COVERINGS OF BIPARTITE GRAPHS

A. L. DULMAGE and N. S. MENDELSOHN

1. Introduction and summary. For the purpose of analysing bipartite graphs (hereinafter called simply graphs) the concept of an exterior covering is introduced. In terms of this concept it is possible in a natural way to decompose any graph into two parts, an inadmissible part and a core. It is also possible to decompose the core into irreducible parts and thus obtain a canonical reduction of the graph. The concept of irreducibility is very easily and naturally expressed in terms of exterior coverings. The role of the inadmissible edges of a graph is to obstruct certain natural coverings of the graph.

Ore (7) has studied graphs using the notion of a set of maximal deficiency. For finite graphs a set of maximal deficiency in Ore's sense becomes the complement of a first member of a minimal exterior pair as defined by us. Because of this, a number of theorems obtained by us become equivalent to theorems of Ore when the graph is finite. For infinite graphs the situation is quite different since Ore's finiteness condition and ours can never be satisfied simultaneously.
Amongst the theorems obtained are generalizations of results due to König (5) which may be interpreted as theorems in distinct representatives of sets. In the sixth section inequalities are obtained connecting the dimension of a graph with certain simple parameters obtained from a matrix representation. These results are continuations of those obtained by the authors in (2). Results of this type are of importance from the computational aspect and are connected with the theory of games through the optimal assignment problem as shown in von Neumann (9) and Dulmage and Halperin (4).
2. Notation. Throughout this paper the following notation is used: S and T represent two arbitrary sets, and $S \times T$ their Cartesian product consisting of pairs (s, t) with $s \in S, t \in T$. Any subset K of $S \times T$ is called a graph, and its elements (s, t) are called edges. $A, A_{i}, S_{i}, A^{*}, A_{*}$ are subsets of S and $B, B_{i}, T_{i}, B^{*}, B_{*}$ are subsets of $T . A_{i} \cup A_{j}, A_{i} \cap A_{j}$ and \bar{A}_{i} represent union, intersection, and complement (with respect to S). The null set is denoted by ϕ. If a set A_{i} contains a finite number n of elements, n is called the order of A_{i} and this is denoted by $\nu\left(A_{i}\right)=n$; otherwise, $\nu\left(A_{i}\right)=\infty$. If both S and T have a finite or countable number of elements ordered as $s_{1}, s_{2}, s_{3}, \ldots$, and $t_{1}, t_{2}, t_{3}, \ldots$, and K is any graph, a standard matrix representation for K is defined as follows: the entry $a_{i j}=1$ if $\left(s_{i}, t_{j}\right)$ is an edge of K, otherwise $a_{i j}=0$. It will also be convenient to represent K by a more general matrix

Received January 20, 1958.
representation in which entries are non-negative real numbers having the property $a_{i j}>0$ if $\left(s_{i}, t_{j}\right) \in K$, otherwise $a_{i j}=0$.
3. The covering theorems. Let K be any graph. A pair of sets $[A, B]$, is an exterior cover (or simply cover) for K if for each $(s, t) \in K, s \in A$ or $t \in B$ (or both). Otherwise stated, $[A, B]$ is an exterior cover for K if

$$
K \subseteq(A \times B) \cup(\bar{A} \times B) \cup(A \times \bar{B})=(A \times T) \cup(S \times B)
$$

Thus $K \cap(\bar{A} \times \bar{B})=\phi$ if and only if $[A, B]$ covers K. The number $\nu(A)$ $+\nu(B)$ is called the dimension of the covering and K is said to be of finite exterior dimension if there is a covering $[A, B]$ such that $\nu(A)+\nu(B)$ is finite; otherwise K is of infinite exterior dimension. A graph K consisting of an infinite number of edges may be of finite exterior dimension.

The exterior dimension $E(K)$ of K is defined as $E(K)=\min (\nu(A)+\nu(B))$, the minimum being taken over all exterior pairs $[A, B]$ which cover K. An exterior pair $[A, B]$ for which the minimum $E(K)$ is achieved is called a minimal exterior pair, abbreviated m.e.p.

Another concept of importance is that of a disjoint graph K^{*}. The graph K^{*} is said to be disjoint if for every two distinct edges $\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right)$ of K^{*}, $s_{1} \neq s_{2}$ and $t_{1} \neq t_{2}$. It is obvious that a disjoint graph K^{*} of finite exterior dimension $E\left(K^{*}\right)$ contains exactly $E\left(K^{*}\right)$ edges, and conversely.

Theorem 1. If K is a graph of infinite exterior dimension, then K contains an infinite disjoint subgraph K^{*}.

Proof. It is sufficient to show that to any disjoint subgraph K^{*} of exterior dimension n, there is at least one edge in K, which when added to K^{*} yields a disjoint subgraph of exterior dimension $n+1$. Let $\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right), \ldots$, $\left(s_{n}, t_{n}\right)$ be the edges of K^{*}. Let $A=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ and $B=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$. Since K is not of finite exterior dimension $[A, B]$ does not cover K. Hence, K contains an edge (s_{n+1}, t_{n+1}) which is contained in $\bar{A} \times \bar{B}$. This edge when added to K^{*} yields the required subgraph.

Theorem 2. If K is a graph of finite exterior dimension then K contains a disjoint subgraph K^{*} such that $E(K)=E\left(K^{*}\right)$.

Proof. The proof is by induction on $E(K)$. If $E(K)=1$, then K is non-null and any edge of K may be used as K^{*}.

To establish the theorem for any $E(K)$, we distinguish two cases.
In the first case, there exists an m.e.p. $[A, B]$ such that neither A nor B is null. Let $\nu(A)=u, \nu(B)=v$ so that $u+v=E(K)$. Put $K_{1}=$ $K \cap(A \times \bar{B}) .[A, \phi]$ is an exterior pair for K_{1} of dimension u. The pair [A, ϕ] is an m.e.p. for, if not, K_{1} may be covered by a pair

$$
\left[A_{K_{1}}, B_{K_{1}}\right], \text { with } \nu\left(A_{K_{1}}\right)+\nu\left(B_{K_{1}}\right)=p<u .
$$

But then

$$
\left[A_{K_{1}}, B \cup B_{K_{1}}\right]
$$

covers K, and its dimension is $p+v<E(K)$ which contradicts the fact that $[A, B]$ is an m.e.p. for K. By the induction hypothesis since $u<E(K)$ there exists a disjoint graph $K^{*}{ }_{1}$ consisting of u edges of K_{1} such $E\left(K^{*}{ }_{1}\right)=E\left(K_{1}\right)=$ u. Similarly, if $K_{2}=K \cap(\bar{A} \times B)$, there exists a disjoint graph K^{*} consisting of v edges of K_{2} such that $E\left(K^{*}{ }_{2}\right)=E\left(K_{2}\right)=v$. Putting $K^{*}=K^{*}{ }_{1} \cup K^{*}{ }_{2}$ it follows that K^{*} is a disjoint subgraph of K such that $E\left(K^{*}\right)=E(K)$.

In the second case, if $[A, B]$ is an m.e.p. then $A=\phi$ or $B=\phi$. Suppose, for definiteness, that $B=\phi$. Then $K \subseteq A \times T$. Let (s, t) be any edge of K and let $L=K \cap((A-s) \times(T-t))$. Since $[A, \phi]$ is an m.e.p. for $K, E(K)=\nu(A)$. Since $[A-s, \phi$] covers L,

$$
E(L) \leqslant \nu(A-s)+\nu(\phi)=E(K)-1 .
$$

If $E(L)=E(K)-1$, then by the inductive assumption there exists a disjoint subgraph L^{*} of L such that $E\left(L^{*}\right)=E(L)=E(K)-1$. Putting $K^{*}=$ $L^{*} \cup(s, t)$ it follows that K^{*} is a disjoint subgraph of K such that $E\left(K^{*}\right)=$ $E(K)$. If $E(L)<E(K)-1$, let $\left[A_{L}, B_{L}\right]$ be an m.e.p. for L. The pair $\left[A_{L} \cup s, B_{L} \cup t\right]$ is a covering for K of dimension $\leqslant E(K)$. Thus K has an m.e.p. in which neither set is null, which contradicts the hypothesis of the second case.

The concept of a disjoint graph has been given two interpretations in the literature in connection with the matrix representations of a graph. The authors have in (2) introduced the notion of a sub-permutation set of places in a matrix as a set of places which contains at most one place in any row or column of the matrix. It is clear that in any matrix representation of a disjoint graph the non-zero entries occupy a sub-permutation set of places. Ore (7) has defined the term rank ρ of a matrix A, to be the order of the greatest minor in A with a non-zero term in its determinant expansion. Theorem 2, then, states that $E(K)$ is equal to the term rank of any matrix representation of K.

An edge of a graph K is said to be inadmissible if it is not an edge of any disjoint subgraph K^{*} such that $E\left(K^{*}\right)=E(K)$; otherwise the edge is admissible. By the proof of Theorem 1 a graph K of infinite exterior dimension does not have inadmissible edges. It is clear that on removing any or all inadmissible edges from a graph leaves a new graph with the same admissible subset of edges. If K is any graph, the subset K_{c} consisting of all admissible edges of K is called the core of K.

Theorem 3. An edge of K is inadmissible if and only if it is in the union of all the sets $A \times B$ such that $[A, B]$ is an m.e.p. for K.

Proof. Let $[A, B]$ be an m.e.p. for K and let $\left(s_{1}, t_{1}\right) \in K$ be an element of $A \times B$. Let $E(K)=q$ and let K^{\prime} be any subgraph of K containing $\left(s_{1}, t_{1}\right)$ and having exactly q edges. Explicitly let K^{\prime} consist of the edges $\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right), \ldots$, $\left(s_{q}, t_{q}\right)$. Let $\nu(A)=u, \nu(B)=v$, where $u+v=q$. Since $[A, B]$ is an exterior
cover for K^{\prime}, either $s_{i} \in A$ or $t_{i} \in B$ for $i=2,3, \ldots, q$. Also $s_{1} \in A$ and $t_{1} \in B$. Thus there are at least $q+1$ elements belonging to A or B. Since the totality of elements belonging to A or B is q, either two of $s_{1}, s_{2}, \ldots, s_{q}$ or two of $t_{1}, t_{2}, \ldots, t_{q}$ are equal. If, for definiteness, two of $s_{1}, s_{2}, \ldots, s_{q}$ are equal and $A^{\prime}=\left\{s_{1}, s_{2}, \ldots, s_{q}\right\}, \nu\left(A^{\prime}\right) \leqslant q-1$ and $\left[A^{\prime}, \phi\right]$ covers K^{\prime}. Hence $E\left(K^{\prime}\right)<q$ so that $\left(s_{1}, t_{1}\right)$ is inadmissible.

Conversely, if $(s, t) \in K$ does not belong to $A \times B$ for any m.e.p. $[A, B]$ for K, it will be shown that (s, t) lies in a disjoint subgraph K^{*} for which $E\left(K^{*}\right)=E(K)$. Let $L=K \cap((S-s) \times(T-t))$. Clearly $E(L)<E(K)$. If $E(L)=E(K)-1$, let L^{*} be a disjoint subgraph of L such that $E\left(L^{*}\right)=$ $E(L)$. Then $K^{*}=L^{*} \cup(s, t)$ is a disjoint subgraph of K, such that $E\left(K^{*}\right)$ $=E(K)$. If $E(L) \leqslant E(K)-2$, let $\left[A_{L}, B_{L}\right]$ be an m.e.p. for L. Then [$A_{L} \cup s, B_{L} \cup t$] is an exterior cover for K of dimension $\leqslant E(K)$. Hence $\left[A_{L} \cup s, B_{L} \cup t\right]$ is an m.e.p. for K, and $(s, t) \in\left(A_{L} \cup s\right) \times\left(B_{L} \cup t\right)$. This gives the required contradiction.

Complementary to the concept of an exterior pair for a graph K is that of an interior pair for which the following is a definition. A pair $\{A, B\}$ where A and B are non-null subsets of S and T respectively is said to be an interior pair for a graph K if $(A \times B) \subseteq K$. From the definition it follows that if $[A, B]$ is an exterior cover for K such that $A \neq S$ and $B \neq T$ then $\{\bar{A}, \bar{B}\}$ is an interior pair for \bar{K} (the complement of K in $S \times T$). Conversely, if $\{A, B\}$ is an interior pair for K, then $[\bar{A}, \bar{B}]$ is an exterior cover for \bar{K}. For any graph K an interior dimension $I(K)$ is defined by $I(K)=\max (\nu(A)+\nu(B))$ where the maximum is taken over all interior pairs $\{A, B\}$ for K. A pair $\{A, B\}$ for which the maximum value $I(K)$ is achieved is called a maximal interior pair. The number $\nu(A)+\nu(B)$ is called the dimension of the pair $\{A, B\}$ regardless of whether $\{A, B\}$ is a maximal interior pair. If a graph K has interior pairs $\{A, B\}$ of arbitrarily large dimension we put $I(K)=\infty$. Note that there is no necessary connection between the magnitudes of the dimensions $I(K)$ and $E(K)$. Either may be greater than, equal to, or less than the other and either may be infinite while the other remains finite. There is a duality theorem connecting the exterior dimension of a graph with the interior dimension of its complement (provided both are finite) which is now given.

Theorem 4. Let $\nu(S)=p, \nu(T)=q, p \leqslant q$. If K is a graph for which $E(K)<p$, then $E(K)+I(\bar{K})=p+q$. If $E(K)=p$, then $E(K)+I(\bar{K})$ $\leqslant p+q$, the equality sign holding if and only if K has an m.e.p. $[A, B]$ for which $A \neq S$ and $B \neq T$.

Proof. Suppose $E(K)<p$ and let $[A, B]$ be an m.e.p. for K. Then $A \neq S$ and $B \neq T$ so that $\{\bar{A}, \bar{B}\}$ is an interior pair for \bar{K}. Hence $I(\bar{K}) \geqslant \nu(\bar{A})+$ $\nu(\bar{B})=p-\nu(A)+q-\nu(B)=p+q-E(K)$. Hence $I(\bar{K})+E(K) \geqslant p+$ q. Now let $\left\{A_{1}, B_{1}\right\}$ be a maximal interior pair for \bar{K}. Then $I(\bar{K})=\nu\left(A_{1}\right)+$ $\nu\left(B_{1}\right)$. Furthermore $\left[\bar{A}_{1}, \bar{B}_{1}\right.$] is an exterior cover for K so that

$$
E(K) \leqslant \nu\left(\bar{A}_{1}\right)+\nu\left(\bar{B}_{1}\right)=p-\nu\left(A_{1}\right)+q-\nu\left(B_{1}\right)=p+q-I(\bar{K}) .
$$

Hence $E(K)+I(\bar{K}) \leqslant p+q$. This together with the previous inequality yields $E(K)+I(\bar{K})=p+q$.

If now $E(K)=p$ and there is an m.e.p. $[A, B]$ such that $A \neq S, B \neq T$ then the above proof is valid and $E(K) \neq I(\bar{K})=p+q$. On the other hand, if $[A, B]$ is an m.e.p. for K implies $A=S$ or $B=T$, thein either \bar{K} has no interior pair in which case $E(K)=I(\bar{K})=p<p+q$ or for any interior pair $\left\{A_{1}, B_{1}\right\}$ for $\bar{K},\left[\bar{A}_{1}, \bar{B}_{1}\right]$ is an exterior cover for K with $\bar{A}_{1} \neq S$ and $\bar{B}_{1} \neq T$. Hence, $\left[\bar{A}_{1}, \bar{B}_{1}\right]$ is not an m.e.p. for K, which implies

$$
E(K)<\nu\left(\bar{A}_{1}\right)+\nu\left(\bar{B}_{1}\right)=p-\nu\left(A_{1}\right)+q-\nu\left(B_{1}\right)=p+q-I(\bar{K})
$$

Hence $E(K)+I(\bar{K})<p+q$.
Theorem 4 has the following interpretation for matrices. Let M be a p by q matrix of term rank ρ. If $\rho<p \leqslant q$ then M contains a u by v block of zeros and $\rho+u+v=p+q$. If $\rho=p \leqslant q$, then for any block of zeros of size u by v in $M, \rho+u+v \leqslant p+q$. In $\S 4$ we shall return to the matrix interpretation of the graphical theorems.
4. The canonical decomposition of graphs. A graph K is said to be irreducible if for every m.e.p. $[A, B]$ for K, either $A=\phi$ or $B=\phi$; otherwise K is reducible. It is clear that an irreducible graph has no inadmissible edges. In this section the decompositions of reducible graphs of finite exterior dimension is considered.

Theorem 5. If $\left[A, B_{1}\right]$ and $\left[A_{2}, B_{2}\right]$ are m.e.p.'s for a graph K of finite exterior dimension then $\left[A_{1} \cap A_{2}, B_{1} \cup B_{2}\right]$ and $\left[A_{1} \cup A_{2}, B_{1} \cap B_{2}\right]$ are both m.e.p.'s for K.

Proof. Let (s, t) be any edge of K. Then $s \in A_{1}$ or $t \in B_{1}$ and $s \in A_{2}$ or $t \in B_{2}$. If $s \bar{\epsilon}\left(A_{1} \cup A_{2}\right)$ then $s \bar{\in} A_{1}$ and $s \bar{\in} A_{2}$ so that $t \in B_{1}$ and $t \in B_{2}$. Hence [$A_{1} \cup A_{2}, B_{1} \cap B_{2}$] is an exterior cover for K. Similarly, [$A_{1} \cap A_{2}, B_{1} \cup B_{2}$] is an exterior cover for K. Now

$$
E(K)=\nu\left(A_{1}\right)+\nu\left(B_{1}\right)=\nu\left(A_{2}\right)+\nu\left(B_{2}\right) .
$$

Since $\left[A_{1} \cap A_{2}, B_{1} \cup B_{2}\right]$ covers K,

$$
\begin{aligned}
E(K) & \leqslant \nu\left(A_{1} \cap A_{2}\right)+\nu\left(B_{1} \cup B_{2}\right) \\
& =\nu\left(A_{1} \cap A_{2}\right)+\nu\left(B_{1}\right)+\nu\left(B_{2}\right)-\nu\left(B_{1} \cap B_{2}\right) .
\end{aligned}
$$

Since [$A_{1} \cup A_{2}, B_{1} \cap B_{2}$] covers K, it follows that
$E(K) \leqslant \nu\left(A_{1} \cup A_{2}\right)+\nu\left(B_{1} \cap B_{2}\right)=\nu\left(A_{1}\right)+\nu\left(A_{2}\right)-\nu\left(A_{1} \cap A_{2}\right)+\nu\left(B_{1} \cap B_{2}\right)$.
Both equalities must hold for, if not, we have

$$
2 E(K)<\nu\left(A_{1}\right)+\nu\left(B_{1}\right)+\nu\left(A_{2}\right)+\nu\left(B_{2}\right)=2 E(K)
$$

a contradiction. Thus [$\left.A_{1} \cap A_{2}, B_{1} \cup B_{2}\right]$ and $\left[A_{1} \cup A_{2}, B_{1} \cap B_{2}\right.$] are m.e.p.'s for K.

Theorem 6. If $\left[A_{1}, B_{1}\right]$ and $\left[A_{2}, B_{2}\right]$ are m.e.p.'s for K and if $A_{1} \subseteq A_{2}$ then $B_{2} \subseteq B_{1}$.

Proof. Suppose $A_{1} \subseteq A_{2}$ and $b_{2} \in B_{2}$ but $b_{2} \bar{\in} B_{1}$. There must exist an edge $\left(a_{2}, b_{2}\right)$ of K such that $a_{2} \bar{\in} A_{2}$; for if there is no such element then $\left[A_{2}, B_{2}-b_{2}\right]$ is an exterior cover of smaller dimension than that of $\left[A_{2}, B_{2}\right]$. Since $a_{2} \in A_{2}$ and $A_{1} \subset A_{2}$, then $a_{2} \bar{\in} A_{1}$. Since $b_{2} \bar{\in} B_{1}$ the pair $\left[A_{1}, B_{1}\right]$ does not cover the edge (a_{2}, b_{2}), a contradiction.

Corollary. If $\left[A_{1}, B_{1}\right]$ and $\left[A_{2}, B_{2}\right]$ are m.e.p.'s for K and if A_{1} is a proper subset of A_{2} or if $A_{1}=\phi$, then B_{2} is a proper subset of B_{1} or $B_{2}=\phi$. Also if $\left[A, B_{1}\right]$ and $\left[A, B_{2}\right]$ are m.e.p.'s for K, then $B_{1}=B_{2}$.

Theorem 7. For any graph K of finite exterior dimension there exist uniquely determined m.e.p.'s $\left[A_{*}, B^{*}\right]$ and $\left[A^{*}, B_{*}\right]$ such that if $[A, B]$ is any other m.e.p., then
(i) A_{*} is a proper subset of A or $A_{*}=\phi$,
(ii) A is a proper subset of A^{*},
(iii) B_{*} is a proper subset of B or $B_{*}=\phi$,
(iv) B is a proper subset of B^{*}.

Proof. If K has an m.e.p. $\left[A_{*}, B^{*}\right]$ where $A_{*}=\phi$, then (i) and (iv) hold for any m.e.p. $[A, B]$ and $\left[A_{*}, B^{*}\right]$ is the unique m.e.p. for K with this property. If there is no m.e.p. for K whose first member is null, let $\left[A_{*}, B^{*}\right]$ be an m.e.p. for K for which A_{*} contains the smallest number of elements of all first members of m.e.p.'s for $K . A_{*}$ is uniquely determined, since if A_{0} is the first member of an m.e.p. for K which contains the same number of elements as does A_{*}, then by Theorem $5, A_{0} \cap A_{*}$ is the first member of an m.e.p. for K. Hence if $A_{0} \neq A_{*}$, the set $A_{0} \cap A_{*}$ would have fewer members than A_{*}, a contradiction. Since $A *$ is uniquely determined, the corollary to Theorem 6 shows that B^{*} is also uniquely determined. Let $[A, B]$ be any other m.e.p. for $K .\left[A_{*} \cap A, B^{*} \cup B\right]$ is an m.e.p. so that $A_{*} \cap A=A_{*}$. This implies $B^{*} \cup B=B^{*}$. Hence $A_{*} \subseteq A$ and $B \subseteq B^{*}$. Both these inequalities are proper, otherwise $A_{*}=A$ and $B^{*}=B$ which contradicts the assumption that $[A, B]$ is different from $\left[A_{*}, B^{*}\right]$. Similarly, there is an m.e.p. $\left[A^{*}, B_{*}\right]$ for which (ii) and (iii) hold.

From the above proof it is seen that the sets $A_{*}, A^{*}, B_{*}, B^{*}$ are definable as follows: $A_{*}=\bigcap A, A^{*}=\bigcup A, B_{*}=\bigcap B, B^{*}=\mathbf{U} B$ where A ranges over all first members and B ranges over all second members of m.e.p.'s for K. The pairs $\left[A_{*}, B^{*}\right]$ and $\left[A^{*}, B_{*}\right]$ will be referred to as the extreme m.e.p.'s for K.

Let $\left[A_{*}, B^{*}\right]$ and $\left[A^{*}, B_{*}\right]$ be the extreme m.e.p.'s for a reducible graph K of finite exterior dimension $E(K)$. If $A^{*}=A_{*}$ the Cartesian product $S \times T$ is divided into three parts $R_{1}=\left(A_{*} \times \bar{B}^{*}\right) \cup\left(\bar{A}_{*} \times B^{*}\right), R_{2}=A_{*} \times B^{*}$, and $R_{3}=\bar{A}_{*} \times \bar{B}^{*}$. On the other hand, if $\nu\left(A^{*}\right)-\nu\left(A_{*}\right)>0$, there is at least one non-null set A such that $A \cap A_{*}=\phi, A \cup A_{*}$ is the first member
of an m.e.p. for K and such that $\nu(A)$ is minimal. Let $u_{1}=\nu(A)$ and let S_{1} be a particular set (possibly unique) amongst all such A. Put $A_{1}=A_{*} \cup S_{1}$. Let B_{1} be the uniquely determined second member such that $\left[A_{1}, B_{1}\right]$ is an m.e.p. for K and let $T_{1}=B^{*}-B_{1}$. Now

$$
\begin{aligned}
\nu\left(T_{1}\right)=\nu\left(B^{*}\right)-\nu\left(B_{1}\right)=\{E(K) & \left.-\nu\left(A_{*}\right)\right\}-\left\{E(K)-\nu\left(A_{1}\right)\right\} \\
& =\nu\left(A_{1}\right)-\nu\left(A_{*}\right)=\nu\left(S_{1}\right)=u_{1} .
\end{aligned}
$$

Further, S_{i} and T_{i} are constructed inductively as follows. Provided $\nu\left(A^{*}\right)-\nu\left(A_{*} \cup S_{1} \cup S_{2}, \ldots, \cup S_{i-1}\right)>0$ there exists at least one nonnull set A such that $\nu(A)$ is minimal, $A \cap\left(A_{*} \cup S_{1} \ldots \cup S_{i-1}\right)=\phi$ and $A_{*} \cup S_{1} \cup S_{2} \ldots \cup S_{i-1} \cup A$ is the first member of an m.e.p. for K. Let S_{i} be any particular set which satisfies these requirements on A and put $\nu\left(S_{i}\right)=u_{i}$. Put $A_{i}=A_{*} \cup S_{1} \cup S_{2} \ldots \cup S_{i-1} \cup S_{i}$ and let B_{i} be the uniquely determined set such that $\left[A_{i}, B_{i}\right]$ is an m.e.p. for K. Let $T_{i}=B_{i-1}-B_{i}$. As before, $\nu\left(T_{i}\right)=\nu\left(S_{i}\right)=u_{i}$.

The process stops when $A_{*} \cup S_{1} \cup S_{2} \ldots \cup S_{k}=A^{*}$. Thus $S=A_{*} \cup S$ $\cup S_{2} \ldots \cup S_{k} \cup \bar{A}^{*}$. This decomposition of S into $k+2$ disjoint subsets is the canonical decomposition with respect to the reducible graph K of finite exterior dimension. $T=\bar{B} \cup T_{1} \cup T_{2} \ldots \cup T_{k} \cup B_{*}$ is the canonical decomposition of T. We have:

$$
\begin{aligned}
& S_{i} \cap A_{*}=\phi \quad \text { for } i=1,2, \ldots, k \\
& S_{i} \cap S_{j}=\phi \quad \text { for all } i, j, i \neq j ; \\
& T_{i} \cap B_{*}=\phi \quad \text { for } i=1,2, \ldots, k ; \\
& T_{i} \cap T_{j}=\phi \quad \text { for all } i, j, i \neq j ; \\
& \nu\left(S_{i}\right)=\nu\left(T_{i}\right)=u_{i} ; \\
& E(K)=\nu\left(A_{*}\right)+\nu\left(B_{*}\right)+\sum_{i=1}^{k} u_{i} ; \\
& {\left[A_{i}, B_{i}\right] \text { is an m.e.p. for } K, i=1,2, \ldots k} \\
& \text { where } A_{i}=A_{*} \cup S_{1} \cup S_{2} \ldots \cup S_{i} \\
& \text { and } B_{i}=T_{i+1} \cup T_{i+2} \ldots \cup T_{k} \cup B_{*} .
\end{aligned}
$$

Let
$R_{1}=\left(A_{*} \times \bar{B}^{*}\right) \cup\left(S_{1} \times T_{1}\right) \cup\left(S_{2} \times T_{2}\right) \ldots \cup\left(S_{k} \times{ }^{\prime} T_{k}\right) \cup\left(\bar{A}^{*} \times B_{*}\right) ;$
$R_{2}=\left(A_{*} \times B^{*}\right) \cup\left(A^{*} \times B_{*}\right) \cup \bigcup_{i<j}\left(S_{i} \times T_{j}\right) ;$
$R_{3}=\left(\bar{A}_{*} \times \bar{B}^{*}\right) \cup\left(\bar{A}^{*} \times \bar{B}_{*}\right) \bigcup_{i>j}\left(S_{i} \times T_{j}\right):$
R_{1}, R_{2}, R_{3} are disjoint and $R_{1} \cup R_{2} \cup R_{3}=S \times T$.
In the following figure, this decomposition is shown in the case where it is assumed that the elements of S are ordered so that the points of A_{*} come first, followed by those of $S_{1}, S_{2}, S_{3}, \ldots, S_{k}$ and finally \bar{A}^{*}, while those of T are ordered $B_{*}, T_{k}, T_{k-1}, \ldots T_{1}, \bar{B}^{*}$. In this representation R_{2} appears in the upper left corner of the diagram, R_{3} in the lower right corner, and R_{1} separates R_{2} from R_{3}.

Figure 1
This decomposition of the Cartesian product $S \times T$ into R_{1}, R_{2}, and R_{3} is the canonical decomposition of $S \times T$ with respect to the reducible graph K of finite exterior dimension.

Theorem 8. If R_{1}, R_{2} and R_{3} form the canonical decomposition of $S \times T$ with respect to a reducible graph K of finite exterior dimension, then (i) every element of $K \cap R_{2}$ is admissible and (ii) $K \cap R_{3}=\phi$.

Proof: Part (i) is implied by Theorem 3 for the following reasons. First, $\left[A_{*}, B^{*}\right]$ and $\left[A^{*}, B_{*}\right]$ are m.e.p.'s for K. Secondly, $\left[S_{i}, T_{j}\right]$ is an exterior cover for $S_{i} \times T_{j}$, and hence, if $i<j,\left[A_{i}, B_{i}\right]$ is an m.e.p. for K such that $\left(S_{i} \times T_{j}\right) \cap K \subset\left(A_{i} \times B_{i}\right)$.

To prove part (ii) we note that clearly no element of K is in ($\bar{A}_{*} \times \bar{B}^{*}$) or in ($\bar{A}^{*} \times \bar{B}_{*}$). Moreover [A_{i-1}, B_{i-1}], which is an m.e.p. for K does not cover any edge of $S_{i} \times T_{j}$ when $i>j$.

Corollary. (1) Corresponding to any edge (s, t) of R_{2}, there exists at least one m.e.p. $[A, B]$ for K such that (s, t) is in $A \times B$.
(2) Corresponding to any edge (s, t) of R_{3}, there exists at least one m.e.p. $[A, B]$ for K such that (s, t) is in $\bar{A} \times \bar{B}$.
(3) In both (1) and (2) the m.e.p. may be chosen from among the $k+1$ m.e.p.'s $\left[A_{*}, B^{*}\right],\left[A_{1}, B_{1}\right],\left[A_{2}, B_{2}\right], \ldots,\left[A_{k-1}, B_{k-1}\right],\left[A^{*}, B_{*}\right]$ for K.
K intersects R_{1} in $k+2$ disjoint irreducible subgraphs as indicated in the following theorem.

Theorem 9. If $\left[A_{*}, B^{*}\right]$ and $\left[A^{*}, B_{*}\right]$ are the extreme m.e.p.'s for a reducible graph K of finite exterior dimension, and if $S=A_{*} \cup S_{1} \cup S_{2} \ldots \cup S_{k} \cup \bar{A}^{*}$ and $T=\bar{B}^{*} \cup T_{1} \cup T_{2} \ldots \cup T_{k} \cup B_{*}$ are the canonical decompositions of S and T, then (1) the subgraphs $K \cap\left(A_{*} \times \bar{B}^{*}\right)$ and $K \cap\left(\bar{A}^{*} \times B_{*}\right)$ are irreducible and their only m.e.p.'s are $\left(A_{*}, \phi\right)$ and (ϕ, B_{*}) respectively, and (2) the subgraphs $K \cap\left(S_{i} \times T_{i}\right)$ are irreducible for $i=1,2,3, \ldots, k$.

Proof. If there exists an m.e.p. $\left[A^{\prime}, B^{\prime}\right]$ for $K \cap\left(A_{*} \times \bar{B}^{*}\right)$ such that A^{\prime} is a proper subset of A_{*}, we have $\nu\left(A^{\prime}\right)+\nu\left(B^{\prime}\right) \leqslant \nu\left(A_{*}\right)$. Since $K \cap R_{3}$ is null, $\left[A^{\prime}, B^{\prime} \cup B^{*}\right]$ is an exterior pair for K and since its dimension is

$$
\nu\left(A^{\prime}\right)+\nu\left(B^{\prime}\right)+\nu\left(B^{*}\right) \leqslant \nu\left(A_{*}\right)+\nu\left(B^{*}\right)=E(K)
$$

it is a minimal pair. Since A^{\prime} is a proper subset of A_{*}, this contradicts the fact that $\left[A_{*}, B^{*}\right]$ is an extreme m.e.p. for K. Thus $K \cap\left(A_{*} \times \bar{B}^{*}\right)$ is irreducible and its only m.e.p. is $\left[A_{*}, \phi\right]$. Similarly $K \cap\left(\bar{A}^{*} \times B_{*}\right)$ is irreducible and its only m.e.p. is (ϕ, B_{*}).

If there exists an m.e.p. $\left[A^{\prime}, B^{\prime}\right]$ for $K \cap\left(S_{i} \times T_{i}\right)$ such that neither A^{\prime} nor B^{\prime} is null, then $\nu\left(A^{\prime}\right)+\nu\left(B^{\prime}\right) \leqslant \nu\left(S_{i}\right)=\nu\left(T_{i}\right)$. Since $\left[A_{i-1}, B_{i}\right]$ is an exterior cover for $K \cap R_{2}$, and since $K \cap R_{3}$ is null, the pair $[A, B]=$ [$\left.A_{i-1} \cup A^{\prime}, B_{i} \cup B^{\prime}\right]$ is an exterior cover for K. This cover is minimal, since its dimension is

$$
\nu\left(A_{i-1}\right)+\nu\left(A^{\prime}\right)+\nu\left(B^{\prime}\right)+\nu\left(B_{i}\right) \leqslant \nu\left(A_{i-1}\right)+\nu\left(S_{i}\right)+\nu\left(B_{i}\right)=E(K)
$$

Since $\quad \nu\left(A_{i-1}\right)<\nu(A)=\nu\left(A_{i-1}\right)+\nu\left(S^{\prime}\right)<\nu\left(A_{i-1}\right)+\nu\left(S_{i}\right)=\nu\left(A_{i}\right)$, this contradicts the minimality assumption in the definition of S_{i}. Thus $K \cap\left(S_{i} \times T_{i}\right)$ is irreducible for $i=1,2, \ldots, k$.

Theorem 10. If K is a reducible graph of finite exterior dimension with a corresponding canonical decomposition of S and T, and if α denotes the collection of $k+1$ m.e.p.'s $\left[A_{*}, B^{*}\right]$, $\left[A_{1}, B_{1}\right],\left[A_{2}, B_{2}\right],\left[A_{3}, B_{3}\right], \ldots,\left[A_{k-1}, B_{k-1}\right]$, $\left[A^{*}, B_{*}\right]$ for K, and if β denotes the collection of all m.e.p.'s $[A, B]$ for K, and if γ denotes the collection of 2^{k} pairs $[A, B]$ defined by

$$
A=\left(\bigcup_{i \in \Lambda} S_{i}\right) \cup A_{*}, B=\left(\bigcup_{i \in \Pi} T_{i}\right) \cup B_{*}
$$

in which Λ and Π are complementary subsets of $1,2,3, \ldots, k$, then
(i) $\alpha \subseteq \beta \subseteq \gamma$,
(ii) the admissible subset of K is $K_{c}=K \cap R_{1}$,
(iii) the inadmissible subset of K is $K_{I}=K \cap R_{2}$, and
(iv) an exterior pair $[A, B]$ is an m.e.p. for K_{c} if and only if $[A, B] \in \gamma$.

Proof. Let $K_{1}=K \cap R_{1}$. We show, first, that $[A, B]$ is an m.e.p. for K_{1} if and only if $[A, B]$ belongs to γ. By Theorem 8 , no element of $K-K_{1}$ is admissible and hence by Theorem $2, E\left(K_{1}\right)=E(K)$. If $[A, B]$ belongs to γ it covers K_{1}, and

$$
\nu(A)+\nu(B)=\nu\left(A_{*}\right)+\nu\left(B_{*}\right)+\sum_{i=1}^{k} u_{i}=E(K)=E\left(K_{1}\right)
$$

so that any $[A, B] \in \gamma$ is an m.e.p. for K_{1}.
If $[A, B]$ is any m.e.p. for K_{1} then, to show that it belongs to γ it is sufficient to show that $A_{*} \subseteq A \subseteq A^{*}, B_{*} \subseteq B \subseteq B^{*}$, and that, for $i=1,2, \ldots, k$, either $A \cap S_{i}=S_{i}$ and $B \cap T_{i}=\phi$ or $A \cap S_{i}=\phi$ and $B \cap T_{i}=T_{i}$. Since [A, B] and $\left[A_{*}, B^{*}\right]$ are m.e.p.'s for K_{1}, by Theorem 5, [$\left.A \cup A_{*}, B \cap B^{*}\right]$ is an m.e.p. for K_{1} and its dimension is
$\nu(A)+\nu\left(A_{*}\right)-\nu\left(A \cap A_{*}\right)+\nu\left(B \cap B^{*}\right)=E\left(K_{1}\right)=E(K)=\nu(A)+\nu(B)$.
Thus $\nu\left(A_{*} \cap A\right)+\nu(B)-\nu\left(B \cap B^{*}\right)=\nu\left(A_{*}\right)$ or $\nu\left(A_{*} \cap A\right)+\nu\left(B \cap \bar{B}^{*}\right)$ $=\nu^{\prime}\left(A_{*}\right)$. Thus, by Theorem 9, the exterior covering [$\left.A_{*} \cap A, B \cap \bar{B}^{*}\right]$ for $K \cap\left(A_{*} \times \bar{B}^{*}\right)$ is minimal and $A_{*} \cap A=A_{*}$ and $B \cap \bar{B}^{*}=\phi$. Thus $A_{*} \subseteq A$ and $B \subseteq B^{*}$. Similarly, since $\left[A \cap A_{*}, B \cup B^{*}\right]$ is an m.e.p. for K_{1}, $A \subseteq A^{*}$ and $B_{*} \subseteq B$. Since $[A, B]$ and $\left[A_{*} \cup S_{i}, B^{*}-T_{i}\right]$ are m.e.p.'s for K_{1},

$$
\left[A \cup\left(A_{*} \cup S_{i}\right), B \cap\left(B^{*}-T_{i}\right)\right]=\left[A \cup S_{i}, B-B \cap T_{i}\right]
$$

is an m.e.p. for K_{1} by Theorem 5. Its dimension is
$\nu(A)+\nu\left(S_{i}\right)-\nu\left(A \cap S_{i}\right)+\nu(B)-\nu\left(B \cap T_{i}\right)=E\left(K_{1}\right)=E(K)=\nu(A)+\nu(B)$.
Hence $\nu\left(A \cap S_{i}\right)+\nu\left(B \cap T_{i}\right)=\nu\left(S_{i}\right)$. Thus, by Theorem 9 , the exterior covering [$A \cap S_{i}, B \cap T_{i}$] of $K \cap\left(S_{i} \times T_{i}\right)$ is minimal and either $A \cap S_{i}$ $=\phi$ and $B \cap T_{i}=T_{i}$ or $A \cap S_{i}=S_{i}$ and $B \cap T_{i}=\phi$.

Since every m.e.p. for K is an m.e.p. for $K_{1}, \beta \subseteq \gamma$ and hence $\alpha \subseteq \beta \subseteq \gamma$.
Since $\beta \subseteq \gamma$, if $[A, B] \in \beta$ and if (s, t) is any edge of $A \times B$ then either $s \in A_{*}$ and $t \in B^{*}$ or $s \in A_{i}$ and $t \in B_{j}$ with $i \neq j$, or $s \in A^{*}$ and $t \in B_{*}$. Thus (s, t) is not in R_{1}. By Theorems 3 and 8 the inadmissible subset K_{I} of K is $K \cap R_{2}$. Hence the admissible subset is $K_{c}=K \cap R_{1}$. Since $K_{c}=K_{1}$, (iv) follows.

This completes the proof of Theorem 10.
5. Some further properties of the canonical decomposition. Any graph K of finite exterior dimension decomposes the Cartesian product $S \times T$ into three regions R_{1}, R_{2}, R_{3}. In this section the stability of this decomposition under alterations of the graph K is discussed as is also the role played by the inadmissible edges in obstructing some of the m.e.p.'s for K.

Property 1. If the graph K is altered by the addition or removal of edges from R_{2}, the resulting graph has the same core as does K and the regions R_{1}, R_{2}, R_{3} are unaltered. The proof is obvious.

Property 2. If edges in R_{1} are added to K, the resulting graph produces the same decomposition of $S \times T$ as does K and hence each added element is admissible. The proof again is immediate.

Property 3. Edges may be removed from $K \cap R_{1}$ without changing the decomposition of $S \times T$ provided the following condition holds. If K_{0} is the resulting graph, then for each i the subgraph $K_{0} \cap\left(S_{i} \times T_{i}\right)$ has exterior dimension u_{i} while $\left(S_{i} \times T_{i}\right)-K_{0} \cap\left(S_{i} \times T_{i}\right)$ has interior dimension less than u_{i} in the space $\left(S_{i} \times T_{i}\right)$. A similar statement must hold for the "tails" $\left(A_{*} \times \bar{B}^{*}\right)$ and $\bar{A}^{*} \times B_{*}$. Again the proof is omitted.

If the condition given in property 3 is violated the following may occur. If the exterior dimension of each of the blocks $K_{0} \cap\left(A_{*} \times \bar{B}^{*}\right), K_{0} \cap\left(S_{i} \times T_{i}\right)$, $K_{0} \cap\left(\bar{A}^{*} \times B_{*}\right)$ is the same as that of the corresponding block with K_{0} replaced by K, then in the decomposition of $S \times T$ with respect to K_{0}, some of the blocks $A_{*} \times \bar{B}^{*}, S_{i} \times T_{i}, \bar{A}^{*} \times B_{*}$ may break down into smaller irreducible sub-blocks, the remaining parts of the blocks going into R_{2} and R_{3}. If the exterior dimension of any of the blocks $K_{0} \cap\left(A_{*} \times \bar{B}^{*}\right)$, $K_{0} \cap\left(S_{i} \times T_{i}\right), K_{0} \cap\left(\bar{A}^{*} \times B_{*}\right)$ is less than that of the corresponding blocks with K_{0} replaced by K, the whole nature of the decomposition may be destroyed. Certain edges originally in R_{2} may become admissible and some edges originally in R_{1} may become inadmissible.

If K is altered by adding edges from the region R_{3}, the new graph may produce an entirely different decomposition of $S \times T$. As an example of the effect of adding a single edge of R_{3} to K, consider the following: Let $S=$ $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}, T=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}, K=$ the set of all $\left(a_{i}, b_{j}\right)$ with $j \geqslant i$. Here $A_{*}=B_{*}=\phi$, and the admissible edges are $\left(a_{i}, b_{i}\right)(i=1,2, \ldots, k)$. The irreducible block $S_{i} \times T_{i}$ consists of the single edge $\left(a_{i}, b_{i}\right) . R_{2}$ consists of all edges $\left(a_{i}, b_{j}\right)$ with $j>i$ and R_{3} all edges $\left(a_{i}, b_{j}\right)$ with $j<i$. If the edge (a_{k}, b_{1}) is added to K, the resulting block is irreducible and hence all points become admissible. If instead of (a_{k}, b_{1}) another edge (a_{i}, b_{j}) with $j<i$ is added to K then in the new graph some but not all of the edges which were inadmissible in K become admissible in the augmented graph.

The role of the inadmissible elements of K as obstructions to m.e.p.'s is now considered. The core K_{c} of K has the 2^{k} m.e.p.'s $[A, B]$,

$$
A=\left(\bigcup_{i \in \Lambda} S_{i}\right) \cup A_{*}, B=\left(\bigcup_{i \in \Pi} T_{i}\right) \cup B_{*},
$$

where Λ and Π are complementary subsets of $1,2, \ldots, k$. Because of the occurrence of inadmissible elements in K, some of the 2^{k} m.e.p.'s of K_{c} may not be m.e.p.'s for K. The following theorem shows that in the extreme case the number of m.e.p.'s may be reduced from 2^{k} to $k+1$.

Theorem 11. An m.e.p. $[A, B]$,

$$
A=\left(\bigcup_{i \in \mathrm{~A}} S_{i}\right) \cup A_{*} \quad B=\left(\underset{i \in \mathrm{I}}{ } T_{i}\right) \cup B_{*},
$$

Λ and Π as above, for the core of K is an m.e.p. for K, if and only if $\mathbf{U}\left(S_{j} \times T_{k}\right)$, taken over all pairs j, k, in which $j<k, j \in \Pi, k \in \Lambda$, contains no edge of K.

Proof. Let (s, t) be an edge of K. It is immediate that (s, t) is in some $\left(S_{j} \times T_{k}\right), j \cup k, j \in \Pi, k \in \Lambda$ if and only if $s \bar{\in} A$ and $t \bar{\in} B$.

Corollary. If every set $S_{j} \times T_{k}$ in which $j<k$ contains at least one edge of K then K has exactly the $k+1$ m.e.p.'s of the collection α, namely $\left[A_{*}, B^{*}\right]$, $\left[A_{1}, B_{1}\right], \ldots,\left[A_{k-1}, B_{k-1}\right],\left[A^{*}, B_{*}\right]$.
6. Other decompositions of $S \times T$. We have already considered the decompositions R_{1}, R_{2}, R_{3} of $S \times T$. Although R_{1} is intrinsic, depending only on S, T, and K, there are cases in which the sets A_{i}, B_{i} are not uniquely determined and, in such cases, R_{2} and R_{3} are not uniquely defined.

We now present two completely intrinsic decompositions of $S \times T$.
We use β to denote the collection of m.e.p.'s for K. By

$$
\bigcap_{\beta} \text { or } \bigcup_{\beta}
$$

we mean the intersection or union taken over the collection β.
We define

$$
\begin{aligned}
& V_{1}=W_{1}=\bigcap_{\beta}((\bar{A} \times B) \cup(A \times \bar{B})) \\
& V_{2}=\bigcap_{\beta}((A \times B) \cup(\bar{A} \times B) \cup(A \times \bar{B}))-V_{1} \\
& V_{3}=\bigcup_{\beta}(\bar{A} \times \bar{B}) \\
& W_{2}=\bigcup_{\beta}(A \times B) \\
& W_{3}=\bigcap_{\beta}((\bar{A} \times \bar{B}) \cup(\bar{A} \times B) \cup(A \times \bar{B}))-W_{1}
\end{aligned}
$$

(Note that W_{1} may be obtained from V_{1}, W_{3} from V_{2}, and W_{2} from V_{3}, by replacing all A 's and B 's by their complements.) Since, for every $[A, B]$, $(A \times B) \cup(\bar{A} \times B) \cup(A \times \bar{B})$ and $\bar{A} \times \bar{B}$ are complementary subsets of $S \times T, V_{1}, V_{2}$, and V_{3} are disjoint and have $S \times T$ as their union. W_{1}, W_{2}, and W_{3} have the same property.

Theorem 12. If K_{c} and K_{I} are the admissible and inadmissible subsets of a reducible graph K of finite exterior dimension then
(1) $K_{c} \subseteq R_{1}=V_{1}=W_{1}$,
(2) $K_{I} \subseteq V_{2} \subseteq R_{2} \subseteq W_{2}$,
(3) $W_{3} \subseteq R_{3} \subseteq V_{3}$.

Proof (1) We need only prove $R_{1}=V_{1}$. If (s, t) is an edge of R_{1}, if $[A, B]$ is any m.e.p., then, by Theorem 10 (since $\beta \subseteq \gamma$) $s \in A$ or $t \in B$ but not both. Thus $(s, t) \in((\bar{A} \times B) \cup(A \times \bar{B}))$ for every m.e.p. $[A, B]$. Hence $R_{1} \subseteq V_{1}$.

By Corollary (1) to Theorem 8, if (s, t) is in R_{2}, then (s, t) is in $A \times B$ for some m.e.p. and by Theorem 8, Corollary (2), if (s, t) is in R_{3}, then (s, t) is in $\bar{A} \times \bar{B}$ for some m.e.p. Thus $R_{2} \cap V_{1}=R_{3} \cap V_{1}=\phi$, and hence $V_{1} \subseteq R_{1}$.
(2) V_{2} consists of all the edges of $S \times T$ which are in every cover of K but not in V_{1} (that is, not in R_{1}). Thus $K_{I} \subseteq V_{2}$. By Corollary (2) to Theorem 8, any edge of R_{3} is in V_{3} so that $V_{2} \subseteq R_{2}$. By Corollary (1) to Theorem 8, $R_{2} \subseteq W_{2}$. (3) follows from (1) and (2).

The following examples illustrate these decompositions. If $S=\left\{a_{1}, a_{2}\right.$, $\left.\ldots, a_{k}\right\}, T=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$ and if K is the set of all $\left(a_{i}, b_{j}\right)$ with $j \geqslant i$, then $K_{c}=R_{1}=V_{1}=W_{1}, K_{I}=R_{2}=V_{2}=W_{2}$ and $R_{3}=V_{3}=W_{3}$.

On the other hand, if $S=\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}, T=\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$ and K is the set of all $\left(a_{i}, b_{i}\right)$ then $K_{c}=K=R_{1}=V_{1}=W_{1}$ and $K_{I}=\phi=V_{2}=W_{3}$.
R_{2} depends on the manner in which the construction of A_{1}, A_{2}, \ldots is effected, but, in any case, it consists of $\frac{1}{2} k(k-1)$ edges. For example, if $\left(a_{i}, b_{i}\right)$ is $S_{i} \times T_{i}$, then R_{2} consists of all $\left(a_{i}, b_{j}\right)$ with $i<j$.
W_{2} consists of all $\left(a_{i}, b_{j}\right)$ with $i \neq j$.
7. Application to matrices and computation. In this section some properties of the matrix representation of a graph are studied. Throughout this section the following notation is used. C is a p by q matrix with nonnegative entries of term rank ρ. It is assumed that $p \leqslant q$. S represents the sum of all the entries in C, M the maximum sum of the entries in any row or column of C, m the minimum sum of the entries in any row or column of C. Also to be used is the null dimension n of the matrix C, defined as the maximum value of $u+v$ where C contains a u by v block of zeros. Theorem 4 states that $\rho+n=p+q$ unless $\rho=p$ in which case $n \leqslant q$. A problem of some interest is to estimate ρ for a given matrix C. For a large-sized matrix this is a problem of considerable difficulty. A systematic computing machine programme for the exact determination of ρ would involve a search through $q!(q-p)$! terms which appear in the p by p minors of C. In what follows estimates of ρ in terms of p, q, S, M, m are obtained. Furthermore, transformations in the matrix are introduced which lead to improved estimates of ρ. The results obtained can be applied to the problem of distinct representations of sets (6) and to variants of the optimal assignment problem in the theory of games. It is not to be expected that exact values of ρ can be obtained using the above-mentioned parameters only. In fact, in a recent paper, Ryser (8) has shown that for standard matrices (those in which the non-zero entries are 1) and using the transformation of replacing

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \text { by }\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

that ρ may be varied between two values ρ_{1} and ρ_{2} while each of the parameters S, M, m are held constant.

The following result has been found recently by the authors in (2): If $p-r<S / M \leqslant p-r+1$, then $\rho \geqslant p-r+1$. It will soon be shown how to modify the matrix C in such a way that ρ is held constant but that S / M is increased. This could lead to a better lower bound for ρ.

Theorem 13. For any matrix C with non-negative entries, $\rho \geqslant p+q-S / m$, unless $\rho=p$.

Proof. If $\rho \neq p, \rho+n=p+q$. Suppose C has a u by v block of zeros with $u+v=n$. By adding the entries in the u rows and v columns of C which contain this block of zeros, it follows that $u m+v m \leqslant S$. Hence $n m \leqslant S$, or $(p+q-\rho) m \leqslant S$. Hence $\rho \geqslant p+q-S / m$.

Corollary. If $q \geqslant S / m$, then $\rho=p$.
Theorem 14. For any standard matrix C,

$$
\rho \geqslant \frac{S-m^{2}+m(q-p)}{q-m}
$$

unless $\rho=p$.
Proof. Suppose $\rho \neq p$, and C has a u by v block of zeros with $u+v=n$. $u \leqslant p-m, v \leqslant q-m$. The smallest possible value for the number of zeros in such a block occurs when $|v-u|$ is a maximum and this occurs when $v=q-m$ and $u=n-q+m=p+m-\rho$. The maximum number of 1's in C occurs when all places except the u by v block of 0 's are occupied with 1's.

Hence $q p-(q-m)(p+m-\rho) \geqslant S$, which proves the required inequality.
Theorem 15. For any standard matrix $C, \rho \geqslant 2 m-m^{2} / q$ unless $\rho=p$.
Proof. From the inequalities obtained in Theorems 13 and 14,

$$
q p-(q-m)(p+m-\rho) \geqslant S \geqslant(p+q-\rho) m
$$

The inequality of the extreme terms reduces to that of the theorem.
Remark. The inequality for ρ given by Theorem 15 is not necessarily weaker than those given in Theorems 13 and 14. Also, in general the inequalities connecting ρ with p, q, S, m give a better lower bound for ρ than the inequalities connecting with p, S, M (when $p=q$) quoted previously.

The estimate $\rho \geqslant p+q-S / m$ will be improved if the matrix C can be replaced by another having the same ρ but a smaller S / m. In what follows we may always assume that $m \neq 0$ since this occurs only if some rows or columns of C have only zero entries. On deleting these rows and columns the new matrix has a value of $m \neq 0$.

A matrix C^{*} is said to be graph equivalent to C if it is obtained from C by a finite sequence of the following types of operation:
(1) Interchange of two rows.
(2) Interchange of two columns.
(3) Replacement of a non-zero entry by any positive number.

For the next two theorems a systematic method will be given for replacing C by a graph equivalent matrix C^{*} for which S / M is increased and S / m is decreased. The method is easily adaptable for machine computation.

Let C be any p by q matrix with non-negative entries. Let M be the maximum value of any row or column sum in C and M^{*} the next largest row or column sum in C. Let C^{*} be the matrix obtained from C as follows: If the entry $c_{i j}$ of C does not occur in a row or column at which the maximum sum M is attained, put $c^{*}{ }_{i j}=c_{i j}$. If $c_{i j}$ appears in a row or column at which the maximum sum M is attained, put

$$
c_{i j}^{*}=\frac{M^{*}}{M} c_{i j} .
$$

Theorem 16. If S^{*} is the sum of all entries in C^{*} then

$$
\frac{S^{*}}{M^{*}} \geqslant \frac{S}{M}
$$

Proof. Rearranging rows and columns in C will not change the values of the parameters S, M, S^{*}, M^{*}. Suppose the first u rows and first v columns of C have the sum M, all other rows and columns having sums $<M$. Partition C into four blocks as follows:

Let A be the matrix $c_{i j}, i \leqslant u, j \leqslant v$, B be the matrix $c_{i j}, i \leqslant u, j>v$, D be the matrix $c_{i j}, i>u, j \leqslant v$, E be the matrix $c_{i j}, i>u, j>v$.
Let a, b, d, e be the sums of the entries in A, B, D, E respectively; let A^{*}, B^{*}, D^{*}, E^{*} be the corresponding submatrices of C^{*} and let $a^{*}, b^{*}, d^{*}, e^{*}$ be the corresponding entry sums. Then M^{*} is the maximum row or column of C^{*} and

$$
a^{*}=\frac{M^{*}}{M} a, b^{*}=\frac{M^{*}}{M} b, d^{*}=\frac{M^{*}}{M} d, e^{*}=e
$$

Also

$$
S^{*}=a^{*}+b^{*}+d^{*}+e^{*}=\frac{M^{*}}{M} a+\frac{M^{*}}{M} b+\frac{M^{*}}{M} d+e
$$

Hence

$$
\frac{S^{*}}{M^{*}}=\frac{a+b+d}{M}+\frac{e}{M^{*}}=\frac{S-e}{M}+\frac{e}{M^{*}}
$$

or

$$
\frac{S^{*}}{M^{*}}-\frac{S}{M}=e\left(\frac{1}{M^{*}}-\frac{1}{M}\right) \geqslant 0
$$

Corollary. If the M^{*} does not exist, then $p=q$ and the matrix C is doubly stochastic so that (see (2)) $\rho=p$. If $S^{*} / M^{*}=S / M$ then $e=0$. But then C contains a block of zeros of size $p-u$ by $q-v$ so that, from Theorem 4, $\rho \leqslant u+v$. This supplies an upper bound for ρ.

From the computational point of view this corollary is not as trivial as might first appear. For a large matrix the problem of locating a u by v block of zeros might require a search of prohibitive length.

By iteration of the process with $S^{*} / M^{*}=S_{1} / M_{1}$ a sequence of values

$$
\frac{S}{M} \leqslant \frac{S_{1}}{M_{1}} \leqslant \frac{S_{2}}{S_{2}} \ldots
$$

is obtained. Either for some i,

$$
\frac{S_{i}}{M_{i}}=\frac{S_{i-1}}{M_{i-1}},
$$

in which case the corollary to Theorem 14, together with the results in (2) quoted previously, give upper and lower bounds for ρ, or else the sequence

$$
\frac{S}{M}<\frac{S_{1}}{M_{1}}<\frac{S_{2}}{M_{2}}<\frac{S_{3}}{M_{3}}<\ldots
$$

is an infinite properly increasing sequence. This sequence is bounded above since for all i,

$$
\frac{S_{i}}{M_{i}} \leqslant p
$$

In this case the terms approach a limit, and the result quoted previously together with an approximation to this limit gives a lower bound for ρ.

Let C be any p by q matrix with non-negative entries. Let $m \neq 0$ be the minimum value of any row or column sum in C. Let C^{*} be the matrix obtained from C as follows: If the entry $c_{i j}$ of C does not occur in a row or column at which the minimum sum m is attained, put $c^{*}{ }_{i j}=c_{i j}$. If $c_{i j}$ appears in a row or column at which the minimum sum m is attained put

$$
c_{i j}^{*}=\frac{m^{*}}{m} c_{i j .} .
$$

Theorem 17. The sum S^{*} of the entries in C^{*} satisfies

$$
\frac{S^{*}}{m^{*}} \leqslant \frac{S}{m} .
$$

Proof. The proof is identical with that given for Theorem 16.
The corollaries to Theorem 16 and the remarks concerning the iteration of the transformation have immediate analogues in Theorem 17.
8. Concluding remarks. In the previous sections have we avoided the language of lattice theory in describing our results. In this language some of the results take on an interesting form and it is possible that the lattice formulation might lead to further ramification of the theory. We also note in what follows that our notion of an interior pair can be used to reformulate the map colouring problem.
The m.e.p.'s of a graph K may be partially ordered in a natural manner as follows: $[A, B] \subseteq[C, D]$ if and only if $A \subseteq C$ and $B \supseteq D$ by set inclusion. In this ordering the lattice-theoretic join and meet are given by

$$
[A, B] \cup[C, D]=(A \cup C, B \cap D]
$$

and

$$
[A, B] \cap[C, D]=[A \cap C, B \cup D]
$$

respectively. By Theorem 5 , if $[A, B]$ and $[C, D]$ are m.e.p.'s for a graph K, then $[A, B] \cup[C, D]$ and $[A, B] \cap[C, D]$ are also m.e.p.'s for K. Also, since the definitions have been given in terms of set inclusion, the resulting lattice is distributive. Hence we have the following theorem:

Theorem 18. If K is any graph, the set of all m.e.p.'s for K form a distributive lattice.

Using the notation of $\S 3$, we can define complements of an m.e.p. as follows. The complement of $[A, B]$ is taken as $\left[\left(A^{*}-A\right) \cup A_{*},\left(B^{*}-B\right) \cup B_{*}\right]$. The complement of $[A, B]$ is not necessarily an m.e.p. for K. In fact the remark preceding Theorem 11, together with the proof used in Theorem 11, yields the following theorem.

Theorem 19. The lattice of all m.e.p.'s for a graph K is complemented if and .only if K contains no inadmissible elements.

We remark here without going into details that the region R_{2} can be subdivided into subregions such that for each of these subregions the presence of elements of K obstructs the complements of certain m.e.p.'s for K from being m.e.p.'s for K.

In another direction it may be worth while to examine the polarity construction given by Garrett Birkhoff (1, p. 54). Let K be any graph in $S \times T$ and \bar{K} its complement. To any subset A of S we associate the subset $B=$ $\psi_{K}(A)$ of T defined as follows: $b \in \psi_{K}(A)$ if and only if $(a, b) \in K$ for all a in A. Similarly with any subset B of T we associate the subset $A=\phi_{k}(B)$ of S defined as follows: $a \in \phi_{k}(B)$ if and only if $(a, b) \in K$ for all $b \in B$. The following properties of this construction are given in (1). For any A and any B,

$$
\phi_{k} \psi_{k}(A) \supseteq A, \psi_{k} \phi_{k}(B) \supseteq B . \psi_{k} \phi_{k} \psi_{k}(A)=\psi_{k}(A), \phi_{k} \psi_{k} \phi_{k}(B)=\phi_{k}(B) .
$$

If $A=\phi_{k} \psi_{k}(A), A$ is said to be closed. Similarly, B is closed if $B=\psi_{k} \phi_{k}(B)$. A pair (A, B) is called a polar pair with respect to K if $B=\psi_{k}(A)$ and A $=\phi_{k}(B)$. If (A, B) is a polar pair with respect to K, A and B are both necessarily closed sets. To establish a connection between the concept of a polar pair and the concepts of interior and exterior pairs for a graph we make the following further definitions. An exterior cover $[A, B]$ of K is said to be uncontractable if for any other exterior cover $\left[A_{1}, B_{1}\right]$ such that $A_{1} \subseteq A$ and B_{1} $\subseteq B$ then $A_{1}=A$ and $B_{1}=B$. By this definition an m.e.p. $[A, B]$ is an uncontractable cover of minimum dimension. More generally we may say that the cover $[A, B]$ is uncontractable with respect to A, if for any other cover [A_{1}, B] we have $A \subseteq A_{1}$. Uncontractability with respect to B is defined in a similar way. An interior pair $\{A, B\}$ for K is said to be inextensible if for any
interior pair $\left\{A_{1}, B_{1}\right\}$ such that $A \subseteq A_{1}$ and $B \subseteq B_{1}$ then $A=A_{1}$ and B $=B_{1}$. A maximal interior pair $\{A, B\}$ is then simply an inextensible interior pair of maximum dimension. We can now state the following theorem.
Theorem 20. Let K be any graph and \bar{K} its complement, and let $[A, B]$ be an exterior pair for K. Then
(1) $\psi_{\bar{k}}(\bar{A}) \supseteq \bar{B}, \phi_{\bar{k}}(\bar{B}) \supseteq \bar{A}$.
(2) $\psi_{\bar{k}}(\bar{A})=\bar{B}$ if and only if $[A, B]$ is uncontractable with respect to B; $\phi_{\bar{k}}(\bar{B})=\bar{A}$ if and only if $[A, B]$ is uncontractable with respect to A.
(3) $[A, B]$ is an uncontractable cover for K if and only if (\bar{A}, \bar{B}) is a polar pair with respect to \bar{K}.

The proof of Theorem 20 is immediate and is not given here. Another theorem whose proof we omit is the following:

Theorem 21. With respect to any graph K an interior pair $\{A, B\}$ is inextensible if and only if (A, B) is a polar pair.

Whether the concepts of uncontractable and inextensible pairs can lead to important properties of graphs is a matter of speculation. It may be worth mentioning here that the set of all uncontractable pairs for a graph K do not form a lattice in any natural way as do the m.e.p.'s for K.

Finally, it might be worth while investigating whether the concepts of cover and interior pair can lead to interesting results in connection with symmetric graphs or with dominance matrices. While we have done no work on these problems, it turns out that many of the interesting problems can be formulated in terms of concepts introduced here. We give one example-that of colouring a map in λ colours. Let M be a map of r regions $a_{1}, a_{2}, a_{3}, \ldots, a_{r}$. Put $S=T=\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$. The graph K corresponding to the map M is the set of all $\left(a_{i}, a_{j}\right)$ such that the regions a_{i} and a_{j} are contiguous. A colouring of M using λ colours consists of decomposing S into λ mutually exclusive sets $S_{1}, S_{2}, S_{3}, \ldots, S_{\lambda}$ in such a way that the pairs $\left\{S_{1}, S_{1}\right\},\left\{S_{2}, S_{2}\right\}, \ldots$ $\left\{S_{\lambda}, S_{\lambda}\right\}$ are interior to the complement of K.

References

1. Garrett Birkhoff, Lattice theory (revised edition) Amer. Math. Soc. Coll. Pub., 25 (1948).
2. A. L. Dulmage and N. S. Mendelsohn, Some generalizations of the problem of distinct representatives, Can. J. Math., 10 (1958), 230-241.
3. - The convex hull of sub permutation matrices, Proc. Amer. Math. Soc., 9 (1958), 253-254.
4. A. L. Dulmage and I. Halperin, On a theorem of Frobenius-König and J. von Neumann's game of hide and seek, Trans. Roy. Soc. Can. Ser. III, 49 (1955), 23-29.
5. D. König, Theorie der endlichen und unendlichen Graphen, (Chelsea, New York, 1950).
6. H. B. Mann and H. J. Ryser, Systems of distinct representatives, Amer. Math. Monthly, 60 (1953), 397-401.
7. O. Cre, Graphs and matching theorems, Duke Math. J., 22 (1955), 625-639.
8. H. J. Ryser, Matrices of zeros and ones, Can. J. Math., 9 (1957), 371-377.
9. J. von Neumann, A certain zero sum two person game equivalent to the optimal assignment problem, Contribution to the theory of games II, Annals of Mathematics Studies, 28, (Princeton, 1953), pp. 5-12.
