
RAMANUJAN CONGRUENCES FOR p.k(n) 

A. O. L. ATKIN 

1. I n t r o d u c t i o n . Let 

oo 

(i) / (* )=n a - *r), 
r = l 

OO 

(2) / * ( * ) = E *>*(»)*? (1*1 <1) . 

T h u s p-i(n) = pin) is jus t the part i t ion function, for which Ramanujan (4 ) 
found congruence properties modulo powers of 5, 7, and 11. R a m a n a t h a n (3) 
considers the generalization of these congruences modulo powers of 5 and 7 
for all k; unfortunately his results are incorrect, because of an error in his 
Lemma 4 on which his main theorems depend. This error is essentially a 
misquotat ion of the results of Watson (5), which one may readily unders tand 
in view of Watson ' s formidable notat ion. Professor R a m a n a t h a n tells me he 
has been aware of the error for some time. 

In this paper we shall prove the relevant results modulo powers of 2, 3, 5, 7, 
and 13; similar results certainly exist modulo powers of 11, bu t the technique 
of Atkin (1), while sufficiently powerful to deal with a fixed small k, does no t 
seem to extend to general k. We have in fact 

T H E O R E M 1. Let k > 0 and a be one of the primes 2, 3, 5, 7, or 13. Then if 
24ra = k (mod qn) we have p-k(m) = 0 (mod qan/2+€) where e = e(k) = 0(log&) 
and a = a(k, g) depending on q and the residue of k modulo 24 according to the 
following table: 

k = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

<Z = 2 
2 = 3 

q = 5 
q = 7 
q = 13 

- - 3 - - 2 - - 3 - - 2 - - 1 - - 2 - - 1 - - 0 
2 1 1 1 2 2 1 1 1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 
1 1 1 2 1 1 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

T h e appearance of a blank in the table when q = 2 or 3 means t h a t nothing 
is asserted, and in fact the s t ructure of the modular relations is such t ha t 
any results are unlikely; the problem is analogous to t h a t of the par i ty of 
p{n). W e now consider how far Theorem 1 is "bes t possible." 
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For a given g, k and n, let d = d(q> k, n) be the largest power of q which 
divides p-%{m) for all m with 24m = 1 (modgw). Theorem 1 states that 
d > an/2 + 0(log &), for all & and w. For q = 2, 3, or 13, we have in fact 
d = aw/2 + O(logfe), and for any given k an algorithm can be given to 
determine d precisely in O(logfe) steps. For q = 5 or 7 we can show that 
there exist k in each residue class modulo 24 such that d = an/2 + 0(log k), 
and again for these k determine d precisely. In particular when a = 0 there 
exist k with d = 0 for all w, with two exceptions. 

However, it appears to the author that for q = 5 and 7 more powerful 
results must obtain, namely that given k and q there exists a /3 = /3(fe, g) 
such that J = j3w/2 + 0(log fe) for all w. A reasonable conjecture is that such 
a j(3 is bounded by a constant independent of fe, and that f3 depends only on q 
and the residue class of k modulo 24g6 for some fixed d(q). However, the path 
to such a result is blocked by numerical accidents which seem difficult to 
overcome theoretically. The best result the author can obtain in this direction 
is 

THEOREM 2. Let k = 9985 (mod 29400) and 24m = k (mod 57*). Then 
p-k(m) = 0 (mod 52*+e73w/2+e) 

where 
\e\ < 2[log£/log5] + 5. 

We do not give the proof of Theorem 2 in this paper, since it is analogous 
to that of Theorem 1 but involves some heavy details. 

Our main weapon in the proof of Theorem 1 is the irrational modular 
equation, which we use as in Watson (5). However, we greatly simplify 
Watson's actual technique, and (for instance) our methods imply a three-
page proof of Ramanujan's p(n) congruence modulo a general power of 5. 
We give in § 2 a fairly detailed account for the case q = 5, and sketch in § 3 
the basic formulae required for the other values of q. 

The informed reader will of course recognize the general form of our results 
in terms of modular functions on T0(q) and r0(g2), and that the unifying 
factor in the primes we consider is that for all of them the genus of T0(q) is 
zero. However, we prefer not to introduce this aspect since (it appears) one 
cannot obtain the full number-theoretic details without the use of modular 
equations in an essentially elementary way; a "more powerful" method such 
as that of Atkin (1) for the case q = 11 is in fact less effective. Of course the 
modular equations themselves are needed, and the natural proof of these is 
by equating coefficients on both sides of an identity whose form is known by 
modular theory. However for q = 2, 3, and 5, these equations can be found 
using no more than Euler's and Jacobi's series without much work. 

2.1. We now let q = 5 and define a linear operator U = £75 acting on any 
power series F(x) =^n>N a(n)xn by 
(3) UF(x) =Ylsn>Na(5n)xn. 

https://doi.org/10.4153/CJM-1968-009-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1968-009-6


RAMANUJAN CONGRUENCES 69 

Clearly 

(4) U(ai Fi(x) + a2 F2(x)) = ai £/^i(*) + a2 UFt(x), 

(5) C/(^i(x) • ft(*«)) = Fi(x) • UF1(x). 

If co5 = 1, co F^ 1, it is easily seen that 

(6) 5UF(pc) = è F(o>rxir°). 

We also define a valuation T = 7r5 by 

(7) 5*<» | 6, 5*<*>+1 K b, 

for any integer 6. If 6 = 0, we write conventionally 7r(0) = °° and regard 
any inequality 7r(0) > a as valid. Clearly 

(8) ir (be) =ir{b) + ir(c), 

(9) 7r(& + c) > min(7r(6), 7r(c)) with equality unless w(b) = ir{c). 

Finally we extend ir to any power series F(x) = 2n>jv a(n)xn by writing 

T(F(X)) = m'mn>N ir (a (n)). 

If Fi(x) has leading coefficient unity, then 

(10) TT(F1(X)'F2(X)) =T(F2(X)). 

2.2. We now write 

(11) g(x) = xP(*6)/f(x)> 4M = xf(***)/f(x). 

Then £ = <£(x1/6) and g(x) are connected by the equation* 

(12) t5 - g(x)(25tA + 25t* + 15t2 + 5/ + 1) = 0. 

I t is clear that all the roots of (12), regarded as an equation in t, are given by 

t = 4>(o)r x1/5), r = 0 to 4, where co5 = 1, co j£ 1. 

Thus if S r denotes the sum of the rth powers of the roots of (12), we have, 
by (6), 

(13) hUcj>r{x) = Sr. 

By Newton's formula we find, writing g = g(x), that 

Si = 52g, 
S2 = 54g2 + 2.52£, 

(14) S3 = 5 V + 3.54g2 + 9.5g, 
5 4 = 5 V + 4.56g3 + 22.53g2 + 4.5g, 
Sb = 510g5 + 5.58g4 + 40.55g3 + 20.5V + 5g. 

*According to Watson, (11) appears unproved in Ramanujan's note books, and Watson (5) 
gives an elementary proof. The earliest reference I can find is Weber (6, p. 256). 
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Since for R > 5 we have 

(15) SR = 52gSB-i + 52gSR-2 + 3.5gSR-Z + 5gSB-t + gSR-5, 

it is clear that Sr is a polynomial in g all of whose coefficients are divisible 
by 5. However, we shall find it more convenient to write 

oo 

(16) Sr = D arpg\ 

where in fact* 

(17) arp 9* 0 if and only if [(r + 4)/5] < p < r. 

We now prove 

LEMMA 1. 

( \ v. r 5 p - r + l 1 

Proof. We proceed by strong induction on r. By inspection, Lemma 1 holds 
for 1 < r < 5, and for p = 1 with r > 5 (since then a r i = 0). Assuming Lemma 
1 for all p and all r < R, for some R > 5, we obtain from (15) 

aRp = 52aR-itP-.i + 52aR-2,p-i + 3.5a#_3,P-i + 5aij_4,p_i + a#_5,p-i 

for p > 1, and so by (8) and (9) we have 

/ w • i f 5 ( p - 1) - ( J g - ( Q + l~| , [ 6 - ( r 1 \ r 5 p - i ^ + l l 

since 
[6/2] + [c/2] >[(b + c - l ) /2 ] , 

and this gives Lemma 1 with r = R, completing the proof. 

Lemma 1 does not take advantage of the underlined powers of 5 in (14), 
but it usually suffices for our inductions. We also need 

(18) 7r(arp) > 1 always, 

which was stated after (15), and 

(19) 7r(arp) = 1 for p = [(r + 4/5] and r = 3, 4, or 5 (mod 5), 

which can be seen easily by the method used to prove Lemma 1. 
We now show that 

(20) 5U{<l>k(pc)-gr(x)} = g~r(x)-Sk+Qr (k>0Jr>0fk + r>l). 

For 
U{4>\x)-gT(x)} = U{<j>k+"r{x)-g-r(xb)} 

= g-'{x)-U4>k+iT{x) by (5) 

=5- 1 |T r (*) -Sn. , r by (13). 

"Throughout this paper we use square brackets [x] to denote the integral part of x. 
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2.3. We now fix some k > 0 and define 

oo 

i i (* ) = U4>\x) = E ôl5gs+il (x), ki = [(k - l ) /5 ] , 
5=1 

oo 

(21) Z2w(x) = UL^x) = S ^Sgs+Zn(x), ln = [jfen/5], 
6 = 1 

OO 

L 2 „ + l ( x ) = £/{ 0 * ( x ) • £ * , ( * ) } = S & n + l , S g S + * " + 1 ( x ) , A.H.1 = [ ( * + ln)/5], 
s=l 

The first two terms of the equations define Ln(x) inductively, and the third 
term is justified by (17). The infinite series in fact terminate and bn\ and cn\ 
are non-zero; examination of the leading power of x in Ln(x) justifies the 
values of kn and ln. 

Reverting to our original problem, we now write p-k(tn) = 0 if m is nega­
tive. Let 

(22) X2„_i = X2w = -k(52n - l ) /24 (» > 1), 

so that 

24X» = 1 (mod5w). 

Then we have 

LEMMA 2. For n > 1 
oo 

(23) . T V ) - £ & - i ( * ) = E £-*(52"-1m + X2„-i)-xm, 
W=l+A;n 

oo 

(24) r * ( * ) - i * . ( * ) = E ^ ( 5 2 K m + X2J-xm. 
W=l+Zn 

Proof. We have 

r V ) -ii(«) = r V ) ^l/V5) • E /»_*(«) -xm+s| 
v m=o y 

oo 

= E p-k(bm - k)xm by (5), 
m=l+£i 

which is (23) for n = 1. Next, assuming (23) for w, (24) for n is an imme­
diate deduction. Finally, assuming (24) for n we have 

r\x")Lïn+1{x)=r\^)-u{f{xli)- Ë P-*(.5um + \2n)x
m+k\ 

\ m=l+Zn * 
oo 

= E ^ ( 5 2 r e ( 5 O T - ^ ) + X2„)-xm, 
m=l+kn + i 

which is (23) for n + 1 since 

A2w+i = — 5 & + A2w. 

This completes the proof of Lemma 2 by induction. 
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2.4. We now define 

Bib) = 1 if b = 1 or 2 (mod 5), 
0(b) = 0 if 6 EE 3, 4, or 5 (mod 5). 

Then by (18) and Lemma 1 we have 

(25) ir(abp) > 6(b) + 1 for p = [(6 + 4)/5], 

and a detailed calculation shows that we have equality in (25) unless 6 = 1 1 
or 17 (mod 25). 

We also define, for n > 1, 

w - l 

,0,x ^2,-i = 0(fc) + E {0(6&r + 6) + 0(6Zr + 6 + *)}, 

^ 2 , = ^2,-1 + ^(6*„ + 6 ) . 

Finally let 

V^«y ° u ns — unsi v I* ns — ^ns-

We show that all the bf
ns and c'ns are integers, which follows from 

LEMMA 3. We have 

(28) ir(bf
ns) > max(0, [(5s - 6)/2]), 

(29) TT(^ S ) > max(0, [(5^ - 6)/2]). 

Proof. First, we have 

so that 

Tr(b'u) = v(ak,8+ki) - 1 - K(k) 

> [(55 + 5Jfei - fe - 1 - 20(fe))/2] by Lemma 1 

> [(55 - 6)/2] 
since 

5*i — * — 1 — 20 (fe) > - 6 

(by examination of cases modulo 5). 
Further 

ir(6'n) > 0 by (25). 

We now assume (28) for some n and all s. Since 

oo 

by (20) and (21) 
( T = l 

we obtain 

i r ( 0 > - 1 - 0(6*» + 6) + minff>1 {max(0, [(5a- - 6)/2]) 

+ [(55 - a + 54 - *» + l)/2]} 

https://doi.org/10.4153/CJM-1968-009-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1968-009-6


RAMANUJAN CONGRUENCES 73 

and the min^i is attained at a = 1 (since increasing <r by 1 increases the 
first term in curly brackets by at least 2, and decreases the second term by 
at most 1) so that 

ir(c'ns) > [(5s + 5ln - kn - 2 - 26(Qkn + 6))/2] 
> [(5. - 6)/2], 

since 
5ln - kn - 2d(6kn + 6) > - 4 

(by examination of cases modulo 5). Further 

ir{cf
nl) > min{0, min„>2{ [(5<r - 6)/2] + [(4 - <r + bln - kn - 20(6fe»+6))/2]} 

> min{0, 2 - 1} = 0. 

Thus we have (29) for n and all s. A similar argument shows that (29) for 
all s and some n implies (28) for all 5 and n + 1, which proves Lemma 3 
by induction. 

2.5. We now define Bn ( = Bn(k)) as the largest integer such that p_k(m)=0 
(mod 5Bn) for all m with 24m = k (mod 5W). By (10), (22), and Lemma 2 
we have 

Bn = ir(Ln(x)). 

It is clear from the definitions of bns and cns that in fact 

B2n-i = mins>i bns, 

B2n — min s>i cnsj 

and so by Lemma 3 we have 

r>n >̂ An. 

Before proceeding to compute An in a suitable form, we make some remarks 
on the "best possible" aspect of Theorem 1. If, for all n, we have 

7r(&'„i) = ir{c'ni) = 0, 

then clearly Bn — An. Now the induction of Lemma 3 shows that if we have 
equality in our use of (25) at all stages of the argument this will certainly 
be valid. Thus we have 

LEMMA 4. Suppose that none of k, QkT + 6 (r > 1), 6/r + 6 + k(r > 1), are 
congruent to 11 or 17 (mod 25). Then for all n we have Bn = An. 

I t follows from Lemma 2 (or can be seen directly from (21)) that kn is the 
least non-negative integer such that 

5 2 n - l ( 1 _j_ kn) > k(52n _ l ) / 2 4 

or 
1 + kn> 5&/24 - k/52n-K 
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Hence 

k 

provided k/b2n-1 < 1/24, 
or 

Similarly, 

provided that 
2n > log(24£)/log5. 

We now define 

a = a(k) = 6(6K + 6) + d(QL + 6 + k). 

Since increasing k by 24 increases 6K + 6 and QL + 6 + k each by 30, 
the values of Q(K + 6) and 6(QL + 6 + k) remain the same, so that a de­
pends only on the residue of k modulo 24; examination of cases gives the list 
for q = 5 in Theorem 1. 

Finally (26) and the above results on kn and ln show that 

A2n-i > oiin — n0), 

A2n> a(n — n0), 

no= [log(24£)/log5], 

An > an/2 + 0(log *), 

and so the results for q = 5 in Theorem 1. 
For individual values of k we can of course get more precise results; two 

interesting cases are 

(30) if 24w = 5 (mod 5W), then p-5(m) = 0 (mod 5[(3^-3)/2]), 

(31) if 24m = 25 (mod 5n), then p^(m) = 0 (mod 5C(3n-6)/2]). 

To complete our results as to the best possible nature of Theorem 1 (as ex­
plained in the Introduction) we require to show that for each residue class 
modulo 24 there exists a k satisfying the hypothesis of Lemma 4. We can 
find no elegant method for this; calculation gives k = 1, 2, 3, 4, 53, 6, 7, 8, 9, 
10, 59, 12, 13*, 14*, 15, 16, 65*, 18*, 19*, 20, 21, 70*, 23*, 24*. For k = 12 
(mod 24), one can prove An > 1 always although a = 0; k = 12 has Bn = An = 1 

5k _ k 
. 2 4 52 w- : 

~bk - r 
_ 24 . 

= K, say, 

1 >log(24£)/ log5. 

A _ A \ 
.24 52"J 

~k - l ] = 

. 24 J " 
K 

. 5 J L, say, 

where 

which implies that 
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for all n. The values with an asterisk, for which a = 0, have in fact Bn = Av = 0 
for all n. A crude probability argument suggests that there should be an 
infinity of k in each residue class modulo 24 satisfying the hypothesis of 
Lemma 4, but the author cannot prove this. 

2.6. The properties of p-k(m) which we have established are, despite the 
complexity of the proof, only the first step towards a series of deeper and more 
interesting properties. Thus, as in Atkin and O'Brien (2), we can prove for 
p(m) the following result: 

(32) for all n > 1 there exists a constant kn not divisible by 5 such that for all 
m > 1 we have 

p(5n+2m + X ) _ p(5nm + \n) .[tnm+u 
n+2 = Kn' rn mioa o ; 

where 
\n = -(5n - l ) /24 (neven), 

= - ( 5 W + 1 - l ) /24 (nodd). 

Results analogous to (32) exist for all p-.k{m)\ in a sense the results of this 
paper conceal these recurrence properties. 

Finally (32) itself is merely the ramified case <p = 5 of a general "multi­
plicative" property that exists for all primes <p > 3. The details of this pro­
perty are very complex for p(m), and we therefore give an example in terms 
of y(m), where 

oo 

g(x) = xf(x*)/f(x) = X) y(m)xm. 

Thus y(m) is the coefficient of a function on r0(5), whereas pirn) is the 
coefficient of a form of half-integral dimension. Then we have for n > 1 

(33) y(5nm) = 0 (mod bn) (m > 1), 

7(5W) ^ 0 (mod5n+1), 

as can easily be seen by the methods of this paper. If now 

d(m) = y(5nm)/y(5n), 

the division being valid in any ring of integers modulo 5a by (33), we have 

(34) 8 (5m) = ô(5) Ô(m) (mod 53n), 

analogous to (32), and finally 

(35) ô(m<p) - ô(m)ô(<p) + <p~l h(m/<p) = 0 (mod 5m) 

for any prime ç ?£ 5, where h{p) = 0 if /x is non-integral. 
I t is clear that (35) is analogous to the exact multiplicative relations arising 

in the theory of Hecke operators for modular forms of negative dimension ; our 
forms have positive or zero dimension. 
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3. We now write down the formulae analogous to those of § 2 for the re­
maining values of q, indicating briefly the various minor changes that appear. 

3.1. q = 2. Let 

g(x) = xP(* 2 ) / / 2 4 (*) , 4>(pc) = xf(x*)/f(x). 
Then 

t2 = gipc){2H + 1) where t = *(x*). 
We have 

2U2<t>r(x) = Sr = S arpg\ 
P=I 

where 
Tr(̂ rp) > 8p — 4r, ir(arp) > 1 

and in fact arp ^ 0 if and only if [(r + l ) /2] < p < r. If 0(6) = 0 for 6 
even and 6(b) = 3 for b odd, we obtain, after defining Ln(x) as in (21), the 
result 

ir(Ln(x)) = An, 
where 

n - l 

^2w_! = 0(k) + E {0(3&r + 3) + 0(3Zr + 3 + * ) } , 
r = l 

A2n = A2n_1 + d(3kn + 3). 

Further 
X = [(2* - l ) /3 ] , L = [(* - l ) /3 ] , 

and 
a = 6>(3i£ + 3) + 0(3L + 3 + k) = 3 always, 

by examination of cases modulo 3. 
These results lead, of course, to congruence properties of p-%k(m) as in 

Theorem 1. We note that there are no complications with Bn as in § 2.5 and 
here Theorem 1 is best possible, since for p = [(r + l ) /2] we have equality 
in Tr(arp) = 0(r) + 1. 

3.2. q = 3. Let 

g(x) = xf12(x*)/f12(x), 0(x) = xf(x9)/f(x). 
Then 

/3 = g(x)(33/2 + 32/ + 1) where t = 0(x1/3). 

We have 
oo 

3UZ(j>r{x) = Sr = X) arPgP, 
p = l 

where 
7r(arp > [(9p - 3r + l ) /2] , ir{arp) > 1, 
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and in fact aTp ^ 0 if and only if [(r + 2)/3] < p < r. If 0(6) = 2, 1, 0 
according as b = 1, 2, 0 (mod 3), we obtain after defining Lw(#) as in (21) 
the result 

Tv{Ln{%)) = An, 
where 

A2n^ = 6{k) + £ {0(4&r + 4) + 0(4/r + 4 + *)}, 
r = l 

^2w = ^ 2 w _ ! + (9(4^ + 4) . 
Further 

X = [(3* - l ) /8] , L=[(k- l ) /8] , 
and 

a = o(4K + 4) + 0(4L + 4 + k). 

Examination of cases modulo 8 now gives the results for psk (m) in Theorem 
1; as for q = 2 these are best possible. 

3.3. g = 7. Let 

g(x) = *f4(*7)//4(*), <*>(*) = *2/(*49)//(*). 
Then 

(i = g(x)(7H* + 5.7t5 + 7tA) + g2(x)(7H« + 7H5 + 3.72/4 + 7H* 
+ %.7t2 + 7t+ 1), 

where t — <j>{xin). We have 
oo 

7Ui4>T(x) = Sr = Y,arpg
P, 

P =i 
where 

ir(arp) > [(7p - 2r + 3)/4], 7r(arp) > 1, 

and in fact arp ^ 0 if and only if [(2r + 6)/7] < p < 2r. In (21) we have 
the modification 

Jfex = [(2* - l ) /7 ] , 4 = [kn/7], kn+i = [(2* + ln)/7]. 

If 0(6) = 1 if b = 1 or 4 (mod 7) and 0(6) = 0 otherwise, we obtain 

w(Ln(x)) > An, 

where 

^2w_! = 6(k) + £ {0(4&r + 4) + 0(4/r + 4 + *)}, 

^2w = ^2w_! + 0(4kn + 4). 

Further 

X = [(7k - l) /24], L = [(* - l) /24], 

and 
a = 0(4i£ + 4) + 0(4L + 4 + k). 
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An examination of cases modulo 24 now gives the results in Theorem 1. As 
for q = 5, we have the possibility that Bn > An, but as in Lemma 4 we have 
that Bn = An provided none of k, 4&r + 4, 4/r + 4 + k, are congruent to 39 
or 43 modulo 49. As for q = 5 we find the following k with Bn = An, an asterisk 
again denoting that An = 0 for all n: k = 1, 2, 3, 4, 5, 6, 31, 8, 9*, 10*, 35, 
12*, 37*, 14, 63*, 16*, 17*, 18, 19*, 20*, 21, 70*, 23*, 24*. For k == 8 (mod 24) 
one can prove that An > 1 always. The value k = 8 gives £w = An = 1 for 
all n. 

3.4. g = 13. Here we give very few details, since a full account of the 
modular equation is given in (6). We have 

K = [(13Jfe - l) /24], L =[{k - l ) /24], 
and 

(36) a = 0(2K + 2) + d(2L + 2 + k), 

where 6(b) = 1 if b = 10 (mod 13) and 0(6) = 0 otherwise, with the re­
striction that if both 6 in (36) are 1 we only have a = 1. This leads to the 
single result for k = 8 (mod 24). As a compensation we have Bn — An always, 
and Theorem 1 is best possible. 
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