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ON THE SELMER GROUP OF TWISTS OF ELLIPTIC 
CURVES WITH Q-RATIONAL TORSION POINTS 

G. FREY 

1. Notations and results. (1) The symbols p and q stand for prime 
numbers and throughout the paper we assume that p is fixed and 
contained in {3, 5, 7}. Let L be an algebraic number field (i.e., L is a finite 
extension of Q). Then prime divisors of L dividing p (resp. q) are denoted 
by pL (resp. qL). The completion of L with respect to qL is denoted by Lq. 
Let 5 be a finite set of prime numbers, and let MIL be a Galois extension 
with abelian Galois group of exponent p. 

Definition. MIL is said to be little ramified outside S if for primes q £ S 
and all c\L\q one has 

M-Lq(p = L q (p(^, . . . ,v^) 
with k e N and vq (ut) = 0. Here f is a pth root of unity, ul9. . . , uk are 
elements in Lq(Ç ) and vq is the normed valuation belonging to qL. In par
ticular MIL is unramified at all divisors of primes q £ S U {/?}. 

We denote by Ls the maximal abelian extension of exponent p of L 
which is little ramified outside S, and by LSu the maximal subfield of 
Ls which is unramified outside S. 

HS(L) (resp. HSu(L) ) denotes the Galois group of Ls/L (resp. LSuIL) 
and c l^L) (resp. c\Su(L)p) denotes the order of these Galois groups. If 
S = 0 we see that cl^ M(L) is equal to the order of the subgroup of the 
divisor class group of L consisting of elements of order p which we denote 
bycl(L)p . 

Now assume that LIQ is normal with cyclic Galois group generated by 
an element y of order p — 1. Take an extension y to L(f _). Let xp be the 
cyclotomic character induced by the action of G(L(Çp)/Q) on (J ). Then 
X^Cy) is determined by 

Let M be normal over Q containing L such that G(MIL) is abelian of 
exponent p. Then y operates by conjugation on 

G{M(tp)/L{$p) ) = G(M/L), 
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650 G. FREY 

and this operation does not depend on the choice of y. Hence the 
subgroup 

H(Xp) : = {a G G(M/L); yay~l = axpm} c G(M/L) 

is well defined. 
In the special case that M = L 5 we denote by cliS(L)/7(x/7) the order of 

(2) Now we shall consider an elliptic curve E/Q given by a Weierstrass 
equation F(x, y) = 0 with coefficients in Z and minimal discriminant A£. 
For any extension field L of Q we denote the L-rational points of E 
(including oo) by E(L). 

Let j E be the absolute invariant of E, and denote by NE the conductor 
of E. Let SE be the set of odd primes q\NE with q = — 1 mod /> and 
v^(A£) ^ 0 mod /? and S^ c SE the subset of primes with vq(jE) < 0. Let 
d be a square free integer and let i ^ be the twist of E with d, i.e., if JE is 
given by 

y2 = x3 - g2x - g3 

then Ed is given by 

y2 = x3 - g2d
2x - g3d\ 

Ed is isomorphic to E over Q( ^ ) but not over Q. Let %&(Ed, Q) be the 
set of elements of order p in the kernel of 

P:H\G(Q/Q),Ed(Q))^ 0 H\G(Qq/Qq), Ed(Qq) ). 
r̂ prime 1 1 1 

Then the group of elements of order p in the Selmer group of Ed, denoted 
by S(Ed, Q)p9 is given as pre-image of %$(Ed, Q)p of the map 

a:Hl(G(Q/Q), Ed(Q)p) -* H\G(Q/Q), Ed(Q) ). 

The aim of this paper is to get some information about S(Ed, Q) if 
ii(Q) contains an element of order p. It is obvious that to get this one has 
to look at the behaviour of E over the local fields Q and their algebraic 
closures Q 

Case 1. Assume that vq(jE) ^ 0. Then there is a finite extension N of Q 
such that E has good reduction modulo all c\N\q9 i.e., we find an elliptic 
curve Ë over N such that E modulo qN is an elliptic curve over the residue 
field of qN. E(Nq) contains a subgroup E_(Nq) consisting of points (x, y) 
with vq (x) < 0. E_ is the kernel of the reduction modulo qN, and vq (x/y) 
is the level of (x, y). We will have to use some facts about E_ which 
are essentially due to E. Lutz and which can be found in [2]. To have a 
simple notation we say: A point (x, y) e E(Nq) is in the kernel of the re
duction modulo q if its image (x, y) is in E_(Nq). 
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Case 2. vq(jE) < 0. Then after an extension K of Q^ of degree ^ 2 
E becomes a Tate curve (cf. [5] ); in particular, one has a parametriza-
tion 

<}>:K*/(Q)-*E(K) 

where Q is the <?-adic period of E. One has 
^ OO 

JE = ~ + 2 atQ
l with fl. G Z, 

and points of order p of £ ( # ) are of the form <j>(^(Ql/pf). 
If L is as number field and qL\q we say: A point (JC, v) e E(Lq) is in the 

connected component of the unity modulo qL if it is of the form <j>(w) with 
u a qL-adic unit, and (x, y) is in the kernel of the reduction modulo qL if 
u — 1 e qL. One should notice that if Is is not a Tate curve over Q^ but 
over an extension of degree 2 of Q , then for all points P in E(Qq), 2P is 
in the connected component of the unity modulo q. 

(3) We want to prove the following: 

THEOREM. Let E be an elliptic curve defined over Q with a point P of 
order p > 2 rational over Q. Assume that either E is given by the equation 
y = x + 1 {hence p — 3) or that P is not contained in the kernel of the 
reduction modulo p, in particular this means that E is not super singular 
modulo p ifvp(jE) ^ 0. 

Let d be a square free integer prime to p • NE such that: 
(i) If 2\NE then d = 3 mod 4. 

(ii) If q £ {2, p, SE} but q\NE then (d/q) = — 1 if E is a Tate curve over 
Qq or vq(jE) ^ 0 (hence p = 3), and (d/q) = 1 otherwise. 

(iii) IfvpUE) < « then (d/p) = - 1 . 
Then one has 

(*) c\SE(Q(V3))p\#S(Ed, Q)p\cl§Eu(Q(Vd))p • c\SE(K)p(Xp) 

where K is the subfield of Q( \ / 3 , f ) of index 2 containing neither f nor \/d. 
(If d < 0 then K is the maximal real subfield of Q(\fd, f ).) 

For p = 7 the condition v (jE) ^ 0 is no restriction at all. For p > 3 
and v (jE) < 0 again this is no restriction. One could work with a weaker 
condition but then the technical problems would increase considerably. 

We remark that 

c\SEu(Q(Vd))p-clSE(K)p(xp) 

divides 

cl(Q(Vd))p-cl«(K)(Xp)'sE 

where sE is a number depending only on SE, with sE = 1 if SE = 0. 
Now we use 
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LEMMA 1. cl^K^iXp) \cl(Q(y/d) )p if d is negative. 

So we get 

COROLLARY. c l ( Q ( ^ l # S ( ^ Q)p\cl(Q( Vd)2
psE if d < 0. 

In many interesting cases one has SE = 0 and hence p\#S(Ed, Q) if 
and only if p divides the class number of Q(y/d). In particular the rank of 
Ed is equal to 0 if 

p\c\{Q(Vd)p\ 

Examples of such curves are E:y = x + 1 for p = 3 (cf. [1] ), and X0(l\) 
(for p = 5) (cf. [3] ). 

We end this section by proving Lemma 1. Let M/Q be a Galois 
extension containing K with (a ) = G(M/K), 

oP = id and yay~l = ax/>(y) where (y) = G(X/Q). 

We assume that M is unramified outside p and little ramified at p\ 
hence 

M ( p = K(y/d)(yfi) with c G M(y/d) 

and the principal divisor of c is a /?th power. Let y be an extension of y 
to G(M(V3)/Q) with y77-1 = id; ylQ(^) generates G(Q(^) /Q) and 
ylQ(V^) = id. Since M ( \ / 3 ) / Q is normal we have 

y(c) = cy • ep 

with l ^ / ^ / ? - l and e G K(y/d). Hence 

Y(v^) = ( ( £ ) ' - e - £ ? 

with f£ = 1. Let 3 be an extension of a to M(\/d) of order /? again. 
Then 

yà(&) = ^ ( 7 ) Y ( \ ^ ) 

and 

3*„Wy(^ ) = 5 ^ W ( ^ ( v ^ ) ' • e) = ^ m • y ( v ^ ) 

and hence / = 1. That gives 

c = Na)(c) = cp~l - e'p 

with é e K(\/d) and hence 

M(V3) = Q(^, fop. 
The divisor of c is a />th power, but since ± x is not a /?th power in Q( \fd), 
it is an element of order p in the divisor class group of Q( \fd), and this 
proves the lemma. 
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Remark. For p = 3 one recovers the well known fact that the class 
number of Q( \/—3d) is divisible by 3 only if the class number of Q( \fd) 
is divisible by 3. 

2. Proof of the theorem. In this section we always assume that E/Q is 
an elliptic curve satisfying the conditions imposed in the theorem, and 
that d is a square free integer satisfying (i)-(iii) as stated in the theorem. 
Let P be a point of order p of E rational over Q. 

(1) Firstly we want to prove the divisibility of S(Ed, Q) by 

CISEU(Q(V3))P. 

LEMMA 2. Let M/Q be a non abelian Galois extension of degree 2p 
containing Q( ^fd) and unramified over this field outside SE. Let a be a 
generator of G(M/Q(^/d) ) and <j> the element in 

H\G{M/Q), Ed(M)p) 

determined by <j>((x) = P. Then <J> is an element of S(Ed, Q) . 

Proof One sees at once that there is one element 

<j> e H\G(M/Ql Ed(M)p) 

whose restriction <J> to G(M/Q(^/d)) = (a) is given by <j>(a) = P: We 
identify Ed(M)p with E(M)p = (P). Since 

Ed(Q(Vd))P = (P) and 8P = -P with <8> = G(Q(Vd)/Q% 

we get invariance of <j> under 8 from the fact that 8a8 = a~ , and since 

Hl(G(M/Q), Ed(M)p) = H\G(M/Q(Vd)), Ed(M)pf, 

our assertion follows. 
Hence it remains to show that 4> is locally trivial regarded as an element 

of 

H\G(M/Q(^)IE(M)). 

We can restrict ourselves to primes QM\p * NE. By condition (i) divisors of 2 
are split in M/Q(\/d) if 2\NE, and hence we may assume that qM { 2. 

Assume that (d/q) = — 1. In this case qM is either fully ramified or 
decomposed (since M/Q is not abelian). So assume that qM is ramified and 
divides q. Then q e SE and in particular q ¥* p and vq(kE) =£ 0 mod p. It 
follows that Ed/Qq(^) is a Tate curve and that P is contained in the 
connected component of the unity over Qq(\fd) corresponding to a pth 
root of unity f . $ is locally trivial if f = ax/x with some x e Mq, and 
since M q /Q (\ /3) is cyclic of degree p such an x certainly exists. 

Next assume that (d/q) = 1 and q ¥= p. Then vq(jE) < 0 and E is not a 
Tate curve over Q and so again P corresponds to some pth root of unity 
£ under the Tate parametrization of E = Ed over Qg(Çp) and hence <t> is 
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split by Qq(Çp) as seen above. But since the degree of Qq(Sp) over Qq 

is prime to p, <j> is split over Q^ already. 
So there is only one remaining case: q = p and vp(jE) i^ 0. Let $M\p. By 

assumption M/Q is unramified at pM. We find a normal extension N/Q of 
degree prime to p such that E has good reduction modulo all primes pN\p. 
For p = 3 we can take 

TV = QiV^7!, v ^ ) 

by hypothesis; for p > 3 take 

* = Q(£12, ^ ) . 

Now 

//'(G(A/p • N/Qp • N), Ed(Mp • N) ) = 0 

since the reduction of Ed modulo £ is good and M^N/QpN is unramified, 
and hence it follows that 

H\G(Mp/Qp),Ed(M)) = 0 

also, and so Lemma 2 is proven. 

Next we look at the action of 

(S) = G(Q(V3)/Q) 

on HSEU(Q(\/3) ), the Galois group of the maximal abelian extension of 
Q( \fd) of exponent p unramified outside SE, and we assert that S acts as 
—id on this group. This assertion together with Lemma 2 gives the desired 
divisibility of #S(Ed, Q)p. 

Proof of the assertion. 

HSE(Q(V3)) = H~ ®H+ 

where H~ is the part where 8 acts as —id, and H+ the part with 8 = id. 
Take 

M : = MT 

and assume that Mx is a subfield of M cyclic over Q(\/d). Hence Mj /Q is 
cychc of degree 2 • [Mx:Q(^/d)]. Let M2 be the cyclic extension Q of 
degree [M,:Q(\/(ï) ] contained in Mx. Then M2 is unramified outside SE, 
but since for q e SE one has q = —\ mod /? and since [M2:Q] |/7, 
it follows that M2 is unramified in all primes and hence Mx = Q and 
M = Q(\/d). So our assertion is proven. 

(2) Galois structure of splitting fields ofp-covers of E. Next we determine 
the Galois group structure of splitting fields of elements in 

Hl(G(Q/Q), E(Q)) 
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for elliptic curves having a Q-rational point P of order p. Denote by Q(E ) 
the field obtained by adjunction of the coordinates of all points of order 
p of E to Q. Then Q(Ep) is a Galois extension of Q containing Q(Çp). 
It is cyclic over Q(L) of degree dividing p. Hence its Galois group is gen
erated by two elements y, 7 with yp~ = id, 7P = id, y|Q(L) generating 
G(Q(?p/Q) and 

y t y - = £"X/>(Y) 

To see this we choose a base of the form {P, Q} of E(Q) = Ep such 
that for o e G(Q(Ep)/Q) the action of Ep induces a matrix 

Po = (J J) e Gl(2, Z/,) 

with 

a = det(pa) = xp(a) modulo/?. 

Now choose y such that 

with w a generator of (Z//?)*, and take 7 = id if Q(E' ) = Q(Çp)9 and 7 
such that 

otherwise. Then y and 7 generate G(Q(E )/Q) and since 

/l 0\/l 1\/1 0 \ / l w - ] \ /l I f " 
\o w\o i/\o w"1/ \o i / \o 1/ 

we get the relation 

y7y— = 7X/? . 

We should keep in mind that the choice of 7 and y is closely related to 
the choice of the base {P, Q}. In particular we have 

€(fi) = P + Q if € ^ id and y(Ô) = x / 7 ) • Q-

In the rest of this paper P and g and 7 and y always satisfy these 
relations. 

Now take a square free integer d prime to p • NE. 

Ld:=Q(Ed,p) 

is a quadratic extension of Q(E ) . It is equal to Q(\ /5) ' Q(Ep)- Its Galois 
group over Q is generated by three elements S, y, € with 
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S2 = id, 8(V3) = - V3. Y^"1 = id, y\Q(Ep) = Y, « ' = id, 

c|Q(£,) = 7, yV |Q(V3) = id, 

8 commuting with e and y and 
- 1 x ( Y ) - 1 

In particular we get that 8 operates as —id on Edp9 the points of order p of 
Ed. The fixed field of e is Q(Vd, $p) and the fixed field of <c, 5y ( /7_1) /2> 
isK. 

We describe the elements in H{(G(Q/Q), Edp). We have the exact 
inf-res-sequence 

0 -* H\G(Ld/Q), Ed<p) ^ H\G(Q/Q), E^) 

™ H\G(Q/Ld), i ^ / ( £ « / Q ) = H o m G ( V Q ) ( G ( Q / ^ ) , EdJ. 

ASSERTION. Hl(G(Ld/Q), Edp) = 0. 

Proof. If « = id the degree of Ld/Q is prime to p, and the assertion 
follows. Now let € be of order p. Using again the inflation-restriction-
sequence one gets 

H\G(Ld/Q), EdJ = H\ <c>, Edtp)<*>y\ 

Let Pd, Qd be the points of order p of Edp corresponding to P, Q e 2 y 
Then 

^ = <Qd ~ Q* 

and hence Hl((e), Edp) is generated by the class of the cocycle \p which 
sends e to Qd. But 8e8 = e and 8Qd = —Qd and hence 

and we have proved the assertion. 

Hence we have an embedding of 

H\G(Q/Q), EdJ 

into 

Hom G ( V Q ) (G(Q/Q) , E^). 

Take an element <S> in Hl(G(Q/Q), Edp) with 

res O = <j> G H o m G ( V Q ) ( G ( Q / ^ ) , £ ^ ) 

and denote by M the fixed field of the kernel of <£. M/Q is normal, and 
G(M/L_d) is generated by two elements al9 a2 with a^ = id, which we 
may choose in such a way that 
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<&(ax) = nxP9 <K«2) = M2Ô-

We may also assume that \xt = 1 if at ¥* id. 
We extend 8, y, e e G(L_d/Q) to elements 8, y, c e G(M/Q) 

and compute the actions of these elements on af.. We assume that 8 = 
yp~l = id. Since 

^afi-1) = #<«,.) for all )8 e G(M/Q) 

we get: 

&*.§ = a " 1 (since 8\Edp = - i d ) , 
yajy~ l = ax (since yP = P) , 

y«2ï _ 1 = «2/,(Y) ( s i n c e YÔ = X*CY)Ô)> 
? « ! ? " = ax (since 7P = P), and 
?a2^'~1 = a i a 2 if € 7̂= id and a2 ¥= id (since then e<K«2)

 = 

eg = P + g = <j^ala7)'9 necessarily a! ^ id 
in this case). 

In particular it follows that (ax) is a normal subgroup of G(M/Q) and 
that (a2) is normal if either a2 = id or c = id. 

Now we distinguish two cases: 

Case 1. c = id. In this case (ax) and (<x2) are both normal in G(M/Q) 
and hence 

Af. : = M(a'> 

are normal extensions of Q. The Galois group of M 2 /Q( \ /5) is abelian 
and generated by the restriction of (y, <xx) to M2. Hence 

is Galois over Q containing Q(yjd) and if ax ¥= id then G(M2/Q) is non 
abelian of order 2p. Since 

it follows that Mx is abelian over K and hence 

is normal over Q. Its Galois group is generated by 

â2 = OL2\MI and y = y|Ml9 

its order is equal to order (a2) • (p — 1), and one has the relation 
— 1 —y (y) 

yay = OL%PKJ'. 

Case 2. order (e) = p. In this case we may assume that <xx ¥= id, for 
ax = id implies that a2

 = id, too. 
Subcase (i). a2 = id. We assert that G(M/Q(f , \ / 3 ) ) is not cyclic. 
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Otherwise 7 would be an element of order p2 with lp = ax (without loss of 
generality). So 8IP8 = 7_/?. and hence 

878 = 7k with k == — 1 modulo p. 

But since 8e8 = e we would get 

878 = 2'{7pi = e(l+pl) 

which gives a contradiction. Hence we can choose ? so that 

1P = ap
x = id and 878 = 7. 

(This determines 7 uniquely.) M2 : = M^c '^ is normal over Q, contains 
Q(yQ) and its Galois group is dihedral of order 2p. 

Subcase (ii). a2 ¥" id. Mx : = M' t t l ' is normal over Q and of degree p 
over Ld. Since 

8a28 = a2 

we conclude as above that € has an extension 7 to Mx of order p with 

878 = 7. 

Since 8y^p~^/2 acts trivially on a2 and e acts trivially on a2\Mx, 

(8y ( /7~1) /2, 7> 

is a normal subgroup of G(MX/Q). So 

M,:=Mr" , 2 ,è) 
is normal over Q containing K, and its Galois group over K is generated 
by a2 = a2\Mx which is of order p and satisfies the relation 

yci2y~ = â*' with y = y\K. 

In order to simplify notation we define: 

M2(4>):=Q(V3) 

if either e ¥= id or a2 ¥= id. 
Hence for a given 

<j> G //1(G(Q/Q), ^ ) 

we have a field M = M(<J>) which determines (<#>) completely. What infor
mation do we get from the pair (Mx($)9 M2(<f>) )? If c = id or if a2 = id 
then of course we get M(<t>) back from (Mx($), M2(<p>) ). In these cases we 
shall say that 0 is of first type. What happens if e ^ id and a2 ¥= id? 
Assume that 

4» * $ G Hl(G(Q/Q), Etp) 

have the fields M(<t>) and M(<j>) with Galois groups (ax, a2) resp. (5 l 5 a2) 
as above such that 
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M(<J>)<ai> = M ( 5 ) < 5 l ) . 

Let TV be the composite of M(<£) and M(<f>). Then the Galois group 
G(N/Ld) is generated by three elements (a\, a2, «3) which we can choose 
in such a way that 

a£|M(*) = a2, ot2\M<$) = a\ 

with À G { 1 , . . . 9p - 1} and 

a\\M(<t>) = ax, a\\M(4>) = aX
x. 

N is a splitting field for <J> and <#>, and 

(* - X-^Xai) = 0 = (* - \~%)(a'2). 
Hence the fixed field of the kernel of <j> — \<t> is a cyclic extension of Ld 

which is normal over Q, and $ — X _ 1$ is of first type. Hence Mx(<j>) 
determines (<J>) up to elements of first type, and in order to determine all 
elements in 

H\G(Q/Q), Edp), 

it is enough to determine all dihedral extensions of Q of degree 2p 
containing Q( ^/d) and all extensions Mx of degree p over K which are 
normal over Q such that conjugation by y on G(MX/K) is equal to 

xp(y)> 
To prove the theorem one has to show that for <f> e S(Ed, Q)p the field 

M2(<j>) is unramified over Q(Vd) outside SE, and Mx(<t>) is unramified over 
K outside SE U {p} and little ramified at divisors of p, and this we will do 
step by step in the next section. 

(3) Splitting fields of elements in S(Ed, Q) We continue to use the 
assumptions and the notations of the theorem. 

LEMMA 3. Let <J> be an element in S(Ed, Q) Then Mx(<p>) =: Mx is 
unramified outside of SE U {p } over K and M2(<j>) = : M2 is unramified 
outside SE U {/?} over Q( ^/d). 

Proof We have to test prime numbers q ¥= p that divide NE. 
(i) If q = 2 then d = 3 mod 4 and so Q(V^) a n d K are ramified at 2 

over Q. Hence the norm of q|2 in Q(y /J) is equal to 2 and so Q( \ /d) 
has no cychc extension of degree p in which q ramifies, and the same 
argument can be applied to qK\2 over K for p = 3 and 5. Now take 
/? = 7. By assumption 2 has only one extension qK to ^ which is rami
fied of order 2 and has norm 8. Assume that qK is ramified in MX\K and 
let q^ be the unique extension of qK to Mx. Let M / be the subfield of 
Mx in which q^ is tamely ramified. Then M, is a cyclic extension of de
gree 7 of Q(f7 + f̂~ ), and Mx is the composite of Mt with ^ over 
Q(?7 + ^7_1); hence 
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GiM./Qa, + f 7
1 ) ) 

is abelian. But this contradicts the fact that 

fâf = âx^3) = a - 1 

where (a ) = G(MX/K) and (y) = G(K/Q). So we can assume that q \ 2p 
but q\NE. 

(ii) If vq(jE) ^ 0 it follows from Néron's list of minimal models of 
elliptic curves with potentially good reduction that p has to be equal to 
3 ([4], p. 124). By assumption we have (d/q) = —\.liq= 1 mod 3 
then ( — 3d/p) = — 1 too, and hence extensions of Q(V^) r e s P- K = 

Q ( V ~ 3 d ) which are normal over Q with Galois group S3 have to be 
unramified in divisors of q for 

Q*/Q*3 s Qq(Vd)*/(Qq(Vd)y3 = Qq(V^r/(Qq(^3d)*)3. 

If q = — 1 mod 3 we see that q e SE for E has bad reduction modulo q but 
good reduction modulo all divisors of q over Ld, whence 

vq(AE) = 4 modulo 12. 

Since ( — 3d/q) = 1 the norm of qK\q is congruent to — 1 mod 3 and so Kq 

has no ramified extension of degree 3. 
(iii) Now we assume that vq(jE) < 0. If 

v
q(JE) = 0 m ° d p 

we have that q & SE and so Ed is not a Tate curve over Qq. Moreover, 
Qq(Ep) is unramified over Q^ and hence Mx/K and M2/Q(\/d) are 
unramified at all divisors of q if and only if Mx/Ld resp. M2/Ld 

are unramified at all divisors of q. 
Now we use the triviality of <j> over Qq. There i s a g G Ed(Mq) (where 

qM |#) such that for all o in the decomposition group of °1M we have 
°Q ~ Q = <Ha)- Hence 

Q :=pQ ^Ed(Qq) 
and so 2 • Q' is in the connected component of the unity modulo q. Hence 
Q = Q\ + Ô2 W l t f l 62 G ^,/7 an(^ ^ô i m t r i e component of the unity of 
E mod °1M, so Qx corresponds to a H^-adic unit u under the Tate 
parametrization. Now take 

(7°l the inertia group of ^M)- Then 2(a<2 ~ (?) corresponds to au/u and 
is a /?th root of unity. Since q ¥= p we conclude that au/u = 1 and hence 
a = id. So °~IM is unramified over Ld. 

If v (JE) $= 0 mod /? it follows that either q = 1 mod /? and E is a Tate 
curve over Q^, or that q = — 1 mod /? and then q e S^. Consider the first 
possibility. We have (d/q) = — 1 and so q is not completely decomposed 
in Q( \fd) and K. Since 
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Q|/Qf S Qq(Vd)*/Qq(Vd)*P = Kq/Kf 
for qK\q we see that for all cyclic extensions Mx of Q(\/d) and M2/K of 
degree p and divisors qM of #, one has that G(Mt^/Qq) is abelian of even 
order. But this implies that 

MlA = Qq(V3) and M2>q = A,, 

and we have proven the lemma. 

The next step is to describe the behaviour of Mt at divisors of p. 

LEMMA 4. Assume that vp(jE) < 0 and <#> e S(Ed, Q)p. Then M2 is 
unramified at p and Mx/K is little ramified at divisors of p. 

Proof The assumptions imposed on E imply that E/Q is a Tate curve 
but that Ed/Qp is not a Tate curve. Since 

Qp(Ep) = Qp(Çp) 

the behaviour of Mt at p is determined by the behaviour of M at p. So let 
PM\p and let 1^ be the inertia group of )pM. Take 

a e (al9 a2) n 7^ . 

As in the proof of Lemma 3 we can use the fact that Ed/Q is not a Tate 
curve to show that <#>(«) = aQ — Q where 2(5 is in the connected 
component of the unity of Ed modulo qM. This gives 

Mp = M<a\fyu~) 

where u is a ^^-adic unit corresponding to 2Q under Tate's parametriza-
tion, and so in particular Mx/Ld is little ramified. 

Now assume moreover that a2 = id or e = id. Then M2/Q(\/d) is of 
degree p. We have to show that M 2 /Q( \ /5) is unramified at p ^ |/?. We 
recall the choice of the point Q. Since 

YÔ = X,(Y)e and <y> = G C Q ^ ^ ) / ^ , ) 

it follows that Q is in the kernel of the reduction of E modulo all divisors 
of p, and hence P 4- XQ is not in this kernel. But for a G 7̂  we saw that 
<|>(a) = a<2 — Q is in the kernel of the reduction modulo pM and hence 

axa2 £ Ip for all À e N and pM\p. 

It follows that M^a^/Ld is unramified at pM and hence M2/Q(^/d) is 
unramified at ^. 

Next we look at the case that v (jE) ^ 0. First let us assume p > 3. 

LEMMA 5. Assume that E/Q has a point P of order p > 3 rational over Q, 
that v (jE) i^ 0 and that P is not in the kernel of the reduction modulo p. (If 
p\ NE this always holds.) Let <j> be an element in S(Ed, Q)p with correspond
ing fields Mx and M2. Then Mx/K is little ramified at p, and M2/Q(\/d) is 
unramified at p. 
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Proof. Let N be an extension field of Q(Çp) such that E has good 
reduction modulo all primes pN\p and such that 

[iV:Q(f5)]|3 for/? = 5 and 

[N:Q(£7)]\2 îorp = 7. 

From our assumptions it follows that Np contains Q(E ) and that (Q) is 
the subgroup of order p of the kernel of the reduction modulo )pN. Hence 
all divisors of p are decomposed in Q(2s )/Q(f ) and so again we can 
prove the lemma by looking at the behaviour of p in M/Ld. 

So assume that pM\p and let Ip be the inertia group of )pM. Assume 
that 

Then there is a Q e E(Mp) with 

(«free - Q = IIP + XQ. 
But we know that for fi ^ 0 the point JLLP + Àg is not in the kernel of the 
reduction modulo \)M and since 

(/„„ - id)E(N • M,) 

is contained in this kernel (E is a model of E over TV having good 
reduction modulo $M\p) we must have JU = 0 and hence 

/ ^ O G(Jlf/L,) c (a2>. 

So M^a^/Ldis unramified at £ M and hence M2/Q(\/d) is unramified at all 
divisors of p. 

Now assume that Ip = (a2). Then Q = a 2 ô ~~ (2 a n d since (a 2 ) acts 
trivially on E(N • Mp)/E_(N • Af̂ ) we may assume that 

Q G Ë_(N- Mp) 

and hence 

r o e £_(tf • g,). 
is has ordinary reduction modulo £M, and so Lutz's parametrization of E_ 
shows that N • Q(Q) is little ramified at divisors of p, and the lemma 
follows. 

Now we come to p = 3 to end the proof of the theorem. 

LEMMA 6. Assume that E has a point of order 3 rational over Q and that 
vp(jE) i^ 0. Assume moreover that either P is not contained in the kernel of 
the reduction modulo p or that E is given by the equation y = x - h i . Let d 
be a square free integer prime to 3, and <f> an element in S(Ed, Q)3 with 
corresponding fields Mt. Then Mx/Q(-\f—3d) is little ramified at 3 and 
M2/Q(y/d) is unramified at 3. 

https://doi.org/10.4153/CJM-1988-028-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-028-9


SELMER GROUP 663 

Proof. Assume at first that E is not given by y2 = x3 + 1. Since E is not 
supersingular modulo 3 it follows that 

v3Cfe) = 0 = 3 + 3v3(g2) - v3(AE) 

and hence v3(AE) = 0 mod 3 and E has good reduction over Q( V~~3). 
Since P is not contained in the kernel of the reduction modulo 3 we 
have 

Q3(£3) c Q3(V=3) 
and hence 3 is decomposed in Q3(£3)/Q3(f3). Again we only have to look 
at the behaviour of 3 in M/Ld9 and by repeating the argument of Lemma 4 
we get the desired result. 

Now assume that E is given by y2 = x3 4- 1. Then E has good reduction 
modulo prime divisors of 3 in Q(\/—3). An equation E with good reduc
tion is obtained by the transformation 

, _ x +d , _ y 
x "" \T*9 y ~ (4V^f 

Since Ld = Q(f3, s/l) we have that e ^ id. So M2\Q(y/d) is nontrivial 
only if a2 = id. Assume, therefore, to begin with, that a2 = id. Then 

* = inf$(*) 

with 

* G H\G(M2/QX (P) ) 

determined by <K«i) = P- Hence <> is an element of S(Ed, Q)3 with splitting 
field M2, and for p^ |3 there is a point Q e Ed(M2#) with axQ — Q = P 
if PM is ramified. Assume that Q has coordinates (x\ y') satisfying 

y2 = y 3 + d3. 

Adding (—d, 0) if necessary, we may assume that 

The coordinates of Q with respect to is are 

i- -\. i x ' + d y' \ 

and hence Q is in the kernel of the reduction modulo PN.M 13 and since 

the level of <2 with respect to the Lutz parametrization of E_9 is at least 
equal to the level of P given by coordinates 

(V3f I d (Vdy \ 
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We obtain a contradiction and so p^ is unramified over Q(\ /S) . Now let 
us consider the case a2 ¥* id. We must show that 

MX{S3) = Q(Vd, f3)(v^) 
with u a £-adic unit for all p\3. 

Definition. Let L be a number field, £L a prime divisor and TTL a uni-
formizing element of pL. Let a be an element in Aut(L/Q) with o$L = pL. 
Then 

^ L ( a ) : = VPS07TL ~ *£,)• 

We see that our assertion is equivalent to the inequality 

v<«0 = 4 

for all prime divisors )pM, of Mf : = which divide 3 and for o£ = 
a2\M'. We begin with a prime ÏMity^) of M ( V — 3 ) dividing 3 and with 
52S^ generating 

G(M(^=I)/M< i<hA\fyz •3)). 

ASSERTION 1. 

SpM^^b = 9ifoL2a
X

x G / P A / ( ^ 3 ) ' 

Assume that this is true. By a formula which can be found in [6, p. 71], 
one gets, with 

*>*/,( v^3) = ^ ( ^ = 3 ) l ^ i ( \ ^ - 3 ) and a°2 = tyM^fy^î), 

2 

Using this formula again we get, by restriction to M,, 

1 

2 l / ,M(«2) ^ ^(9 + 1) = 5. 

ASSERTION 2. fpM(t) = 2. 

Assuming that this is true and again using the formula mentioned 
above, we get, with pM, = t)M]|M', 

fp„(cQ ^ -3 (5 + 2 + 2) ^ 3. 

This completes the proof of the lemma except for Assertions 1 and 2. 

Proof of Assertion 1. The point Q + \ P is in the kernel of the reduction 
modulo £ ^ 4 / ^ = : J> and has a level equal to the order of the 
ramification of this prime in 
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M(ty=3)/Ld(ty=3) 

which divides 9. 
Assuming that 2,a2 is in the ramification group of t> we have that 

Q + XP = 525ÎÔ - Q with Q e E_(M(fy=3)$). 

If 

one sees at once that the level of S251<2' — Q' is at most equal to (level of 
Q) + f for all 

hence / has to be ^ 9 in our case, and this proves Assertion 1. 

Proof of Assertion 2. Since Ld = Q(\/d, f3)(\/2) one has 

4/<) = 2 

and one obtains by the formula used several times already, 

Since 

4,,(-2) = />„<&$> z 2 
the only possibility is 

2 = fpM& = fpM^i> = /^ , ( ?«2) . 

and this proves Assertion 2. 
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