REPRESENTATION OF PRIMES BY BINARY QUADRATIC FORMS OF DISCRIMINANT -256q AND -128q

by FRANZ HALTER-KOCH

(Received 29 January, 1992)

Introduction. Recently, P. Kaplan and K. S. Williams [10] considered (as an example) the representation of primes by binary quadratic forms of discriminant -768. These forms fall into 4 genera, each consisting of two classes. In particular, they considered the forms

$$F = 3X^2 + 64Y^2$$
 and $G = 12X^2 + 12XY + 19Y^2$.

It follows from genus theory (as explained in [10]) that every prime $p \equiv 19 \mod 24$ is represented by exactly one of the forms F and G. Based on numerical data, they conjectured that a prime $p \equiv 19 \mod 24$ is represented by

$$\begin{cases} F, & \text{if } V_{(p+1)/4} \equiv 2 \mod p, \\ G, & \text{if } V_{(p+1)/4} \equiv -2 \mod p, \end{cases}$$

where

$$V_0 = 2$$
, $V_1 = -4$, $V_{n+2} = -4V_{n+1} - V_n$ $(n \ge 0)$.

In this note, we prove this criterion as a special case of a more general result using class field theory and the methods developed in [4].

1. Notations and preliminaries. We start by recalling some facts from Gauss' theory of binary quadratic forms and its relations with class field theory, cf. [1] and [2], part III.

Let D be a discriminant of positive definite primitive integral binary quadratic forms (i.e., $D \in \mathbb{Z}$, D < 0, $D \equiv 0$ or $1 \mod 4$), and let $\mathcal{H}(D)$ be the class group of such forms of discriminant D (with respect to proper equivalence) under Gauss' composition. The principal class of $\mathcal{H}(D)$ will always be denoted by I, and we use the notation

$$[a, b, c] = aX^2 + bXY + cY^2 \in \mathbb{Z}[X, Y].$$

We say that a class $C \in \mathcal{H}(D)$ represents an integer w and write $C \to w$, if w = f(x, y) for some form $f \in C$ and $x, y \in \mathbb{Z}$ such that gcd(x, y) = 1. There is a canonical epimorphism

$$\phi_D: \mathcal{H}(4D) \to \mathcal{H}(D)$$

induced by $[a, 2b, 4c] \mapsto [a, b, c]$. If $\bar{C} \in \mathcal{H}(4D)$ and $w \in \mathbb{Z}$ is odd, then obviously $\bar{C} \to w$ implies $\phi_D(\bar{C}) \to w$.

Every discriminant is of the form $D=D_0f_D^2$, where D_0 is the fundamental discriminant and f_D is the conductor associated with D. The group $\mathcal{H}(D)$ is isomorphic to the ring class group modulo f_D in $\mathbb{Q}(\sqrt{D_0})$. If τ denotes the complex conjugation, then τ acts on the ring class group modulo f_D and hence on $\mathcal{H}(D)$ by $A^{\tau}=A^{-1}$.

Associated with $\mathcal{H}(D)$, there is a ring class field k(D) over $\mathbb{Q}(\sqrt{D_0})$ and an Artin isomorphism

$$((\cdot)): \begin{cases} \mathcal{H}(D) \cong \operatorname{Gal}(k(D)/\mathbb{Q}(\sqrt{D_0})) \\ A \mapsto ((A)) \end{cases}$$
Glasgow Math. J. 35 (1993) 261–268.

possessing the following two fundamental properties;

1) $Gal(k(D)/\mathbb{Q})$ is given by the splitting group extension

$$1 \to \mathcal{H}(D) \xrightarrow{((\cdot))} \operatorname{Gal}(k(D)/\mathbb{Q}) \to \langle \tau \rangle \to 1;$$

2) For a class $C \in \mathcal{H}(D)$ and a rational prime $p \nmid D$ we have $C \rightarrow p$ if and only if $((C)) \in Gal(k(D)/\mathbb{Q})$ is the Frobenius automorphism of some prime divisor \mathfrak{P} of p in k(D).

We may assume that the Artin isomorphism is normalized in such a way that

$$((\bar{C})) \mid k(D) = ((\phi_D(\bar{C})))$$

for every class $\bar{C} \in \mathcal{H}(4D)$ (observe that, by definition, $((\bar{C})) \in Gal(k(4D)/\mathbb{Q})$ and $k(4D) \supset k(D)$).

In this note, we shall mainly be concerned with the 2-parts of class groups. We consider the decomposition

$$\mathcal{H}(D) = \mathcal{H}_2(D) \times \mathcal{H}'(D),$$

where $\mathcal{H}_2(D)$ is the 2-Sylow subgroup of $\mathcal{H}(D)$, and $\mathcal{H}'(D)$ is of odd order. We set $h(D) = \#\mathcal{H}(D)$, $h'(D) = \#\mathcal{H}'(D)$, and we denote by $k_2(D) \subset k(D)$ the fixed field of $\mathcal{H}'(D)$ (whence $k_2(D)$ is the maximal 2-extension of \mathbb{Q} inside k(D)). For a class $A \in \mathcal{H}_2(D)$, we set

$$[A] = ((A)) \mid k_2(D) \in Gal(k_2(D)/\mathbb{Q}(\sqrt{D_0})).$$

The following lemma collates the basic properties of the symbol [·].

LEMMA 1. i) $[\cdot]: \mathcal{H}_2(D) \cong \operatorname{Gal}(k_2(D)/\mathbb{Q}(\sqrt{D_0}))$ is a group isomorphism, and $\operatorname{Gal}(k_2(D)/\mathbb{Q})$ is given by the splitting group extension

$$1 \to \mathcal{H}_2(D) \xrightarrow{[\cdot]} \operatorname{Gal}(k_2(D)/\mathbb{Q}) \to \langle \tau \rangle \to 1.$$

- ii) Let $C \in \mathcal{H}_2(D)$ be a class satisfying $C^4 = I$, and let p be a rational prime not dividing D. Then we have $C \to p^{h'(D)}$ if and only if the fixed field of [C] in $k_2(D)$ is the decomposition field of p in $k_2(D)$.
 - iii) If $\bar{C} \in \mathcal{H}_2(4D)$, then $\phi_D(\bar{C}) \in \mathcal{H}_2(D)$ and $[\bar{C}] \mid k_2(D) = [\phi_D(\bar{C})]$.
- *Proof.* i) The canonical epimorphism $\mathcal{H}(D) \to \operatorname{Gal}(k_2(D)/\mathbb{Q}(\sqrt{D_0}))$, given by $C \mapsto ((C)) \mid k_2(D)$, has kernel $\mathcal{H}'(D)$; now the assertion follows from the decomposition $\mathcal{H}(D) = \mathcal{H}_2(D) \times \mathcal{H}'(D)$.
- ii) It suffices to consider primes p splitting in $\mathbb{Q}(\sqrt{D_0})$; let \mathfrak{p} be a prime divisor of p in $\mathbb{Q}(\sqrt{D_0})$ and $\psi \in \operatorname{Gal}(k(D)/k)$ the Frobenius automorphism of \mathfrak{p} . Then $C \to p^{h'(D)}$ is equivalent to $\psi^{h'(D)} = ((C))^{\pm 1}$; since both automorphisms, $\psi^{h'(D)}$ and $((C))^{\pm 1}$, are of 2-power order, we have $\psi^{h'(D)} = ((C))^{\pm 1}$ if and only if $(\psi \mid k_2(D))^{h'(D)} = [C]^{\pm 1}$. Since $C^4 = I$, the last equality holds if and only if $\psi \mid k_2(D)$ and [C] generate the same cyclic subgroup of $\operatorname{Gal}(k_2(D)/\mathbb{Q}(\sqrt{D_0}))$. Since the fixed field of $\psi \mid k_2(D)$ in $k_2(D)$ is exactly the decomposition field of p, the assertion follows.

iii)
$$[\bar{C}] | k_2(D) = \{ ((\bar{C})) | k(D) \} | k_2(D) = ((\phi_D(\bar{C}))) | k_2(D) = [\phi_D(\bar{C})].$$

- **2. Class groups of discriminant** -2^tq . From now on, we consider discriminants of the following two types:
 - (I) D = -256q, q is a prime, $q \equiv 3 \mod 4$;
 - (II) D = -128q, q is a prime, $q \equiv 3 \mod 8$

(for these discriminants, $\mathcal{H}_2(D)$ has the same structure as for D = -768).

The associated fundamental discriminant is given by

$$D_0 = \begin{cases} -q & \text{in case (I),} \\ -8q & \text{in case (II),} \end{cases}$$

and we set, for $s \ge 0$,

$$D_s=2^{2s}D_0,$$

which implies

$$D = \begin{cases} D_4 & \text{in case (I),} \\ D_2 & \text{in case (II).} \end{cases}$$

The group $\mathcal{H}(D_s)$ is isomorphic to the ring class group modulo 2^s in $\mathbb{Q}(\sqrt{D_0})$, and therefore there is an exact sequence

(*)
$$1 \to \mathcal{P}_0(s) \to \mathcal{H}(D_s) \xrightarrow{\psi_s} \mathcal{H}(D_0) \to 1,$$

where $\psi_s = \phi_{D_{s-1}} \circ \phi_{D_{s-2}} \circ \ldots \circ \phi_{D_0}$, and $\mathcal{P}_0(s)$ is defined as follows: let $\mathcal{P}(s)$ be the prime residue class group modulo 2^s in $\mathbb{Q}(\sqrt{D_0})$, $\mathcal{P}_*(s)$ the subgroup of all $(a \mod 2^s) \in \mathcal{P}_0(s)$, where either $a \in \mathbb{Z}$ or a is a root of unity, and set $\mathcal{P}_0(s) = \mathcal{P}(s)/\mathcal{P}_*(s)$. By [5], $\mathcal{P}_0(s)$ is (for $s \ge 2$) of type

$$(2^{s-2}, 2)$$
, if $D_0 \equiv 1 \mod 8$ or $D_0 = -3$,
 $(2^{s-2}, 2, 3)$, if $D_0 \equiv 5 \mod 8$, $D_0 \neq -3$,
 (2^s) , if $D_0 \equiv 0 \mod 8$.

In case (I), $\mathcal{H}_2(D_0)$ is trivial, and therefore $\mathcal{H}_2(D_s)$ is of type $(2^{s-2}, 2)$ (for $s \ge 2$). In case (II), $\mathcal{H}_2(D_0)$ is of order 2; for $s \ge 1$, $\mathcal{H}_2(D_s)$ is not cyclic by genus theory, and therefore (*) splits. Hence $\mathcal{H}_2(D_s)$ is of type $(2^s, 2)$ in case (II).

In both cases, $\mathcal{H}_2(D)$ is of type (4,2) and $\mathcal{H}_2(4D)$ is of type (8,2). We choose generators such that

$$\mathcal{H}_2(4D) = \langle \bar{A}, \bar{B} \rangle, \qquad \bar{A}^8 = \bar{B}^2 = I,$$

and we set

$$A = \phi_D(\bar{A}), \qquad B = \phi_D(\bar{B});$$

then we have

$$\mathcal{H}_2(D) = \langle A, B \rangle, \qquad A^4 = B^2 = I.$$

By means of this normalization it is possible to identify the four ambigous classes of $\mathcal{H}_2(D)$: A^2 and I belong to the principal genus, A^2B and B not; B is the ϕ_D -image of an ambigous form of $\mathcal{H}_2(4D)$, A^2B not.

For these reasons, the four ambiguous classes

$$I, A^2, B, A^2B$$

of $\mathcal{H}^2(D)$ contain the forms

$$\begin{cases} [1,0,64q], [4,4,1+16q], [q,0,64], [4q,4q,q+16] & \text{in case (I),} \\ [1,0,32q], [4,4,1+8q], [q,0,32], [4q,4q,q+8] & \text{in case (II),} \\ \text{respectively.} \end{cases}$$

The classes of $\mathcal{H}_2(D)$ fall into 4 genera:

 $\mathcal{G}_1 = \{I, A^2\}, \text{ represents numbers } a \equiv 1 \mod 8,$

 $\mathcal{G}_2 = \{B, A^2B\}$, represents numbers $a \equiv q \mod 8$,

 $\mathcal{G}_3 = \{A, A^3\} \text{ and } \mathcal{G}_4 = \{AB, A^3B\}.$

Let $\alpha, \beta \in \mathbb{Z}$ be such that $(\mathbb{Z}/8\mathbb{Z})^{\times} = \{\bar{1}, \bar{q}, \bar{\alpha}, \bar{\beta}\}$. Since we are free to replace A by AB, we can normalize the generators in such a way, that \mathcal{G}_3 represents numbers $a \equiv \alpha \mod 8$ and \mathcal{G}_4 represents numbers $a \equiv \beta \mod 8$.

From Lemma 1 and the given description of genera we obtain the following criterion (cf. the Example in [10]).

LEMMA 2. Let D be a discriminant of type (I) or (II) and p a rational prime satisfying

$$\left(\frac{D_0}{p}\right) = 1$$
. Then $p^{h'(D)}$ is represented by

both A and A^3 , if $p \equiv \alpha \mod 8$;

both AB and A^3B , if $p \equiv \beta \mod 8$;

exactly one of I and A^2 , if $p \equiv 1 \mod 8$;

exactly one of B and A^2B , if $p \equiv q \mod 8$.

In [9] (Corollary on p. 17), we proved a criterion for a prime $p \equiv 1 \mod 8$ to be represented either by I or by A^2 . In the sequel we concentrate our attention to primes $p \equiv q \mod 8$, and we start by describing the Galois theory of the field $k_2(4D)$ for discriminants D as in (I) or (II).

By Lemma 1, we obtain

$$\operatorname{Gal}(k_2(4D)/\mathbb{Q}) = \langle [\bar{A}], [\bar{B}], \tau \rangle,$$

and $[\bar{A}]^8 = [\bar{B}]^2 = \tau^2 = \mathrm{id}$, $[\bar{A}][\bar{B}] = [\bar{B}][\bar{A}]$, $[\bar{B}]\tau = \tau[\bar{B}]$, $[\bar{A}]\tau = \tau[\bar{A}]^{-1}$. $k_2(4D)$ possesses 3 subfields on degree 16 containing $k = \mathbb{Q}(\sqrt{-D_0})$, namely:

 $k_2(D)$, the fixed field of $[\bar{A}]^4$;

 \bar{L}' , the fixed field of $[\bar{B}]$; \bar{L}'' , the fixed field of $[\bar{A}^4\bar{B}]$.

 \bar{L}' and \bar{L}'' are Galois extensions of \mathbb{Q} , cyclic of degree 8 over k and having dihedral groups of order 16 as their absolute Galois groups.

Observing $[\bar{A}] | k_2(D) = [A]$ and $[\bar{B}] | k_2(D) = [B]$, we obtain $Gal(k_2(D)/\mathbb{Q}) = [B]$ $\langle [A], [B], \tau \rangle$. The field $k_2(D)$ possesses 3 subfields of degree 8 containing k, namely

 K^* , the fixed field of $[A]^2$;

L'. the fixed field of [B]:

L''. the fixed field of $[A^2B]$.

 K^* is an absolutely abelian extension of type (2,2,2), and a simple conductor calculation shows that $K^* = \mathbb{Q}(\sqrt{q}, \sqrt{2}, \sqrt{-1})$, cf. also [7]. L' and L'' are Galois extensions of \mathbb{Q} , cyclic of degree 4 over k, and having dihedral groups of order 8 as their absolute Galois groups. We are able to distinguish between L' and L'':L' is a subfield of a dihedral field of degree 16 over \mathbb{Q} (e.g., \bar{L}' or \bar{L}''), while L'' is not.

Let $L_0 \subset k_2(D)$ be the fixed field of $\langle [A^2], [B] \rangle$; obviously, $k \subset L_0 \subset L^*$, and $L_0 = L' \cap L''$. Since L_0 has an embedding in a dihedral field cyclic over k (namely L'), it follows by [6], Satz 22 that

$$L_0 = \begin{cases} \mathbb{Q}(\sqrt{D_0}, \sqrt{2}), & \text{if } q \equiv 7 \mod 8, \\ \mathbb{Q}(\sqrt{D_0}, \sqrt{-2}), & \text{if } q \equiv 3 \mod 8. \end{cases}$$

There are two other subfields of K^* which are of interest, namely $k_0 = \mathbb{Q}(\sqrt{|D_0|})$ and $K = kk_0 = \mathbb{Q}(\sqrt{D_0}, \sqrt{-D_0})$. Let $\epsilon_0 > 1$ be the fundamental unit of k_0 , and set

$$M = \begin{cases} K(\sqrt[8]{-\epsilon_0}), & \text{if } q \equiv 7 \mod 8, \\ K(\sqrt[8]{-4\epsilon_0}), & \text{if } q \equiv 3 \mod 8. \end{cases}$$

The field M was considered in [4], Sätze 1, 1a and 1b, where the following facts were proved:

 M/\mathbb{Q} is a Galois extension of degree 32, $K^* \subset M$, M/K is cyclic of degree 8, and there exists a subfield $L \subset M$ such that M = LK, L/\mathbb{Q} is a Galois extension of degree 16 with a dihedral group as Galois group, $k \subset L$, and L/k is cyclic of degree 8.

Let M_0 be the unique intermediate field between K^* and M. By [6], Satz 11, L is contained in a ring class field over k, and since M/k is unramified outside 2, we infer $L \subset k_2(D_s)$ for some $s \ge 2$. It follows from the structure of $\mathcal{H}_2(D_s)$ (determined above) that every cyclic extension of degree 8 over k contained in some $k_2(D_s)$ is already contained in $k_2(4D)$. This implies $\bar{L} \in \{\bar{L}', \bar{L}''\}$, and consequently $M_0 = L'K$.

The following lemma concerns the splitting type of primes $p \equiv q \mod 8$ in M.

Lemma 3. Let D be a discriminant of type (I) or (II) and p a rational prime satisfying $\left(\frac{D_0}{p}\right) = 1$ and $p \equiv q \mod 8$. Then p is inert in k_0 and splits in M_0 into primes of (absolute) degree 2. Moreover, exactly one of the following two assertions holds true:

- 1) p splits completely in L', and the prime divisors of p in M are of degree 2.
- 2) p splits completely in L", and the prime divisors of p in M are of degree 4.

Proof. Since $(|D_0|/p) = -(D_0/p) = -1$, p is inert in k_0 . For every subfield Ω of M, we denote by $f(\Omega)$ the degree of the prime divisors of p in Ω . We have f(k) = 1, $f(k_0) = 2$, and since K^*/\mathbb{Q} is of type (2, 2, 2), we infer $f(K^*) = 2$. Since $p \equiv 7 \mod 8$ splits in $\mathbb{Q}(\sqrt{-2})$ and $p \equiv 3 \mod 8$ splits in $\mathbb{Q}(\sqrt{-2})$, we obtain $f(L_0) = 1$, and since M_0/L_0 is of type (2, 2) and $K^* \subset M_0$, we obtain $f(M_0) = 2$ as asserted.

 $k_2(D)/L_0$ is an extension of type (2,2) with intermediate fields L', L'' and K^* . Since $f(L_0)=1$ and $f(K^*)=2$, we obtain $f(k_2(D))=2$, and either f(L')=1, f(L'')=2 or f(L')=2, f(L'')=1. If f(L')=1, then we infer f(M)=2, since M/L' is of type (2,2), $M_0 \subset M$ and $f(M_0)=2$. If f(L')=2, then we infer $f(\bar{L}')=f(\bar{L}'')=4$ since \bar{L}'/L_0 and \bar{L}''/L_0 are cyclic, and consequently f(M)=4 as asserted.

3. Main results.

THEOREM. Let D be a discriminant of type (I) or (II), i.e., either

- (I) D = -256q, q prime, $q \equiv 3 \mod 4$ or
- (II) D = -128q, q prime, $q \equiv 3 \mod 8$.

Let p be a rational prime satisfying (D/p) = 1 and $p \equiv q \mod 8$. Let $\epsilon_0 > 1$ be the fundamental unit of $k_0 = \mathbb{Q}(\sqrt{|D|})$.

- i) $-\epsilon_0$ is a quartic residue modulo p in k_0 , and exactly one of the classes A^2B and B represents $p^{h'(D)}$.
 - ii) $B \to p^{h'(D)}$ if and only if $-\epsilon_0$ is an octic residue modulo p in k_0 .

Proof. We set

$$\alpha_0 = \begin{cases} -\epsilon_0, & \text{if } q \equiv 7 \mod 8, \\ -4\epsilon_0, & \text{if } q \equiv 3 \mod 8, \end{cases}$$

whence $M = k(\sqrt[8]{\alpha_0})$ and $M_0 = K(\sqrt[4]{\alpha_0})$. The prime p is inert in k_0 and splits in M_0 by Lemma 3, and therefore α_0 is a quartic residue modulo p in k_0 .

By Lemma 2, exactly one of the classes B and A^2B represents $p^{h'(D)}$. By Lemma 1, we have $B \to p^{h'(D)}$ if L' is the decomposition field of p in $k_2(D)$, and $A^2B \to p^{h'(D)}$ if L'' is it. By Lemma 3, p splits completely in exactly one of the fields L' and L''. Therefore we obtain $B \to p^{h'(D)}$ if and only if p splits completely in L'. Again by Lemma 3, p splits completely in L' if and only if the prime divisors of p in K split completely in M/K, and since $M = K(\sqrt[8]{\alpha_0})$, this is the case if and only if α_0 is an octic residue modulo p in k_0 . Thus we have proved:

 α_0 is a quartic modulo p in k_0 , and $B \rightarrow p^{h'(D)}$ if and only if α_0 is an octic residue modulo p.

To arrive at the assertions of the theorem, we must prove that, for $q \equiv 3 \mod 8$, 2 is a quartic residue modulo p in k_0 (then 4 is an octic residue); but this is easy, cf. [8], Lemma 2.

Finally we give an interpretation of the criterion stated in the theorem in terms of recurrent sequences.

Proposition. Let m > 2 be a square-free integer, $u, v \in \mathbb{N}$, $\epsilon = u + v\sqrt{m} > 1$ and $u^2 - mv^2 = 1$. Let $p \equiv 3 \mod 4$ be a prime satisfying (m/p) = -1. Define the sequence $(V_n)_{n\geq 0}$ by $V_0 = 2$, $V_1 = -2u$ and $V_{n+2} = -2uV_{n+1} - (u^2 - mv^2)V_n$ $(n \geq 0)$. i) For any $n \geq 0$, we have $V_n = (-u + v\sqrt{m})^n + (-u - v\sqrt{m})^n$.

- ii) $-\epsilon$ is a quadratic residue modulo p in $\mathbb{Q}(\sqrt{m})$, and $V_{(p+1)/2} \equiv \pm 2 \mod p$.
- iii) $-\epsilon$ is a quartic residue modulo p in $\mathbb{Q}(\sqrt{m})$ if and only if $V_{(p+1)/2} \equiv 2 \mod p$; in this case we have $V_{(p+1)/4} \equiv \pm 2 \mod p$.
- iv) Let $-\epsilon$ be a quartic residue modulo p in $\mathbb{Q}(\sqrt{m})$. Then $-\epsilon$ is an octic residue modulo p in $\mathbb{Q}(\sqrt{m})$ if and only if $V_{(n+1)/4} \equiv 2 \mod 4$.

Proof. i) follows by induction.

For the proof of the remaining assertions, let $F = \mathbb{Z}[\sqrt{m}]/(p)$ be the residue class field modulo p, and denote by $\bar{y} \in F$ the residue class of an element $y \in \mathbb{Z}[\sqrt{m}]$. F is a field of p^2 elements, containing the subfield $F_0 = \mathbb{Z}/p\mathbb{Z}$ of rational residue classes. The non-trivial automorphism of F/F_0 is induced by that of $\mathbb{Q}(\sqrt{m})/\mathbb{Q}$ and is given by $(\xi \mapsto \xi^p)$. Since $\mathcal{N}(\epsilon) = u^2 - m^2 v = 1$, we obtain $\tilde{\epsilon}^{1+p} = \tilde{1} \in F$, and

$$\bar{V}_n = (-\bar{\epsilon})^n + (-\bar{\epsilon})^{-n} \quad (n \ge 0).$$

Therefore $V_n \equiv \pm 2 \mod p$ is equivalent with

$$[(-\bar{\epsilon})^n]^2 \mp 2[(-\bar{\epsilon})^n] + \bar{1} = \bar{0},$$

i.e.

$$(-\bar{\epsilon})^n = \pm \bar{1} \in F.$$

Let $\omega \in \mathbb{Z}[\sqrt{m}]$ be a primitive root modulo p, i.e. $F^{\times} = \langle \bar{\omega} \rangle$, and set $-\bar{\epsilon} = \bar{\omega}^l$ with $l \in \mathbb{N}_0$. Since $\bar{\epsilon}^{1+p} = \bar{1}$, we obtain l = (p-1)r for some $r \in \mathbb{N}$. If $v \in \mathbb{N}_0$, $2^v \mid p+1$, then $2^{\nu+1} | p^2 - 1$, and consequently $-\epsilon$ is a $2^{\nu+1}$ th power residue modulo p if and only if $2^{\nu} | r$. If $2^{\nu} \mid p+1$, then we have

$$(-\bar{\epsilon})^{(p+1)/2^{\nu}} = \bar{\omega}^{(p^2-1)r/2^{\nu}} = \bar{1}$$

if and only if $2^{\nu} | r$, and in this case we obtain (provided that $2^{\nu+1} | p+1$)

$$(-\bar{\epsilon})^{(p+1)/2^{\nu+1}} = \pm \bar{1}.$$

Applying these arguments for $v \in \{0, 1, 2\}$, the assertions of the Proposition follow.

REMARK 1. There are analogues of the proposition above concerning the residuacity character of ϵ or $\pm 2\epsilon$. They also may be used together with the theorem to obtain criteria for the representation by A^2B or B.

REMARK 2. If m = 3, then A^2B contains the form [12, 12, 9] and B contains [3, 0, 64]; we have $\epsilon_0 = 2 + \sqrt{3}$, and the theorem together with the proposition implies the conjecture of Kaplan and Williams.

REFERENCES

- 1, D. A. Buell, Binary quadratic forms (Springer-Verlag 1989).
- 2. H. Cohn, A classical invitation to algebraic numbers and class fields (Springer-Verlag 1978).

- 3. S. Gurak, On the representation theory for full decomposable forms, J. Number Theory 13 (1981), 421-442.
- 4. F. Halter-Koch, Quadratische Einheiten als 8. Potenzreste in *Proc. Int. Conf. on Class Numbers and Fundamental Units* (Katata 1986), 1-15.
- 5. F. Halter-Koch, Einseinheitengruppen und prime Resklassengruppen in quadratischen Zahlkörpern, J. Number Theory 4 (1972), 70-77.
- 6. F. Halter-Koch, Arithmetische Theorie der Normalkörper von 2-Potenzgrad mit Diedergruppe, J. Number Theory 3 (1971), 412-443.
- 7. F. Halter-Koch, Geschlechtertheorie der Ringklassenkörper, J. Reine Angew. Math. 250 (1971), 107-108.
- **8.** F. Halter-Koch and N. Ishii, Ring class fields modulo 8 of $\mathbb{Q}(\sqrt{-m})$ and the quartic character of units of $\mathbb{Q}(\sqrt{m})$ for $m \equiv 1 \mod 8$, Osaka J. Math. **26** (1989), 625-646.
- 9. F. Halter-Koch, P. Kaplan and K. S. Williams, An Artin character and representations of primes by binary quadratic forms II, *Manuscr. Math.* 37 (1982), 357-381.
- 10. P. Kaplan and K. S. Williams, Representation of primes in arithmetic progressions by binary quadratic forms, J. Number Theorey, to appear.

Institut für Mathematik Karl-Franzens-Universität Heinrichstrasse 36/IV A-8010 Graz, Österreich.