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Introduction. Recently, P. Kaplan and K. S. Williams [10] considered (as an
example) the representation of primes by binary quadratic forms of discriminant —768.
These forms fall into 4 genera, each consisting of two classes. In particular, they
considered the forms

F=3X?+64Y? and G=12X*+12XY +19Y2

It follows from genus theory (as explained in [10]) that every prime p =19 mod 24 is
represented by exactly one of the forms F and G. Based on numerical data, they
conjectured that a prime p =19 mod 24 is represented by

{F, if Vpspe=2modp,
G, if V(p+1)/4 =-2 modp,

where
VO = 27 ‘/1 = _4’ Vn+2 = _4Vn+1 - ‘/n (n = 0)

In this note, we prove this criterion as a special case of a more general result using class
field theory and the methods developed in [4].

1. Notations and preliminaries. We start by recalling some facts from Gauss’ theory
of binary quadratic forms and its relations with class field theory, cf. [1] and [2], part III.

Let D be a discriminant of positive definite primitive integral binary quadratic forms
(i.e., DeZ, D <0, D=0 or 1 mod4), and let #(D) be the class group of such forms of
discriminant D (with respect to proper equivalence) under Gauss’ composition. The
principal class of #(D) will always be denoted by I, and we use the notation

[a,b,c]=aX*+bXY +cY?eZ[X, Y]

We say that a class C € /(D) represents an integer w and write C—w, if w =f(x,y) for
some form f € C and x, y € Z such that ged(x, y) = 1. There is a canonical epimorphism

¢p: H(4D)— #(D)
induced by [a,2b,4c]>[a, b, c]. If C e #(4D) and w € Z is odd, then obviously C— w
implies ¢, (C)— w.

Every discriminant is of the form D= Dof%, where D, is the fundamental
discriminant and f}, is the conductor associated with D. The group #(D) is isomorphic to
the ring class group modulo f; in Q(VD,). If T denotes the complex conjugation, then 7
acts on the ring class group modulo f;, and hence on #(D) by A*=A"".

Associated with (D), there is a ring class field k(D) over Q(VD,) and an Artin
isomorphism

() { (D) = Gal(k(D)/Q(VDy))
A ((4))
Glasgow Math. J. 35 (1993) 261-268.

https://doi.org/10.1017/50017089500009824 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500009824

262 FRANZ HALTER-KOCH

possessing the following two fundamental properties;
1) Gal(k(D)/Q) is given by the splitting group extension

1- %(D) 2> Gal(k(D)/Q)— (1) — 1;

2) For a class C € #(D) and a rational prime p + D we have C— p if and only if
((C)) e Gal(k(D)/Q) is the Frobenius automorphism of some prime divisor ¥ of p in
k(D).

We may assume that the Artin isomorphism is normalized in such a way that

((O)) | k(D) = ((¢o(C)))
for every class C e (4D) (observe that, by definition, ((C))e Gal(k(4D)/Q) and
k(4D) o k(D)).
In this note, we shall mainly be concerned with the 2-parts of class groups. We
consider the decomposition

#(D) = #,(D) x %'(D),

where 3,(D) is the 2-Sylow subgroup of (D), and #'(D) is of odd order. We set
h(D)=##(D), h'(D)=#¥'(D), and we denote by k,(D)c k(D) the fixed field of
#'(D) (whence k,(D) is the maximal 2-extension of Q inside k(D)). For a class
A € #,(D), we set

[4] = ((4)) | kx(D) € Gal(k(D)/Q(VDy)).
The following lemma collates the basic properties of the symbol [-].

Lemma 1. i) []: %(D) 3 Gal(k,(D)/Q(VDy)) is a group isomorphism, and
Gal(k,(D)/Q) is given by the splitting group extension

1- %,(D) - Gal(ky(D)/Q)— (1) — 1.

ii) Let C e (D) be a class satisfying C*=1, and let p be a rational prime not
dividing D. Then we have C— p"'® if and only if the fixed field of [C] in ky(D) is the
decomposition field of p in k,(D).

iii) If C € #,(4D), then ¢p(C) € #,(D) and [C]| k(D) = [¢p(C)).

Proof. i) The canonical epimorphism %(D)— Gal(k,(D)/Q(VDy), given by Cw—
((C)) | ko(D), has kernel #'(D); now the assertion follows from the decomposition
#H(D) = #,D) x ¥'(D).

i) It suffices to consider primes p splitting in Q(VDy); let p be a prime divisor of p in
Q(VD,) and o e Gal(k(D)/k) the Frobenius automorphism of p. Then C—p"®) is
equivalent to "' ® =((C))*'; since both automorphisms, " ® and ((C))*!, are of
2-power order, we have "' ® =((C))*! if and only if (¥ | k(D))" ® =[C]*'. Since
C*=1, the last equality holds if and only if ¥ | k(D) and [C] generate the same cyclic
subgroup of Gal(k,(D)/Q(VDy)). Since the fixed field of v | ky(D) in ky(D) is exactly the
decomposition field of p, the assertion follows.

iit) [C]] k2(D) = {((O)) | k(D)} | k(D) = ((90(C))) | ko D) = [¢5(C))-
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2. Class groups of discriminant —2’q. From now on, we consider discriminants of
the following two types:
(I) D =-256q, q is a prime, g =3 mod 4;
(II) D= —128q, g is a prime, g =3 mod 8
(for these discriminants, #,(D) has the same structure as for D = —768).
The associated fundamental discriminant is given by

{—q in case (I),
DO = R
—8q in case (II),
and we set, for s =0,
Ds = ZZYD(],

which implies

D= {D4 in case (I),

" ID, incase (In).

The group #(D,) is isomorphic to the ring class group modulo 2° in Q(VD,), and
therefore there is an exact sequence

(*) 1 Py(s)— H(D,) ~2> #(Do)— 1,

where Y, = ¢p, _,o¢Pp_,°...°¢p, and F(s) is defined as follows: let P(s) be the prime
residue class group modulo 2° in Q(VDy), P.(s) the subgroup of all (a mod 2°) € Py(s),
where either a € Z or a is a root of unity, and set Py(s) = P(s)/ P(s). By [5], Po(s) is (for
s =2) of type
(2°7%,2), if Dy=1mod8 or D,= -3,
(2°72,2,3), if Dy=5mod8, Dy+# -3,
(2°), if Dy=0modS8.

In case (I), #(D,) is trivial, and therefore (D) is of type (272, 2) (for s =2). In
case (II), #,(Dy) is of order 2; for s =1, #,(D,) is not cyclic by genus theory, and
therefore (*) splits. Hence 7,(D;) is of type (2°, 2) in case (II).

In both cases, #,(D) is of type (4,2) and #,(4D) is of type (8,2). We choose
generators such that

#%(4D)=(A,B), A®=B’=],
and we set
A=¢p(4), B=¢p(B);
then we have
#(D)=(A,B), A*=B*=1l

By means of this normalization it is possible to identify the four ambigous classes of
J,(D): A* and I belong to the principal genus, A’°B and B not; B is the ¢D-1mage of an
ambigous form of 9,(4D), A*B not.
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For these reasons, the four ambiguous classes
1, A% B,A’B
of #?(D) contain the forms
{[l, 0,64q],[4,4,1+16q],[q,0,64],[4q,4q,q + 16] in case (1),
[1,0,32q9],(4,4,1+8q],[q,0,32],[4q,4q, q + 8] in case (I1),

respectively.

The classes of #,(D) fall into 4 genera:

%, = {I, A?}, represents numbers a = 1 mod 8,

% = {B, A’B}, represents numbers a =q mod 8,

4, ={A,A%} and 4, = {AB, A’B}.
Let a, B € Z be such that (Z/82)* = {1, g, &, B}. Since we are free to replace A by AB,
we can normalize the generators in such a way, that % represents numbers a = @ mod 8
and %, represents numbers 2 = S mod 8.

From Lemma 1 and the given description of genera we obtain the following criterion
(cf. the Example in [10]).

LemMA 2. Let D be a discriminant of type (1) or (11) and p a rational prime satisfying

(%) = 1. Then p"'‘P is represented by

both A and A*, if p = @ mod 8;

both AB and AB, if p = mod §;

exactly one of I and A?, if p=1mod 8;

exactly one of B and A’B, if p=q mod 8.

In [9] (Corollary on p. 17), we proved a criterion for a prime p=1mod8 to be
represented either by I or by A% In the sequel we concentrate our attention to primes
p=qmod8, and we start by describing the Galois theory of the field k,(4D) for
discriminants D as in (I) or (II).

ko=Q(VID,l)
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By Lemma 1, we obtain
Gal(k(4D)/Q) = ([A], [B], 1),

and [A}* = [BY = 7*=id, [A][B] = [B][A], [B]v = t[B], [A]7 = ¢[A]"".
k,(4D) possesses 3 subfields on degree 16 containing k = Q(V—D,), namely:

ky(D), the fixed field of [A]*;
L, the fixed field of [B];
L, the fixed field of [A*B].

L' and L" are Galois extensions of Q, cyclic of degree 8 over k and having dihedral
groups of order 16 as their absolute Galois groups.

Observing [A] | k(D) =[A] and [B]|ky(D)=[B], we obtain Gal(k,(D)/Q=
([A], [B], 7). The field k,(D) possesses 3 subfields of degree 8 containing k, namely

K*, the fixed field of [A]%
L', the fixed field of [B];
L", the fixed field of [A*B].

K* is an absolutely abelian extension of type (2, 2, 2), and a simple conductor calculation
shows that K* = Q(Vg, V2, V—=1), cf. also [7). L' and L" are Galois extensions of Q,
cyclic of degree 4 over k, and having dihedral groups of order 8 as their absolute Galois
groups. We are able to distinguish between L’ and L": L’ is a subfield of a dihedral field
of degree 16 over Q (e.g., L’ or L"), while L" is not.

Let Lyck,(D) be the fixed field of ([A%],[B]); obviously, k= L,c L*, and
Ly=L'NL" Since L, has an embedding in a dihedral field cyclic over k (namely L'), it
follows by [6], Satz 22 that

L _{@(\/170,\/5), if g=7mods8,
" lQ(VD,, V-2), if g=3modS8.

There are two other subfields of K* which are of interest, namely k, = Q(V|Dy|) and
K =kko=Q(VD,, V~Dy). Let €,>1 be the fundamental unit of k,, and set

M_{K(\/S—eo), if g=7mod8,
“lk(V=4e,), if g=3mods8.

The field M was considered in [4], Sitze 1, 1a and 1b, where the following facts were
proved:

M/Q is a Galois extension of degree 32, K* <M, M/K is cyclic of degree 8, and
there exists a subfield L « M such that M = LK, L/Q is a Galois extension of degree 16
with a dihedral group as Galois group, k = L, and L/k is cyclic of degree 8.

Let M, be the unique intermediate field between K* and M. By [6], Satz 11, L is
contained in a ring class field over k, and since M/k is unramified outside 2, we infer
L c ky(D;) for some s =2. It follows from the structure of #,(D;) (determined above)
that every cyclic extension of degree 8 over k contained in some k,(D,) is already
contained in k,(4D). This implies L € {L’, L"}, and consequently M, = L'K.

The following lemma concerns the splitting type of primes p =g mod 8 in M.
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Lemma 3. Let D be a discriminant of type (1) or (I1) and p a rational prime satisfying
D
(—0) =1 and p=q mod 8. Then p is inert in ky and splits in M, into primes of (absolute)
P

degree 2. Moreover, exactly one of the following two assertions holds true:
1) p splits completely in L', and the prime divisors of p in M are of degree 2.
2) p splits completely in L", and the prime divisors of p in M are of degree 4.

Proof. Since (|Dy|/p) = —(Dy/p) = =1, p is inert in k,. For every subfield Q of M,
we denote by f(Q) the degree of the prime divisors of p in Q. We have f(k)=1,
f(ko) =2, and since K*/Q is of type (2, 2, 2), we infer f(K*) =2. Since p =7 mod 8 splits
in Q(V2) and p =3 mod 8 splits in Q(V—2), we obtain f(Lo) = 1, and since My/L, is of
type (2,2) and K* = M,, we obtain f(M,) =2 as asserted.

k,(D)/Ly is an extension of type (2,2) with intermediate fields L', L” and K*. Since
f(Ly)=1 and f(K*)=2, we obtain f(ky(D))=2, and either f(L')=1, f(L")=2 or
f(L)=2, f(L"y=1. If f(L')=1, then we infer f(M) =2, since M/L' is of type (2,2),
MycM and f(My)=2. If f(L')=2, then we infer f(L')=f(L")=4 since L'/L, and
L"/L, are cyclic, and consequently f(M) = 4 as asserted.

3. Main results.

THEOREM. Let D be a discriminant of type (1) or (1), i.e., either
(I) D =-256q, q prime, g =3 mod 4 or
(II) D= -128q, q prime, g =3 mod 8.
Let p be a rational prime satisfying (D/p)=1 and p=qmod8. Let €;>1 be the
fundamental unit of k,= Q(V|D)).
i) —e€g is a quartic residue modulo p in ko, and exactly one of the classes A*B and B
represents p"'(®,

ii) B— p"'® if and only if —€, is an octic residue modulo p in k.

Proof. We set

a_{—eo, if g=7mod8,
" l-4¢y, if g=3mods8,

whence M =k(</;0) and M,= K(V;O). The prime p is inert in k, and splits in M, by
Lemma 3, and therefore a is a quartic residue modulo p in k.

By Lemma 2, exactly one of the classes B and A®B represents p"®), By Lemma 1,
we have B— p"® if L' is the decomposition field of p in k,(D), and A2B— p"'®)if " is
it. By Lemma 3, p splits completely in exactly one of the fields L’ and L". Therefore we
obtain B— p"'® if and only if p splits completely in L'. Again by Lemma 3, p splits
completely in BL’ if and only if the prime divisors of p in K split completely in M/K, and
since M = K(V &), this is the case if and only if ay is an octic residue modulo p in k.
Thus we have proved:

@ is a quartic modulo p in ko, and B—p
modulo p.

To arrive at the assertions of the theorem, we must prove that, for g =3mod 8, 2 is a
quartic residue modulo p in k, (then 4 is an octic residue); but this is easy, cf. [8], Lemma
2.

*(®) if and only if a, is an octic residue
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Finally we give an interpretation of the criterion stated in the theorem in terms of
recurrent sequences.

ProposiTioN. Let m >2 be a square-free integer, u,veN, € =u+ vWm>1 and
u*—mv*=1. Let p=3mod4 be a prime satisfying (m/p)=—1. Define the sequence
(V)n=o by Vo=2, V= =2uand V, ., = —2uV, ., — (u* -~ mv))V, (n = 0).

i) For any n =0, we have V, = (—u + vVm)" + (~u — v\/m)".
ii) —e€ is a quadratic residue modulo p in Q(\/m), and Vip+nz=12modp.
iii) —e€ is a quartic residue modulo p in Q(\Vm) if and only if Vip+nyz=2modp; in
this case we have V, .1y, = 12 mod p.
iv) Let —e€ be a quartic residue modulo p in Q(\/m). Then —€ is an octic residue
modulo p in Q(Vm) if and only if Vip+1ya=2mod 4.

Proof. i) follows by induction.

For the proof of the remaining assertions, let F = Z[\V/m]/(p) be the residue class
field modulo p, and denote by y € F the residue class of an element y € Z[V/m]. F s a field
of p? elements, containing the subfield F,=2Z/pZ of rational residue classes. The
non-trivial automorphism of F/F, is induced by that of Q(Vm)/Q and is given by
(& &P). Since ¥(€) =u?—m*v =1, we obtain é&'**=1¢F, and

V.=(—&y'+(-&™" (n=0).
Therefore V,, = +2 mod p is equivalent with
[(-&)yPF2(-&)]+1=0,
i.e.
(-&)"=x1€eF.
Let @ € Z[Vm] be a primitive root modulo p, i.e. F* = (@), and set —& = @ with [ e N,.
Since &'*?=1, we obtain /=(p~—1)r for some reN. If veN, 2"|p+1, then
2"*'|p?—1, and consequently —e is a 2"*'th power residue modulo p if and only if 2| r.
If 2”| p + 1, then we have

(_ é)(p+l)/2" — CD(pZ—l)rlz" =1
if and only if 2" | r, and in this case we obtain (provided that 2"*'|p + 1)
(=&)Pr2 = 4],
Applying these arguments for v € {0, 1, 2}, the assertions of the Proposition follow.

Remark 1. There are analogues of the proposition above concerning the residuacity
character of € or £2¢. They also may be used together with the theorem to obtain criteria
for the representation by A’B or B.

Remark 2. If m =3, then AB contains the form {12, 12, 9] and B contains [3, 0, 64];
we have €,=2+ V3, and the theorem together with the proposition implies the
conjecture of Kaplan and Williams.
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