3}=V_{\alpha}, 1 \leqslant \alpha \leqslant t-3$, where the V_{α} are certain matrices of known elements. In this manner we construct in succession the block side diagonals of D parallel to the main block diagonal such that all the G matrices are zero. D is now completely specified.

Now, for $\alpha<t$, note that because of the special forms of U_{α} and $F_{\alpha, \alpha+1}$, we have $U_{\alpha} F_{\alpha, \alpha+1}=F_{\alpha, \alpha+1}$. And also observe that since the last row of $F_{\alpha, \alpha+1}$ is the first row of $U_{\alpha+1}, F_{\alpha, \alpha+1} U_{\alpha+1}{ }^{-1}=N_{\alpha}$, say, is a matrix consisting entirely of zeros except for its extreme lower left corner element, which is a one. Now put $U=U_{1}+U_{2} \dot{+} \ldots \dot{+} U_{t}$. Then

$$
U W A D W^{-1} U^{-1}=\left[\begin{array}{cccccc}
C\left(p_{1}(\lambda)\right) & N_{1} & 0 & 0 & \ldots & 0 \\
0 & C\left(p_{2}(\lambda)\right) & N_{2} & 0 & \ldots & 0 \\
. & \cdot & . & . & . & . \\
. & . & . & . & . & . \\
. & . & . & . & . & . \\
0 & 0 & 0 & 0 & \ldots & C\left(p_{t}(\lambda)\right)
\end{array}\right] .
$$

The proof is now complete since $U W A D W^{-1} U^{-1}$ clearly has the required characteristic polynomial and is non-derogatory since the $(n-1) \times(n-1)$
subdeterminant of $\lambda I_{n}-U W A D W^{-1} U^{-1}$ obtained by deleting column 1 and row n is a non-zero constant.

The next lemma uses notation explained in (2, pp. 144-145).
Lemma 6. Let $A=C(p(\lambda)) \in \operatorname{GL}(n, K)$, where $K \neq G F(2)$. Let $g_{1}, g_{3} \in K^{*}$. Then it is possible to choose $g_{2}, g_{4} \in K$ and a vector d with elements in K so that $U \in \mathrm{GL}(n, K)$ exists satisfying: (i) the last column of U is $e_{n}{ }^{T}$; (ii) if $n \geqslant 2, U A \Delta_{n}\left(g_{1}, g_{2}, g_{3}, g_{4}, d\right) U^{-1}=C\left(\left(\lambda-|A| g_{1}\right)\left(\lambda-g_{3}\right)(\lambda-1)^{n-2}\right)$; (iii) if $n=1, U A \Delta_{n}\left(g_{1}, g_{2}, g_{3}, g_{4}, d\right) U^{-1}=C\left(\lambda-|A| g_{1}\right)$; (iv) if $n \geqslant 3, g_{2}, g_{4} \neq 0$; (v) if $n=2$ and $g_{1}=g_{3}$, then $g_{2}=0$ if and only if $p(\lambda)=(\lambda-|A|)(\lambda-1)$.

Proof. This is a specialization of Lemma 2 of (2). The matrix U is the matrix $S T$ whose existence is asserted in (2, Lemma 2). Let $-a_{2}$ be the coefficient of λ in $p(\lambda)$. When $n \geqslant 3$ to get g_{2}, g_{4} we require that the coefficient of λ in $\left(\lambda-|A| g_{1}\right)\left(\lambda-g_{3}\right)(\lambda-1)^{n-2}$ be

$$
(-1)^{n}|A|\left(g_{2}+g_{1} g_{4}+g_{1} g_{3}(n-3)\right)-a_{2} g_{3} .
$$

This is a linear equation in two unknowns g_{2}, g_{4}. Set $g_{2}=1$ and solve for g_{4}. If $g_{4}=0$, set instead g_{2} equal to any other non-zero value in K. Then solve for g_{4}; it must now turn out that $g_{4} \neq 0$. When $n=2$ we determine g_{2} from $-|A| g_{1}-g_{3}=|A| g_{2}-a_{2} g_{3}$. If $g_{2}=0$ and $g_{1}=g_{3}$, we get $a_{2}=|A|+1$. This implies that $p(\lambda)=(\lambda-|A|)(\lambda-1)$.

Lemma 7. Let $A=A_{1} \dot{+} A_{2} \in \operatorname{SL}(n, K)$ where A_{i} is a $j(i) \times j(i)$ companion mairix and $\left|A_{i}\right| \neq 1$ for $i=1,2$. Let $j(1) \geqslant 2, j(1) \geqslant j(2)$. Suppose $\lambda-1$ is not an elementary divisor of A. Let $\delta_{1}, \delta_{2}, \delta_{3} \in K^{*}$ be such that one of (i), (ii), (iii), (iv) holds: (i) $1 \neq \delta_{2} \neq \delta_{1}=\delta_{3} \neq 1$; (ii) $\delta_{3}=\delta_{2}=1 \neq \delta_{1}$; (iii) δ_{1}, δ_{2}, $\delta_{3}, 1$ are all different; (iv) $\delta_{1}=\delta_{3}=1 \neq \delta_{2}$. Then we may find $D \in \operatorname{GL}(n, K)$ such that D and $A D$ are both non-derogatory with characteristic polynomials $\left(\lambda-\delta_{1}\right)\left(\lambda-\delta_{2}\right)\left(\lambda-\delta_{3}\right)(\lambda-1)^{n-3},\left(\lambda-\left|A_{1}\right| \delta_{1}\right)\left(\lambda-\left|A_{2}\right| \delta_{2}\right)\left(\lambda-\delta_{3}\right)(\lambda-1)^{n-3}$ respectively.

Proof. Use Lemma 6 to construct matrices $U_{1}, \Delta_{j(1)}\left(\delta_{1}, g_{2}, \delta_{3}, g_{4}, d\right) \in$ $\operatorname{GL}(j(1), K)$ satisfying (i), (ii), (iv), (v) of Lemma 6. Note that if $j(1)=2$ and $\delta_{1}=\delta_{3}$, then $g_{2} \neq 0$ since $g_{2}=0$ implies $A_{1}=C\left(\left(\lambda-\left|A_{1}\right|\right)(\lambda-1)\right)$, hence $\lambda-1$ is an elementary divisor of A, contrary to hypothesis. If $j(1)=2$, set $g_{4}=1$. Use Lemma 6 to construct matrices

$$
U_{2}, \Delta_{j(2)}\left(\delta_{2}, h_{2}, 1, h_{4}, d^{\prime}\right) \in G L(j(2), K)
$$

satisfying the five conditions of Lemma 6 . Note that if $j(2)=2$ and $\delta_{2}=1$, then $h_{2} \neq 0$, since $h_{2}=0$ implies $A_{2}=C\left(\left(\lambda-\left|A_{2}\right|\right)(\lambda-1)\right)$, so that $\lambda-1$ is an elementary divisor of A, contrary to hypothesis. If $j(2) \leqslant 2$, set $h_{4}=1$, and if $j(2)=1$, set $h_{2}=1$. Now put

$$
D=\left[\begin{array}{cc}
\Delta_{j(1)}\left(\delta_{1}, g_{2}, \delta_{3}, g_{4}, d\right) & D_{12} \\
0 & \Delta_{j(2)}\left(\delta_{2}, h_{2}, 1, h_{4}, d^{\prime}\right)
\end{array}\right]
$$

where the last row of D_{12} is $(0,1,0,0, \ldots, 0)$ if $j(2)>1$ and $\delta_{2} \neq 1$; otherwise the last row of D_{12} is $\left(\left|A_{1}\right|^{-1}, 0, \ldots, 0\right)$. Then the conditions of Lemma 5 are satisfied and hence we may choose the other elements of D_{12} so that $A D$ is non-derogatory and has the required characteristic polynomial. Since D is triangular, it is clear that D has the required characteristic polynomial. It is only necessary to show that D is non-derogatory. This will be accomplished by showing that the greatest common divisor of the $(n-1) \times(n-1)$ subdeterminants of $\lambda I_{n}-D$ is one. Let $D[\alpha \mid \beta]$ denote the subdeterminant of $\lambda I_{n}-D$ obtained by deleting row α and column β, and let $D[\alpha \mid \beta]_{\lambda=1}$ denote this subdeterminant evaluated when $\lambda=1$. In case (i) consider

$$
D[j(1)+1 \mid j(1)+1]=\left(\lambda-\delta_{1}\right)^{2}(\lambda-1)^{n-3} ;
$$

$D[2 \mid 1]=-g_{2}\left(\lambda-\delta_{2}\right)(\lambda-1)^{n-3} \neq 0 ; D[n \mid 3]_{\lambda=1}= \pm\left(1-\delta_{1}\right)^{2}\left(1-\delta_{2}\right) h_{4} \neq 0$ (when $j(1)>2$ and $j(2)>1$), $D[n-1 \mid 3]_{\lambda=1}= \pm\left(1-\delta_{1}\right)^{2}\left(1-\delta_{2}\right) \neq 0$ (when $j(1)>2$ and $j(2)=1$), or $D[n \mid n]=\left(\lambda-\delta_{1}\right)^{2}\left(\lambda-\delta_{2}\right)$ when $n=4$. In case (ii) consider $D[1 \mid 1]=(\lambda-1)^{n-1}$; and

$$
D[n \mid 2]_{\lambda=1}= \pm\left(1-\delta_{1}\right)\left|A_{1}\right|^{-1} g_{4} h_{2} h_{4} \neq 0 .
$$

In case (iii) consider $D[1 \mid 1]=\left(\lambda-\delta_{2}\right)\left(\lambda-\delta_{3}\right)(\lambda-1)^{n-3}$;

$$
\begin{gathered}
D[2 \mid 2]=\left(\lambda-\delta_{1}\right)\left(\lambda-\delta_{2}\right)(\lambda-1)^{n-3} ; \\
D[j(1)+1 \mid j(1)+1]=\left(\lambda-\delta_{1}\right)\left(\lambda-\delta_{3}\right)(\lambda-1)^{n-3} ; \\
D[n \mid 3]_{\lambda=1}= \pm\left(1-\delta_{1}\right)\left(1-\delta_{2}\right)\left(1-\delta_{3}\right) h_{4} \neq 0
\end{gathered}
$$

(when $j(1)>2, j(2)>1$), or

$$
D[n-1 \mid 3]_{\lambda=1}= \pm\left(1-\delta_{1}\right)\left(1-\delta_{2}\right)\left(1-\delta_{3}\right) \neq 0
$$

(when $j(1)>2, j(2)=1$), or $D[4 \mid 4]=\left(\lambda-\delta_{1}\right)\left(\lambda-\delta_{2}\right)\left(\lambda-\delta_{3}\right)$ (when $j(1)=j(2)=2$). In case (iv) consider $D[j(1)+1 \mid j(1)+1]=(\lambda-1)^{n-1}$; $D[n \mid 1]_{\lambda=1}= \pm g_{2} g_{4} h_{4}\left(1-\delta_{2}\right) \neq 0$ (when $j(2)>1$) or

$$
D[n-1 \mid 1]_{\lambda=1}= \pm g_{2} g_{4}\left(1-\delta_{2}\right) \neq 0
$$

(when $j(2)=1$). In all four cases we have computed sufficiently many subdeterminants of $\lambda I_{n}-D$ to show that D is non-derogatory.

The rest of this paper is devoted to finishing the proof of Theorem 1 when $K=\mathrm{GF}(4)$ or when $K=\mathrm{GF}(5)$. We may, by Lemma 1 , assume that $\lambda-1$ is not an elementary divisor of A. We may also assume that $\tau \neq 1$ since in $(1, \S \S 5,6)$ it was shown how to construct a matrix $D \in \operatorname{SL}(n, K)$ possessing a linear elementary divisor $\lambda-\alpha$ with $\alpha \in K$ such that $A D$ is similar to D. Hence (18) and (19) can be satisfied when $\tau=1$. If A is a companion matrix, the required proof to complete Theorem 1 is supplied by $\S 3$, case 3 above. If $A=A_{1}+A_{2}$ when $A_{i} \in \mathrm{GL}(j(i), K)$ is a companion matrix, $i=1,2$, we may assume that $j(1) \geqslant j(2)$, by use of the following device.

Since the inverse of a companion matrix is similar to a companion matrix, let B_{1}, B_{2} be companion matrices similar to $A_{2}^{-1}, A_{1}{ }^{-1}$, respectively. Put $B=B_{1}+B_{2}$. If, for $A, j(1)<j(2)$, then, for $B, j(1)>j(2)$, and moreover $\left(\left|B_{1}\right|,\left|B_{2}\right|\right)=\left(\left|A_{1}\right|,\left|A_{2}\right|\right)$ since $\left|A_{1}\right|\left|A_{2}\right|=1$. Since B is similar to A^{-1}, if $B=S D S^{-1} D^{-1}$ where S, D have arbitrary prescribed determinant, the same will hold for A also. In general we may suppose $A=A_{1}+\ldots+A_{\pi i}$ where $A_{i} \in \mathrm{GL}(j(i), K)$ is a companion matrix. Thus when $m=2$ we may take $j(1) \geqslant j(2)$. We shall take advantage of the simplifying assumption explained in ($1, \S 5,6$). By rearranging the A_{i}, we can order the integers $j(1), \ldots, j(\mathrm{~m})$ in any manner that is convenient at the moment and by considering A^{-1} instead of A we can eliminate some cases. By virtue of these remarks we need consider only the following possibilities when $K=\mathrm{GF}(4): \tau=\theta$ or $\tau=\theta^{2} ; m=2,\left|A_{1}\right|=\theta,\left|A_{2}\right|=\theta^{2}, j(1) \geqslant j(2) ; m=3,\left|A_{1}\right|=\left|A_{2}\right|=\left|A_{3}\right|=\theta$, $j(1) \geqslant j(2) \geqslant j(3)$. And when $K=G F(5)$ we need consider only the following possibilities: $\tau=2,3,4 ; m=2,\left|A_{1}\right|=2,\left|A_{2}\right|=3, j(1) \geqslant j(2) ; m=2$, $\left|A_{1}\right|=\left|A_{2}\right|=4, \quad j(1) \geqslant j(2) ; m=3, \quad\left|A_{1}\right|=2, \quad\left|A_{2}\right|=2, \quad\left|A_{3}\right|=4$, and $j(1), j(2)$ ordered in any convenient manner;

$$
m=4,\left|A_{1}\right|=\left|A_{2}\right|=\left|A_{3}\right|=\left|A_{4}\right|=2
$$

and $j(1), j(2), j(3), j(4)$ ordered in any convenient manner.
5. The case $K=\mathrm{GF}(4)$. Let $K=\mathrm{GF}(4)$ and first suppose $m=2$, $\left|A_{1}\right|=\theta,\left|A_{2}\right|=\theta^{2}, j(1) \geqslant j(2)$. Let $\delta_{1}=\delta_{3}=\theta, \delta_{2}=\theta^{2}$. Then by Lemma 7, part 1, we may find non-derogatory $D \in \operatorname{GL}(n, \mathrm{GF}(4))$ with characteristic polynomial $(\lambda-\theta)^{2}\left(\lambda-\theta^{2}\right)(\lambda-1)^{n-3}$ such that $A D$ is non-derogatory and has characteristic polynomial $\left(\lambda-\theta^{2}\right)(\lambda-\theta)^{2}(\lambda-1)^{n-3}$. Thus D and $A D$ are similar, D has a linear elementary divisor, and $|D|=\theta$, finishing the case $\tau=\theta, m=2$. Now let $\delta_{1}=\theta^{2}, \delta_{2}=\delta_{3}=1$. Then by Lemma 7, part (ii), we may find $D \in \mathrm{GL}(n, \mathrm{GF}(4))$ such that D and $A D$ are non-derogatory and both have $\left(\lambda-\theta^{2}\right)(\lambda-1)^{n-1}$ as characteristic polynomial. Since $|D|=\theta^{2}$ and D has a linear elementary divisor, this completes the case $m=2$.

Let $m=3,\left|A_{1}\right|=\left|A_{2}\right|=\left|A_{3}\right|=\theta, j(1) \geqslant j(2) \geqslant j(3)$. If $j(1)=1, A$ is scalar and $\S 2$ supplies the result. So let $j(1) \geqslant 2$. Let $\mu=1$ or $-1(\bmod 3)$, to be specified later. Use Lemma 6 to choose

$$
U_{1}, \Delta_{j(1)}\left(\theta^{\mu}, g_{2}, \theta^{\mu}, g_{4}, d\right) \in \operatorname{GL}(j(1), \mathrm{GF}(4))
$$

with $g_{2} \neq 0$ such that

$$
U_{1} A_{1} \Delta_{j(1)} U_{1}^{-1}=C\left(\left(\lambda-\theta^{1+\mu}\right)\left(\lambda-\theta^{\mu}\right)(\lambda-1)^{j(1)-2}\right) .
$$

Use Lemma 6 to choose $U_{2}, \Delta_{j(2)}\left(1, h_{2}, 1, h_{4}, d^{\prime}\right) \in \mathrm{GL}(j(2), \mathrm{GF}(4))$ with $h_{2} \neq 0, h_{4} \neq 0$ such that $U_{2} A_{2} \Delta_{j(2)} U_{2}^{-1}=C\left((\lambda-\theta)(\lambda-1)^{j(2)-1}\right)$. Use Lemma 6 to choose $U_{3}, \Delta_{j(3)}\left(\theta^{-\mu}, k_{2}, 1, k_{4}, d^{\prime \prime}\right) \in \operatorname{GL}(j(3), \mathrm{GF}(4))$ with $k_{4} \neq 0$ such that $U_{3} A_{3} \Delta_{j(3)} U_{3}^{-1}=C\left(\left(\lambda-\theta^{1-\mu}\right)(\lambda-1)^{j(3)-1}\right)$. Put

$$
D=\left[\begin{array}{lll}
\Delta_{j(1)} & D_{12} & D_{13} \tag{22}\\
0 & \Delta_{j(2)} & D_{23} \\
0 & 0 & \Delta_{j(3)}
\end{array}\right]
$$

Here the last row of D_{12} is $\left(6^{2}, 0, \ldots, 0\right)$ and the last row of D_{23} is $(0,1,0$, $0, \ldots, 0$) when $j(3) \geqslant 2$ and $\left(\theta^{2}\right)$ when $j(3)=1$. Then by Lemma 5 we may construct the remaining elements of D such that $A D$ is non-derogatory and has $\left(\lambda-\theta^{\mu}\right)^{2}\left(\lambda-\theta^{-\mu}\right)(\lambda-1)^{n-3}$ as its characteristic polynomial. This is also the characteristic polynomial of D. Now

$$
\begin{aligned}
& D[2 \mid 1]=-g_{2}\left(\lambda-\theta^{-\mu}\right)(\lambda-1)^{n-3} \neq 0 \\
& D[j(1)+j(2)+1 \mid j(1)+j(2)+1]=\left(\lambda-\theta^{\mu}\right)^{2}(\lambda-1)^{n-3}
\end{aligned}
$$

and $D[n \mid 3]$ (when $j(3)>1$) or $D[n-1 \mid 3]$ (when $j(3)=1$) is a polynomial in λ not vanishing when $\lambda=1$. Hence D is non-derogatory and has a linear elementary divisor, so that (18) holds with $|S|=\phi,|D|=\theta^{\mu}$. By choosing $\mu=1$ or -1 we get $|D|=\theta$ or θ^{2} as required. This completes the case $K=G F(4)$.
6. The case $K=\mathrm{GF}(5)$. First let $\left|A_{1}\right|=2,\left|A_{2}\right|=3, j(1) \geqslant j(2)$. If $j(1)=j(2)=1$, then A is similar to $C((\lambda-2)(\lambda-3))$ which falls into case 1 of $\S 3$. So suppose $j(1) \geqslant 2$. Let $\delta_{1}=\delta_{3}=\delta, \delta_{2}=2 \delta$, where $\delta=1,2$, or 4 . Then by Lemma 7, part (i) or (iv), we may find $D \in G L(n$, GF (i)) such that D and $A D$ are both non-derogatory with characteristic polynomial $(\lambda-\delta)^{2}(\lambda-2 \delta)(\lambda-1)^{n-3}$. As D has the linear elementary divisor $\lambda-2 \delta$, we can satisfy (18), (19) with $|D|=2 \delta^{3}=2,1$, or 3 . (This supplies a second proof for the case $\tau=1,\left|A_{1}\right|=2,\left|A_{2}\right|=3$.) Now set $\delta_{1}=2, \delta_{2}=4, \delta_{3}=3$. By Lemma 7, part (iii), we get $D \in \mathrm{GL}(n, \mathrm{GF}(5))$ such that both D and $A D$ are non-derogatory and both have $(\lambda-2)(\lambda-3)(\lambda-4)(\lambda-1)^{n-3}$ as characteristic polynomial. So we can satisfy (18) with $\tau=4$. This finishes the case $\left(\left|A_{1}\right|,\left|A_{2}\right|\right)=(2,3)$.

Now let $\left|A_{1}\right|=\left|A_{2}\right|=4, j(1) \geqslant j(2)$. Let $j(1)>1$ and let $\delta_{1}=\delta_{3}=\delta$, $\delta_{2}=4 \delta$ where δ is 1,2 , or 3 . Then by Lemma 7, part (i) or (iv) we get $D \in \operatorname{GL}(n, \operatorname{GF}(5))$ with D and $A D$ both non-derogatory and having the same characteristic polynomial $(\lambda-\delta)^{2}(\lambda-4 \delta)(\lambda-1)^{n-3}$. Thus again (18), (19) are satisfied, with $\tau=4 \delta^{3}=4,2$, or 3 . This completes the case

$$
\left|A_{1}\right|=\left|A_{2}\right|=4, \quad j(1)>1, \quad j(1) \geqslant j(2)
$$

If $j(1)=j(2)=1, A$ is scalar and $\S 2$ supplies the result. This finishes all $m=2$ cases.

We now suppose $m=3$ and $\left(\left|A_{1}\right|,\left|A_{2}\right|,\left|A_{3}\right|\right)=(2,2,4)$. Using (1, Lemma 4) construct a standard matrix $D_{1} \in \operatorname{GL}(j(1), \mathrm{GF}(5))$ with elementary divisors $\lambda-2,(\lambda-1)^{j(1)-1}$ such that the elementary divisors of $A_{1} D_{1}$ are $\lambda-4,(\lambda-1)^{j(1)-1}$. Similarly construct $D_{2} \in \operatorname{GL}(j(2), \mathrm{GF}(5))$ with elementary divisors $\lambda-4,(\lambda-1)^{j(2)-1}$ such that $A_{2} D_{2}$ has elementary divisors $\lambda-3,(\lambda-1)^{j(2)-1}$. Construct $D_{3} \in \operatorname{GL}(j(3)$, GF $(5))$ with elementary divisors $\lambda-3,(\lambda-1)^{j(3)-1}$ such that $A_{3} D_{3}$ has elementary divisors $\lambda-2$, $(\lambda-1)^{j(3)-1}$. Set $D=D_{1}+D_{2}+D_{3}$. Then D and $A D$ have the same
elementary divisors, including a linear elementary divisor, and $|D|=4$. So (18), (19) can be satisfied when $\tau=4$.

If not both $j(1)=1, j(2)=1$, we arrange A_{1}, A_{2} so that $j(1)>1$. Construct by (1, Lemma 4) a standard matrix $D_{1} \in \operatorname{GL}(j(1), K)$ with elementary divisors $\lambda-2, \lambda-3,(\lambda-1)^{j(1)-2}$ such that A_{1}, D_{1} has elementary divisors $\lambda-4, \lambda-3,(\lambda-1)^{j(1)-2}$. Similarly construct $D_{2} \in \operatorname{GL}(j)(2)$, GF (5)) with elementary divisors $\lambda-4,(\lambda-1)^{j(2)-1}$ such that the elementary divisors of $A_{2} D_{2}$ are $(\lambda-3),(\lambda-1)^{j(2)-1}$. Construct $D_{3} \in \operatorname{GL}(j(3), \operatorname{CF}(5))$ with elementary divisors $\lambda-3,(\lambda-1)^{j(3)-1}$ such that $A_{3} D_{3}$ has elementary divisors $\lambda-2,(\lambda-1)^{j(3)-1}$. Set $D=D_{1}+D_{2}+D_{3}$. Then D and $A D$ are similar and $|D|=2$. So (18), (19) are satisfied with $\tau=2$. However, this computation fails when $j(1)=j(2)=1$. If also $j(3)=1$, then A is similar to $C(\lambda-2)+C((\lambda-2)(\lambda-4))$, which falls under the already treated case $m=2$. So let $j(1)=j(2)=1 \neq j(3)$. Use Lemma 6 to construct $U_{3}, \Delta_{j(3)}\left(3, g_{2}, 3, g_{4}, d\right) \in \operatorname{GL}(j(3), \mathrm{GF}(5))$ with $g_{2} \neq 0$, such that

$$
U_{3} A_{3} \Delta_{j(3)} U_{3}^{-1}=C\left((\lambda-2)(\lambda-3)(\lambda-1)^{j(3)-2}\right)
$$

Set $U_{1}=U_{2}=I_{1}$, and set

$$
D=\left[\begin{array}{ccc}
2 & 3 & D_{13} \\
0 & 4 & D_{23} \\
0 & 0 & \Delta_{j(3)}
\end{array}\right]
$$

Here $D_{23}=3$ (top row of U_{3}). Use Lemma 5 to construct D_{13} such that $A D$ is non-derogatory with $(\lambda-2)(\lambda-4)(\lambda-3)^{2}(\lambda-1)^{n-4}$ as characteristic polynomial. This is also the characteristic polynomial of D. Moreover D is non-derogatory since 2,4 are simple eigenvalues of D,

$$
D[4 \mid 3]=-g_{2}(\lambda-2)(\lambda-4)(\lambda-1)^{n-4} \neq 0,
$$

and $D[n \mid 5]_{\lambda=1} \neq 0$ (when $n>5$). Then, in the usual way, D and $A D$ are similar and $|D|=2$. This shows that (18), (19) can always be solved with $\tau=2$.

If not both $j(1)=1, j(2)=1$, let $j(2)>1$. Use Lemma 6 to construct $U_{1}, \Delta_{j(1)}\left(2, g_{2}, 1, g_{4}, d\right) \in \operatorname{GL}(j(1), \mathrm{GF}(5))$ with $g_{4} \neq 0$ such that

$$
U_{1} A_{1} \Delta_{j(1)} U_{1}^{-1}=C\left((\lambda-4)(\lambda-1)^{j(1)-1}\right)
$$

Use Lemma 6 to construct $U_{2}, \Delta_{j(2)}\left(1, h_{2}, 1, h_{4}, d^{\prime}\right) \in \mathrm{GL}(j(2)$, CiF (5)) with $h_{2} \neq 0, h_{4} \neq 0$ such that $U_{2} A_{2} \Delta_{j(2)} U_{2}^{-1}=C\left((\lambda-2)(\lambda-1)^{j(2)-1}\right)$. Use Lemma 6 to construct $U_{3}, \Delta_{j(3)}\left(4, k_{2}, 1, k_{4}, d^{\prime \prime}\right) \in \operatorname{CL}(j(3), \mathrm{GF}(5))$ with $k_{4} \neq 0$ such that $U_{3} A_{3} \Delta_{j(3)} U_{3}^{-1}=C\left((\lambda-1)^{j(3)}\right)$. Define D by (22). We let the last row of D_{12} be $(1,0,0, \ldots, 0)$ if $j(1)>1$, and 3 (first row of U_{2}) if $j(1)=1$. We let the last row of D_{23} be $(0,1,0,0, \ldots, 0)$ if $j(3)>1$, and (1) if $j(3)=1$. We use Lemma 5 to construct the remaining elements of D so that $A D$ is non-derogatory with characteristic polynomial $(\lambda-2)(\lambda-4)$ $\times(\lambda-1)^{n-2}$. This is also the characteristic polynomial of D. Since 2,4 are
simple eigenvalues of D, and $D\left[n-1[2]_{\lambda=1} \neq 0\right.$ (if $j(3)=1$) or $D[n \mid 2]_{\lambda=1} \neq 0$ (if $j(3)>1$), it follows that D is non-derogatory also. Thus $A D$ is similar to D and as D has a linear elementary divisor and $|D|=3$, we can satisfy (18), (19) when $\tau=3$. However, this computation fails if $j(1)=j(2)=1$. Assume $j(1)=j(2)=1$ and let $A_{3}=C(p(\lambda))$. If $p(2) \neq 0$, then A is similar to $C(\lambda-2)+C((\lambda-2) p(\lambda))$, already treated under case $m=2$. Let $p(2)=0$ (hence $j(3)>1$). If $j(3)=2$, then $A=2 I_{2}+C\left((\lambda-2)^{2}\right)$, which has already been handled in $\S 3$, case 3 . So let $j(3)>2$. Use (2, Lemma 2) to construct $U_{3}, \Delta_{j(3)}\left(2, g_{2}, 2, g_{4}, d\right) \in \mathrm{GL}(j(3), \mathrm{GF}(5))$ with $g_{2} \neq 0$, such that $U_{3} A_{3} \Delta_{j(3)} U_{3}^{-1}=C\left((\lambda-2)^{2}(\lambda-4)(\lambda-1)^{j(3)-3}\right)$. (U_{3} is the matrix $S T$ of (2, Lemma 2).) Then set

$$
D=\left[\begin{array}{ccc}
4 & 3 & D_{13} \\
0 & 3 & D_{23} \\
0 & 0 & \Delta_{j(3)}
\end{array}\right]
$$

Here $D_{23}=3$ (first row of U_{3}). Then by Lemma 5 we may construct D_{13} so that $A D$ is non-derogatory with $(\lambda-2)^{2}(\lambda-4)(\lambda-3)(\lambda-1)^{n-4}$ as characteristic polynomial. This is also the characteristic polynomial of D. Moreover, D is non-derogatory since 4,3 are simple eigenvalues,

$$
D[4] 3]=-g_{2}(\lambda-4)(\lambda-3)(\lambda-1)^{n-4} \neq 0,
$$

and $D[n \mid 5]_{\lambda=1} \neq 0$ (when $n>5$). Since $|D|=3$, we have now solved (18), (19) when $\tau=3$. This completely finishes all $m=3$ cases.

Now let $m=4$ and $\left|A_{1}\right|=\left|A_{2}\right|=\left|A_{3}\right|=\left|A_{4}\right|=2$. As in (1, §5), we need only find an element $\delta_{1} \in \mathrm{GF}(5)^{*}$ and integers $e(i)$ satisfying

$$
0 \leqslant e(i) \leqslant j(i)-1
$$

such that

$$
\begin{equation*}
\delta_{1}{ }^{n} 3^{2(1+j(1)+j(4))-e(1)+e(2)+3 e(3)+e(4)}=\tau . \tag{23}
\end{equation*}
$$

If some $j(i)$ is $\geqslant 4$, let $j(2) \geqslant 4$. Set $\delta_{1}=1, e(1)=e(3)=e(4)=0$, $e(2)=0,1,2,3$ so as to satisfy (23). Now suppose all $j(i)$ are $\leqslant 3$. Suppose $j(2)=3$ and $j(4) \geqslant 2$. Then put $\delta_{1}=1, e(1)=e(3)=0, e(2)=0,1$, or 2 , and $e(4)=0$ or 1 so that $e(2)+e(4)=0,1,2$, or 3 as necessary to satisfy (23). Now suppose $j(2)=3$ and $j(1)=j(3)=j(4)=1$. Hence $n=6$ and the left member of (23) becomes $\delta_{1}^{2} 3^{2+e(2)}$. If $\tau=1$, take $\delta_{1}=1, e(2)=2$. If $\tau=2$, take $\delta_{1}=1, e(2)=1$. If $\tau=3$, take $\delta_{1}=3, e(2)=1$. If $\tau=4$, take $\delta_{1}=1, e(2)=0$. Hence we may assume each $j(i) \leqslant 2$. If there exist at least three $j(i)$ not one, let $j(2)=j(3)=j(4)=2$. Set $\delta_{1}=1$ and take $e(2), e(3)$, $e(4)$ to be 0 or 1 so that $e(2)+3 e(3)+e(4) \equiv 0,1,2$, or $3(\bmod 4)$ as required to satisfy (23). If exactly two $j(i)$ are two and exactly two are one, let $j(1)=j(2)=2, j(3)=j(4)=1$. Then $n=6$ and (23) becomes $\delta_{1}{ }^{2} 3^{-e(1)+e(2)}=\tau$. If $\tau=1$, take $\delta_{1}=1, e(1)=e(2)=0$. If $\tau=2$, take $\delta_{1}=1, e(1)=1, e(2)=0$. If $\tau=3$, take $\delta_{1}=1, e(1)=0, e(2)=1$. If $\tau=4$, take $\delta_{1}=2, e(1)=e(2)=0$. Now suppose $j(1)=j(2)=j(3)=1$,
$j(4)=2$. Then $n=5$ and if we put $e(4)=0$ and $\delta_{1}=\tau$, (23) will be satisfied. Finally if $j(1)=j(2)=j(3)=j(4)=1$, then A is scalar and this case was handled in $\S 2$. This completes the $m=4$ case and the proof of Theorem 1 .

References

1. R. C. Thompson, Commutators in the special and general linear groups, Trans. Amer. Math. Soc., 101 (1961), 16-33.
2. - On matrix conmutators, Portugal. Math., 21 (1962), 143-153.
3. - Commutators of matrices with coefficients from the field of two elenents, Duke Math. J., 29 (1962), 367-374.

University of California, Santa Barbara

