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ABSTRACT

Background: People with Alzheimer’s disease (AD) experience, in addition to the progressive loss of cognitive
functions, a decline in functional performance such as mobility impairment and disability in activities of daily
living (ADL). Functional decline in dementia is mainly linked to the progressive brain pathology. Peripheral
biomechanical changes by advanced glycation end-products (AGEs) have been suggested but have yet to be
thoroughly studied.

Methods: A multi-center, longitudinal, one-year follow-up cohort study was conducted in 144 people with
early stage AD or mixed Alzheimer’s/Vascular dementia. Linear mixed model analyses was used to study
associations between AGE-levels (AGE reader) and mobility (Timed Up and Go), and ADL (Groningen
Activity Restriction Scale and Barthel index), respectively.

Results: A significant association between AGE levels and mobility (β = 3.57, 95%CI: 1.43–5.73) was
revealed; however, no significant association between AGE levels and ADL was found. Over a one-year time
span, mean AGE levels significantly increased, and mobility and ADL performance decreased. Change in
AGE levels was not significantly correlated with change in mobility.

Conclusions: This study indicates that high AGE levels could be a contributing factor to impaired mobility
but lacks evidence for an association with ADL decline in people with early stage AD or mixed dementia.
Future research is necessary on the reduction of functional decline in dementia regarding the effectiveness
of interventions such as physical activity programs and dietary advice possibly in combination with
pharmacologic strategies targeting AGE accumulation.
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Background

People with Alzheimer’s disease (AD) experience,
in addition to the progressive loss of cognitive
functions, a decline in functional performance such
as mobility impairment and disability in activities
of daily living (ADL) (American Psychiatric Asso-
ciation, 1994). In early stage AD, there are already
decreases in step length and walking velocity and,
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in early vascular dementia (VaD), a small step gait,
slow stepping, ataxic gait, and unsteadiness is found
(Scherder et al., 2011). Impairment in basic ADL
(BADL) functions (i.e., bathing, toileting, feeding,
and dressing) in early dementia is more reliant
on decline in motor function, whereas impairment
in instrumental ADL (IADL) functions (i.e.
housekeeping, cooking and finance management)
is more reliant on cognition decline (Martyr
and Clare, 2012). Furthermore, it is known that
specifically in the early stages initiating certain
IADL (i.e. preparing a meal, finance management)
is found to be more strongly impaired than their
performance (Giebel et al., 2017). Decline in
functional performance contributes to an increase
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in care burden and a decrease in the quality
of life (Andersen et al., 2004). Lower level and
accelerated decline of functional performance is
suggested to predict the subsequent development of
mild cognitive impairment and AD and can precede
cognitive impairment by several years (Buchman
and Bennett, 2011). Ramakers et al. determined
that, even five years prior to the dementia diagnosis,
walking impairments were significantly higher in
pre-clinical people with dementia compared to the
control group (Ramakers et al., 2007). A decline
in functional performance could be predicted with
biomarkers; one of the proposed biomarkers is
advanced glycation end-products (AGEs). AGE
accumulation contributes to the age-related decline
of the functioning of cells and tissues in normal
aging (Rahmadi et al., 2011). Interestingly, AD is
related to higher concentrations of AGEs (Rahmadi
et al., 2011; Li et al., 2012). AGEs, therefore, are
a potential biomarker and an accompanying risk
factor for the decline of functional performance in
people with AD and mixed dementia (AD/VaD).

Advanced glycation end products
Decline in functional performance in dementia is
primarily associated with central mechanisms as
a result of progressive brain pathology. Peripheral
biomechanical changes have been suggested but
have yet to be thoroughly studied. Studies in stroke
patients show that immobility is associated with
adaptive mechanical and morphological changes
in muscle tissue in which muscles become stiffer
(Farmer and James, 2001). A review comprising
eight studies suggests that, in participants without
dementia, AGEs-induced muscle biomechanical
changes contribute to a decline in walking
abilities and in BADL as well as physical frailty
(Drenth et al., 2016). It was recently found
that AGEs are associated with the presence
and severity of paratonia, a distinctive form of
hypertonia/movement stiffness in dementia, which
suggests that peripheral biomechanical changes
contribute to movement stiffness in early stage
dementia (Drenth et al., 2017).

AGEs are formed by the non-enzymatic con-
densation of a reducing sugar with proteins or lipids
and accumulate in hyperglycaemic environments.
The accumulation of AGEs is an element of
normal metabolism that accelerates in a wide
variety of diseases and during normal aging
(Ahmed and Thornalley, 2007; Rahmadi et al.,
2011). AGEs can be categorized into fluorescent
cross-linking, non-fluorescent cross-linking, fluor-
escent non-crosslinking, and non-fluorescent non-
crosslinking (Meerwaldt et al., 2004). AGEs tissue
accumulation can be estimated non-invasively by

skin auto-fluorescence (SAF) with an AGE reader
by utilizing the fluorescent properties of specific
AGEs that correlate with non-fluorescent AGEs
(Meerwaldt et al., 2004).

The cross-linking of long-lived proteins, par-
ticularly collagen, is responsible for increasing
mechanical stiffness and loss of elasticity (Avery
and Bailey, 2005). Non cross-linking effects occur
by the binding of AGEs to the receptor for
AGEs (RAGE) that incites the production of pro-
inflammatory cytokines and free radicals. At the
central level, interaction between AGEs, Amyloid-
beta, and tau-protein have been ascertained to
affect neuronal function (Ahmed and Thornalley,
2007). At the peripheral level, this AGE/RAGE
interaction affects collagen tissue and may play
a role in sarcopenia (loss of muscle mass and
strength) through upregulated inflammation and
endothelial dysfunction in the intra-muscular
microcirculation (Payne, 2006).

These peripheral and central effects of AGEs
may have a direct or indirect influence on
muscle function and functional performance
decline; however, this has not been studied
in people with dementia. Early detection could
initiate interventions targeting AGE accumulation,
such as physical activity programs and dietary
advice possibly in combination with pharmacologic
strategies (Magelhaes et al., 2008; Puyvelde
et al., 2014; Nenna et al., 2015) to attenuate
functional decline, affording people with dementia
longer independence. The aim, therefore, was
to investigate the association between AGEs and
functional performance in people with AD and
mixed dementia (AD/VaD).

Method

Design
The study was designed as a multi-center, lon-
gitudinal, one-year observational follow-up cohort
study with three assessments: at baseline, after six
months, and after 12 months.

Study population
Participants, selected from 24 dementia day-care
centers in the Netherlands, were considered to
be eligible for inclusion when they satisfied four
criteria: (1) an established diagnosis of Alzheimer’s
disease (AD) or mixed Alzheimer’s/Vascular de-
mentia (AD/VaD) according to DSM-IV criteria
(American Psychiatric Association, 1994); (2) a
score of stage five or lower on the Global
Deterioration Scale (GDS) (Reisberg et al., 1982);
(3) able to walk 10 m (a walking aid was allowed);
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and (4) having a light-colored (Caucasian) skin
due to the limitations of the AGE-reader device
(Meerwaldt et al., 2004). Written informed consent
was obtained from the participants or their legal
representatives. The medical ethical committee of
the University Medical Centre Groningen approved
the study (NL43641.042.13).

Design and study population are derived from
the PARAGE study (Drenth et al., 2017) and
described more extensively.

Outcome measures

Mobility

The participant’s functional mobility was assessed
with the Timed Up and Go (TUG). It measures
the amount of time a participant takes to stand up
from a chair (with an approximate height of 46 cm)
and walk 3 m, and then turn around a cone, walk
back to the chair, and sit down. The TUG is a
validated and reliable test for people with dementia.
A score of 20 sec or more indicates the presence
or increase of additional mobility problems (Ries
et al., 2009). TUG measurements were obtained by
experienced physiotherapists followed by the AGEs
measurements assessed by the main researcher at
each visit. Prior to the study, the physical therapists
were trained by the main researcher on how to
perform the measurements.

ADL
To assess the broad construct of ADL, the outcome
from the participants’ perspectives is measured
with the Groningen Activity Restriction Scale
(GARS) (Kempen et al., 1993) and from the day-
care center staffs’ perspective with the Barthel
index (BI) (Collin et al., 1988). The GARS has
been ascertained as being valid for measuring
disabilities in personal care. With the GARS, the
participants are questioned about their capabilities
in personal care on two subscales. The first
subscale is regarding BADL (11 items), and the
second subscale relates to IADL (7 items). The
answers are rated on a four-point scale with 1
meaning no support and 4 meaning only with
help. A lower score on the combined subscales
indicates more ADL independence with 18 as
the minimum score (Metzelthin et al., 2010).
The BI is a valid and reliable measurement for
assessing a person’s ability of self-care. Ten items
regarding BADL and mobility are rated by the
participant’s caregiver based on the amount of
assistance required to complete each activity. A
higher score indicates more BADL independence
with 20 as the maximum score (Collin et al.,
1988). The questionnaires (GARS and BI) were
administered by key staff personnel from the day-

care centers within the same week that the AGEs
measurements were taken. Before the study, the
participating day-care staff was trained by the
primary researcher to perform the measurements.

AGE level

AGE levels are measured with the AGE reader
(Diagnoptics, Groningen, the Netherlands) that
is a desktop device measuring fluorescent skin
AGEs and is reported to be valid and reliable
for the quantification of AGEs tissue accumulation
(Meerwaldt et al., 2004). The skin of the forearm
is illuminated by a light source in the AGE
reader through a 1-cm2 hole that is guarded
against surrounding light. Excitation light in the
wavelength range of 300–420 nm (peak excitation
∼350 nm) is projected onto the skin surface. The
intensity of light emitted from the skin in the
wavelength range of 420–600 nm is measured with
a spectrometer. SAF is calculated as the ratio
between the emission light and the excitation light
using the AGE reader software and expressed in
arbitrary units (AU). A high SAF score corresponds
to a high tissue AGEs level (Meerwaldt et al.,
2004). The measurements were performed on the
forearm without sweat, skin lotions, or visible
skin abnormalities and with the assessor being
blinded for functional performances scores. All
AGE reader measurements were performed at
room temperature in a standardized semi-dark
environment with the participants in a seated
position and the volar side of the right forearm
placed on top of the AGE reader. The mean of three
consecutive measurements was used for analysis.

Other variables

Dementia characteristics were provided by the
general practitioner (GP) or the local physician.
Cognitive functioning was measured by experi-
enced psychologists or physicians with the Mini-
Mental State Examination (MMSE). The MMSE
is an 11-item questionnaire with a maximum score
of 30, which indicates no cognitive decline, and
a minimum score of 0, which indicates a very
severe cognitive decline (Folstein et al., 1975).
Dementia severity was categorized by key staff
personnel from the day-care centers using the GDS
that identifies seven clinically recognizable stages
from normal (no dementia) to severe dementia
(Reisberg et al., 1982). Paratonia was diagnosed by
physical therapists with the Paratonia Assessment
Instrument (PAI) at each visit. The PAI is a reliable
and valid dichotomous assessment instrument with
which an examiner can establish the presence (or
absence) of paratonia by successively moving all
four limbs passively in flexion and extension, while
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the participant is in a sitting position (Hobbelen
et al., 2008).

The use of medication and the presence of
comorbidities (ICD-9 classification) were retrieved
from the participant’s medical records and GP files.
The use of five or more medications was labeled as
polypharmacy (World Health Organisation, 2014).

Statistical analyses

Sample size calculation

A mixed model sample size calculation (Liu and
Liang, 1997) was based upon a 0.5 correlation
between repeated measurements, 0.3 variance of
the random intercept, 0.3 residual variance, a
true effect size of 0.5, a desired power of 80%,
and a two-sided alpha of 0.05. This resulted
in a total sample size of 152. Addressing an
eventual 10% withdrawal resulted in a required
total number of approximately 165 participants.
Baseline characteristics are depicted by descriptive
statistics and presented in Table 1.

Association bet ween AGE levels and

mobility and ADL
To investigate the association between AGE levels
on mobility and ADL(BADL/IADL), linear mixed
model analyses (LMM) was employed, estimated
by restricted maximum likelihood taking the TUG,
GARS, and BI measurements at each of the three
visits as the response variable.

The models controlled statistically for the
fixed effects of AGEs level, time (visit), gender,
age, polypharmacy, dementia duration, cogni-
tion (MMSE), paratonia, chronic kidney disease
(CKD), cardiovascular disease (CVD), cerebral
vascular disease (CeVD), and diabetes mellitus
(DM) (Rahmadi et al., 2011). Participants were
taken as random effects. Backward model selection
was utilized to identify statistically significant
explanatory variables. During this process, AGEs
level and time were always retained in order to study
the size of their effect.

To investigate change in mean over one year
(between the last visit and baseline) on AGE
levels and TUG, GARS, and BI, paired sample t-
tests were performed. Pearson’s R was calculated
to investigate the association between change in
AGE levels and change in the previously described
variables. To further explore specific longitudinal
effects, a linear regression was used where the
change of the described scores between visit three
and one was used as a response variable and
changes of AGEs level and baseline characteristics
(described above) as explanatory variables.

Data were analyzed using R version 3.2.0 and
SPSS version 22, taking a p-value < 0.05 as
statistically significant.

Results

From the 244 people with dementia approached to
take part in the study, 87 were not included due to
not satisfying the inclusion criteria; 13 participants
withdrew informed consent prior to the baseline
assessment. Finally, 144 participants were included
at baseline. After one year, 26 participants (18%)
were lost to follow-up: 11 deceased, while 15 were
transferred to unknown addresses or became too ill
to be reassessed (Figure 1). For comorbidity and
medication use in 11% of the participants (n =
16), no information was accessible in the medical
records (information derived from the PARAGE
study (Drenth et al., 2017)).

The baseline characteristics are summarized in
Table 1.

Association between AGEs and mobility
Table 2 indicates that, after correction for age, poly-
pharmacy, CKD, CVD, and MMSE, functional
mobility (TUG) was significantly associated with
the AGE levels (β = 3.57, p = 0.001, 95%CI: 1.43–
5.73) and with the progression of dementia over a
one-year time span (β = 3.73, p = 0.001, 95%CI:
1.46–5.91)

Association between AGEs and ADL
Table 3 indicates that, after removing covariates
not being statistically significant, the AGE levels
did not have a significant effect on ADL; however,
the GARS (BADL/IADL) and BI were associated
with the progression of dementia over one-year time
span (β = 2.58, p < 0.001, 95%CI: 1.47–3.67,
β = 1.98, p < 0.001, 95%CI: 0.79–3.17 and β

= −2.00, p < 0.001, 95%CI: −2.58 to −1.42,
respectively).

The one-year development of AGE levels and
functional mobility and ADL (BADL/IADL) is
presented in Table 4. From the 118 participants
(82%) who completed this study, the longitudinal
data over one year indicates that there was a
significant increase in the overall AGE levels as
well as TUG and GARS scores and a significant
decrease in BI scores. Changes in functional
performance (TUG, GARS, and BI) between
baseline and visit three indicated no significant
correlation with changes in the AGE level over
one year. The linear regression models show that
change in AGEs level is not predictive for changes
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Table 1. Baseline characteristics

total N = 144

frequency range min–max
....................................................................................................................................................................................................

Male, n (%) 63 (43.7%)
Age, years 80.7 (7.7) 53–98
Dementia duration, monthsa 29.8 (35.9) 1–252
Co-morbidities, na 1.18 (1.1) 0–4
AD, n (%)a 107 (83.6%)
Mixed AD/VaD, n (%)a 21 (16.4%)
AD or Mixed AD/VaD, n (%)b 16 (11.11%)

CVD, n (%)a 41 (32.0%)
CeVD (CVA, TIA), n (%)a 22 (17.2%)
DM, n (%)a 37 (28.9%)
Cancer, n (%)a 14 (11.0%)
COPD, n (%)a 14 (11.0%)
CKD, n (%)a 11 (8.6%)
Systemic, n (%)a 8 (6.3%)
Digestive tract, n (%)a 6 (4.7%)

Polypharmacy (≥ 5 meds),n (%)a 71 (55.5%)
MMSE, score 0–30 19.4 (5.4) 6–29
GDS, score 1–7 3.84 (1.0) 2–5
Paratonia, PAI Yes 60 (41.7%)
TUG, seconds 17 (9.7) 7–65
GARS BADL, score 11–44 16.0 (5.7) 1–37
GARS IADL, score 7–28 16.8 (6.3) 7–28
GARS total, score 18–72 32.9 (10.7) 18–65
BI, score 0–20 16 (3.5) 6–20
AGE levels, SAF (AU) 2.8 (0.7) 0.4–4.9

Frequency data represent mean values (SD) unless indicated otherwise.
aBased on GP medical files n = 128, bbased on chart diagnoses provided by day-care
staff personnel for study inclusion.
CVD: Cardio Vascular disease, CeVD: Cerebral Vascular disease, CVA: Cerebral
Vascular Accident, TIA: Transient Ischemic Attack, DM: Diabetes Mellitus, COPD:
Chronic Obstructive Pulmonary Disease, CKD: Chronic Kidney Disease, MMSE:
Mini Mental State Exam, GDS: Global Deterioration Scale, TUG: Timed Up and
Go, GARS: Groninger Activity Restriction Scale, BADL: Basic Activities Daily
Living, IADL: Instrumental Activities Daily living BI: Barthel Index, AGE’s:
Advanced Glycation End-products, SAF: Skin AutoFluoresce (AGE reader) AU:
Arbitrary Units i.e., the output units of the AGE reader.

in functional performance, not even after adjusting
for baseline characteristics.

Discussion

Over a one-year time span, the AGE levels
significantly increased and mobility, BADL and
IADL performance decreased. This study shows
that AGE levels are significantly associated with
functional mobility, however, not with BADL or
IADL in people experiencing early stage AD and
mixed Alzheimer’s/Vascular disease (AD/VaD).

Although change in AGE levels was not
significantly related to change in functional mo-
bility, mixed model analyses revealed a significant
combined time and between participant effects
of AGEs on functional mobility. Participants

with higher AGE levels scored higher on the
TUG, indicating lower functional mobility. The
encountered Beta effect means that, with every unit
of AGE reader increase, the time to perform the
TUG increases with 3.57 sec. The TUG measures
functionality when transferring from sitting to
standing, turning, and walking speed. A TUG score
greater than 20 sec indicates mobility problems
and slow walking speed that is associated with
a wide range of adverse health consequences
such as frailty, falls, disability, hospitalization,
and institutionalization (Ries et al., 2009). It is
suggested that every decrease of 0.1 m/sec in
walking speed already increases the risk of these
negative health outcomes (Graham et al., 2008).
With a typical clinical AD duration of eight to ten
years (Bird, 1993), extrapolating the Beta effect of
3.57 sec would become even more relevant.
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Table 2. Association between AGEs and mobility (TUG) corrected for possible explanatory variables obtained
after backward model selection

mobility (TUG)

95% CI

estimate p value lower limit upper limit
............................................................................................................................................................................................................................................................................................................................

(Intercept) − 14.33 0.196 − 35.59 6.90
Age 0.42 0.002 0.16 0.68
Polypharmacy 4.75 0.020 0.88 8.60
CKD − 8.75 0.012 − 15.31 − 2.19
MMSE − 0.76 <0.001 − 1.11 − 0.40
AGE levels 3.57 0.001 1.43 5.73
Visit2∗ 2.41 0.026 0.30 4.50
Visit3∗ 3.73 0.001 1.46 5.91

Response variable: Timed Up and Go (TUG) in seconds.
Explanatory variable: AGE levels (SAF) AU.
CKD: Chronic Kidney Disease, MMSE: Mini-Mental State Exam, AGE: Advanced Glycation End-product.
∗Visit effects with respect to baseline (Visit1).

Excluded, not meeting inclusion criteria  
 

N = 87 

Included 

N =157 

Assessed for eligibility  

N = 244 

Baseline  

N = 144                           

Withdrew  before baseline assessment  
 

N = 13 

Dropped out 
 

N=14

T1 

N = 130                           

T2 

N =  118                            

Dropped out 
 

N= 12  

Figure 1. Study flow chart.

The result from this study is consistent with
studies describing the effect of AGEs on the
decline of walking abilities and contributes to
the increasing evidence that decline in functional
mobility can be attributed to the effects of AGEs
on muscle tissue (Drenth et al., 2016). The loss of
skeletal muscle mass and weakness is an important
contributor to functional decline. Both muscle
weakness and walking impairment are prominent

characteristics of physical frailty (Sternberg et al.,
2011), suggesting that high AGEs level are a
contributing factor to physical frailty. It remains
ambiguous whether the association between high
AGE levels and functional mobility decline exists
because AGEs damage muscle tissue or whether
loss of physical activity due to functional mobility
decline influences AGEs accumulation. Future
research is necessary to study this more in depth.
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In accordance with the results of this study,
it would be interesting to investigate whether
decline in functional mobility can be attenuated
by reducing AGEs levels. Excessive elevation of
glucose concentration, such as in DM, most
likely accelerates the glycation of proteins (Ahmed
and Thornalley, 2007; Rahmadi et al., 2011).
Intensive glycaemic control may be a method to
decrease AGEs formation. AGEs are not only
produced endogenously, but are also spontaneously
generated in standard diets (Magelhaes et al.,
2008). Therefore, dietary intake is a possible
factor that can be influenced. In order to
lower daily AGEs intake, it is suggested that
foods rich in sugar and fat as well as those
prepared by frying or grilling should be avoided
(Puyvelde et al., 2014). However, evidence of the
harmful effects of long-term exposure to dietary
AGEs is currently inconclusive (Puyvelde et al.,
2014). Additionally, regular physical activity has
demonstrated a correlation with reduced glycation
and AGE formation; however, the optimal exercise
modalities still remain unclear (Magelhaes et al.,
2008). In addition, pharmacologic strategies to
prevent AGE formation or AGE accumulation are
being studied, but results show conflicting evidence
and additional research is necessary (Nenna et al.,
2015).

An association between AGE levels and decline
in ADL (BADL/IADL) was not determined. This is
in contrast with a large cohort (n = 3,373) study by
Whitson et al. that reported an association between
serum AGE levels and the time to incident BADL
disability in heathy participants over 14 years
(HR = 1.10, 95%CI:1.05–1.15) (Whitson et al.,
2014). Although it is likely that impaired muscle
function – through AGEs-induced muscle dam-
age – can contribute to impaired BADL, the
results from the current study did not confirm
this in people with early stage dementia. Our
sample size was possibly too small and a study
duration of one year too brief to detect a
decline in ADL, and/or the participants were less
ADL independent at baseline. Further research
with a longer follow up time is necessary to
investigate if AGE levels are related to the
deterioration of ADL during the course of AD,
mixed dementia (AD/VaD), or other forms of
dementia.

The strengths of this study are its longitudinal
design with three assessments and that particip-
ating personnel were well trained in using the
measurements. A study sample representative for
this population was also created by including
participants from rural and urban areas who were
dispersed across the Netherlands. This study also
has a number of limitations. First, the initial
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Table 4. One-year development of AGE levels and mobility and ADL

vis it 1 vis it 3 p value vis it

frequency range Frequency range 3 -v is it 1 R p value beta p value
............................................................................................................................................................................................................................................................................................................................

AGE levels 2.8 (0.7) 0.4–4.9 3.0 (0.7) 1.6–5.3 <0.001 – – – –
TUG 17 (9.7) 7–65 20 (15) 6–103 <0.001 0.002 0.984 − 1.44 0.487
GARS BADL 16.1 (5.7) 1–37 18.3 (6.9) 11–39 <0.001 0.053 0.569 − 0.81 0.428
GARS IADL 16.8 (6.3) 7–28 18.6 (6.7) 7–28 <0.001 0.053 0.570 0.18 0.896
Barthel index 16 (3.5) 6–20 14.2 (4.5) 1–20 <0.001 0.011 0.908 0.86 0.186

Frequency data represent mean values (SD) unless indicated otherwise.
TUG: Timed Up and Go, GARS: Groninger Activity Restriction Scale, BADL: Basic Activities Daily Living, IADL: Instrumental
Activities Daily living, and AGE: Advanced Glycation End-product.
R: Pearson Correlation coefficient between change (delta visit 3 visit 1) in AGE levels and change (delta visit 3 visit 1) TUG, GARS, and
BI scores.
Beta: Linear regression model between change (delta visit 3 visit 1) in AGE levels and change (delta visit 3 visit 1) TUG, GARS, and BI
scores.

number of 152 participants from our a priori
sample size calculation could not be included.
However, the study still comprised a reasonable
number of 144 participants for baseline and
118 for follow up analysis. Second, due to the
limitation of the AGE reader, it was not possible
to indicate what types of AGEs (e.g. crosslinking or
non-crosslinking) are responsible for our findings.
Future fundamental research is necessary to further
explore this. Finally, the follow-up period of
one year is possibly insufficient for detecting
an association between changes in AGE levels
and change in functional performance over time.
Prolonging the study over several years and in
a larger cohort could result in improved insight
in the long-term effects of AGEs on functional
performance. Further longitudinal studies over
several years are needed to investigate a causal
relationship.

In conclusion this study indicates that high AGE
levels could be a contributing factor to the decline
in functional mobility in addition to the progressive
brain pathology, but lacks evidence for an associ-
ation with ADL decline in people with early stage
AD or mixed dementia. This result contributes to
the increasing evidence that high AGE levels could
affect functional mobility in the aging population.
Future research is necessary into interventions
such as physical activity programs and dietary
advice targeting AGE accumulation possibly in
combination with pharmacologic strategies to
attenuate functional decline in those experiencing
dementia.
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