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Since the 1980s, deconstruction has become a popular
approach for designing architecture. In music, however, the
term has not been absorbed as well by the related literature,
with a few exceptions. In this article, ways to find ideological
groundings for deconstructivism in music are introduced
through the concepts of enchaînement and reconstruction
paradoxes. Similar to the Banach–Tarski paradox in
mathematics, reconstruction paradoxes occur when
reconstructing the parts of a whole no longer yields the same
properties as the whole. In music, a reconstruction paradox
occurs when a piece constructed from tonal segments no longer
yields a perceived tonality. Deconstruction in architecture
heavily relies on computer-aided design (CAD) to realise
complex ideas. Similarly in music, computer-aided
composition (CAC) techniques such as neural networks,
concatenative synthesis and automated orchestration are used.
In this article, we discuss such tools in the context of this
advocated new aesthetics: deconstructivist music.

1. INTRODUCTION

The role of the composer as an artist who has been
bestowed the Atlantean burden of choosing notes and
sounds (Murail 2005) has led to many formalisations
and theories about music. From stochastic and spectral
music to neo-Riemannian and transformational
theories, different schools of thought have proposed
different solutions and techniques, to the benefit of the
novice composer who can now choose or unchoose
among different paths. Notes can be picked randomly
from some scale (a sieve in the sense of Xenakis or a
partials reconstruction in the sense of Murail), a series
(in the sense of the serial school), a process (in the sense
of process music) or by an algorithm (in the sense
of algorithmic and generative music). This paper
describes the deconstructivist aesthetics that emerges
from techniques for generating music that have
emerged in new music, notably concatenative synthe-
sis, neural networks, random walks, transformational
techniques and variants. It discusses various recon-
struction paradox instances in which parts do not

reconstruct the whole. We then discuss three case
studies: first, random walks in neo-Riemannian spaces
learned from a corpus; second, automated orchestra-
tion of piano rolls based on distance spaces learned
from a corpus; and finally, the use of recursive neural
networks (RNN) to generate polyphonic multichannel
sketches (i.e., orchestral) based on a learned corpus
and steering input data. This article is an exploratory
walk in the lands of (this so-called) deconstructivist
music, not an exhaustive survey in the field. Other
papers have served this purpose (Roads 1985;
Edwards 2011; Briot, Hadjeres and Pachet 2020; Ji,
Luo and Yang 2020).

2. BACKGROUND AND RELATED WORK

2.1. Deconstruction in architecture

Deconstruction in philosophy, as a late structuralist
declination by French philosopher Jacques Derrida,
has had a long legacy in the arts since as early as the
1980s (Wigley 1993; Vitale 2019). In the fine arts,
architecture is perhaps the field in which deconstruc-
tion has been the most successfully applied as a
technique with palpable and visible aesthetic results, as
may be exemplified through the works of architects
Daniel Libeskind, Zaha Hadid, Peter Eisenman,
Bernard Tschumi, Rem Koolhaas, Frank Gehry,
Coop Himmelblau or Morphosis, among many others
(Figure 1). About destruction and architecture in a
harrowing vision of a lost Europe (in his work
Danube), Claudio Magris writes:

It is comforting that travel should have an architecture,
and that it is possible to contribute a few stones to it,
although the traveller is less like one who constructs
landscapes for that is a sedentary task than like one who
destroys them : : : But even destruction is a form of
architecture, a deconstruction that follows certain rules
and calculations, an art of disassembling and reassem-
bling, or of creating another and different order.
(Magris 2001)
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In architecture and the visual arts, the deconstructi-
vist movement of the 1980s and 1990s found its
inspiration partly from the Russian Constructivism of
the early twentieth century (Johnson andWigley 1988;
Wigley 1993) and partly from challenging new designs
coming from computer-generated art (Boden 2009).
The patterns used for the windows of Libeskind’s
Jewish Museum in Berlin are reminiscent of some of
Malevitch’s paintings; as are the random geometries
early personal computers could generate.

We can describe the deconstructivist works of the
2000s and forward as part of a post-deconstructivist or
late deconstructivist era in architecture, where,
inspired by the early deconstruction of the 1980s,
form has been effectively liberated from the straight
line. A myriad of designs has been imagined and built
following this initial drive. Computer-aided design
and physical models in the design of complex shapes
have been instrumental in this artistic movement by
allowing greater technical possibilities and greater
control over the rendered product. Generative art
(e.g., using machine learning) has been a trend in
computer graphics and visual arts since at least the
1960s (Boden 2009; Audry 2021).

2.2. Deconstruction in music

Deconstruction has also been explicitly applied to the
theory of music and its meanings (philosophical and
sociological). Rose Subotnik seemed to have coined
the term in music and used critical theory to provide a
new interpretation of classical music (e.g., Mozart,
Chopin) (Subotnik 1995). Deconstuctivism in archi-
tecture relates to a set of techniques, effective processes
with aesthetic and ‘palpable’ results. In music, however,
existing work on deconstructivist approaches is scat-
tered among different niches of contemporary music
with diverse labellings.

No deconstructivist school of thought effectively
exists in music and association with a heuristic idea of
deconstruction may be more of an impression left on
an auditor by some work rather than an intentional
process.
This being said, the so-called parametric music

of serialism and high modernism was an early example
of deconstruction (of a piece into its parameteric
models). The generative material is represented as a set
of tweakable parameters with which a piece can be
reconstructed. It was commonplace among composers
of the era to believe that once the series was chosen,
the rest of the piece would follow and could be
reconstructed. Koblyakov’s analysis of Boulez’s
Marteau sans maître undeniably demonstrates the
parametric and generative aspects of Boulez’s work
for instance (Koblyakov 1993). Also, composer
Iannis Xenakis is known to have parametrised the
stochastic generation of some of his most famous
pieces, yielding results that still today can surprise
and impress (Solomos 2015). Edwards (2011) lists
the following examples as forerunners of the current
day algorithmic music: Guillaume Dufay’s (1400–
74) isorhythmic motet Nuper rosarum flores; evi-
dence of Fibonacci relationships in the music of
Bach, Schubert and Bartók; Mozart’s Musikalisches
Würfelspiel (1792); and the Quadrille Melodist sold
by Professor J. Clinton of the Royal Conservatory
of Music, London (1865) (a set of cards that allowed
a pianist to generate quadrille music).
The music of Brian Ferneyhough and the visual

scores of John Cage or Sylvano Bussotti are also
proto-deconstructions (Ferneyhough 1981; Attinello
1992; Bogue 2014; Hidalgo and Ipinza 2016). Figure 2
shows several such examples of deconstruction in
music. In Ferneyhough’s work, the serial use of
rhythm trees (i.e., in the sense of the Patchwork or
OpenMusic softwares) disjuncts the time dimension;

Figure 1. (left) Vladimir Tatlin, Project for a Monument to the Third International, 1919 (The Museum of Modern Art/
Licensed by SCALA/Art Resource, NT); (centre) Constructive Theatrical Set by Iakov Chernikhov (1889–1951) (figure

reproduced from his book The Construction of Architectural and Machine Forms (Chernikhov 1931)); (right) Micromegas,
drawings (1979) by Daniel Libeskind (Image Courtesy © Daniel Libeskind). The literature indicates that the term

‘deconstructivist architecture’ (inspired from early Russian constructivism and avant-garde of the twentieth century) was first
popularised in the MOMA exposition catalogue Deconstructivist Architecture (Johnson and Wigley 1988).
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for John Cage, the deconstruction of the time domain
comes from the use of indeterminacy and chance
composition; for Bussotti, the deconstruction is visual
(as it relates to deconstruction in the visual arts) – the
straight line, like in architectural deconstruction, is
literally perturbated. The work Piano Pieces for David
Tudor: 1. Rhizome by Bussotti was incidentally
inspired by the ‘rhizome’ concept of post-structuralist
philosopher Gilles Deleuze (2013): a ‘rhizome’ (a
concept borrowed from botany and dendrology) is a
structure of constant splitting, such that synthesis (in a
Hegelian sense) of the parts is no longer possible.
Corbussen (2002) describes a work by Gerd Zacher,
Die Kunst seiner Fuge (1968) – a set of ten variations of
Contrapunctus I by Bach where the composer
interprets the piece in various ways – as deconstructi-
vist. Variations are a musical form that adequate well
with the idea of deconstruction or parametric music in
general. Generated content and reconstructions can be
obtained by slightly varying some parameters, yielding
significantly different results.
Granular synthesis – deconstructing (segmenting

into ‘grains’) and reordering audio signals (often with
additional parametric signal processing) – is a tech-
nique notably pioneered by Xenakis (Solomos 2015).
The same process applied to music notation (viaMIDI)
is at the source of techniques such as concatenative
synthesis – which could be performed on audio or
MIDI (Zils and Pachet 2001; Schwarz 2004, 2005;
Maestre, Ramírez, Kersten and Serra 2009).
The work on real-time generative accompaniment

and concatenative synthesis (Dannenberg 1993; Lewis
2000; Thom 2000; Young 2007; François Pachet, Roy
and d’Inverno 2013; Carsault 2017; Nika, Déguernel,
Chemla-Romeu-Santos and Vincent 2017) could also
be described as a form of musical deconstruction. In
the OMax project (Dubnov, Assayag and El-Yaniv

1998; Assayag, Bloch, Chemilliera, Cont and Dubnov
2006;AssayagandBloch2007),segmentsareclassifiedin
a suffix tree using the Oracle Factor algorithm. These
research systems segment musical sources and recon-
struct them out of place based on different heuristics.
In the DYCI2 project (Nika et al. 2017), the musical
material isbroken intomemories thatare triggeredinreal
time by an instrumentalist. The work Ex Machina by
saxophonist SteveLehmanand artistic directorFrédéric
Maurin is a hallmarkof the use ofDYCI2. Interestingly,
most of these systems have parameters designed to
improve the continuity of the reconstructed pieces, or
their contextual/genre readability. These parameters
can, however, be tweaked to their extremities and yield
completed deconstructed, disjuncted results. The work of
Umberto Eco (1965) on open works can be noted, but
also indeterminacy as pioneered by John Cage and the
New York School (Iddon and Thomas 2020).

3. RECONSTRUCTION PARADOXES

A fundamental concept in the construction of tonal
music, which is often overlooked when considering
other such concepts such as tonality, harmony,
counterpoint and timbre, is the enchaînement
concept. Simplistically speaking, enchaînement is
to music what the straight line is to architecture. As
a related concept, voice leading and its perception
was extensively studied in the cognitive sciences
(Huron 2016). Enchaînement is thus the composition
of the rules defining what comes before and what
comes after a given musical event (e.g., a certain
chord, a dissonance, an incomplete melodic pat-
tern), the actualisation of harmony and tonality in a
temporal structure. In neo-Riemannian theory, or
transformational theory, some chords occur with
higher probability after some other chords based on

Figure 2. (left) Fontana Mix by John Cage (1958) (© 1958 by Henmar Press Inc. Permission by C. F. Peters Corporation. All
rights reserved); (centre-left) John Cage, II from Mushroom Book 1972 (image courtesy @ John Cage Trust; digital image ©
TheMuseum of Modern Art/Licensed by SCALA/Art Resource, NT); (centre-right) Introduction: Rhizome – From Five Piano
Pieces for David Tudor Music by Sylvano Bussotti (© 1959 Casa Ricordi Srl, a division of Universal Music Publishing Classics
& Screen. International Copyright Secured. All Rights Reserved. Reprinted by permission of Hal Leonard Europe BV (Italy));
(right) Lemma-Icon-Epigram by Brian Ferneyhough (© 1981 by Hinrichsen Edition, Peters Edition Limited. Permission by

C. F. Peters Corporation. All rights reserved).
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their position in some neo-Riemannian embedding
space. In Hollywoodian music, this syntax has been
made evident (Lehman 2018). It is our opinion that
enchaînement conventions define musical order in at
least as pervasive a manner as tonality or timbre.

In the piece Morphogenesis (2022) (Figure 3), we
used as source material Beethoven’s Symphony no. 9
(4th movement), or Bee9, and a recursive neural
network to reconstruct the material using Boulez’s
Notations for orchestra as a steering material. The
reconstructed pieces were composed of reordered
(tonal) segments from Bee9, and they sound atonal.

In a sense, this relates to the Banach–Tarski
paradox where reconstruction from the parts does
not yield the whole. Sets in complex spaces (a 3D ball
or a musical piece) may not always follow expected
behaviours. The following quote gives a description of
the Banach–Tarski paradox (de Rauglaudre 2017: 37):

[The] Banach-Tarski Paradox states that a ball in 3D
space is equidecomposable with twice itself, i.e. we can
break a ball into an infinite number of pieces, and with
these pieces, build two balls having the same size as the
initial ball. This strange result is actually a Theorem
which was proven in 1924 by Stefan Banach and Alfred
Tarski using the Axiom of Choice.

In music, we could call this a reconstruction paradox.
In the sameway, the reverse transformation or rotations
in post-romantic and serial music could be seen as
generative techniques (e.g., Rachmaninov’s Variations
on a Theme by Paganini). Breaking the enchaînement
conditioning of musical sources effectively generates
new sonorities and aesthetics. We will discuss the details
of these compositional processes in later sections.

Figure 4 demonstrates a reconstruction paradox
using an example fromRachmaninov’s Piano Concerto
no. 2. In the study sketch for the piece Morphogenesis
(2022) (Figure 3), a neural network was used to learn
associations between segments of Rach2 and their
MIDI representations. The neural network was then
used to transform segments from Boulez’sNotations for
orchestra intomultitrack polyphonicMIDI signals (i.e.,
orchestral segments). Judging from the atonality of the
resulting sequences, the perceived sense of tonality is
not the consequence of choosing notes from a tonal
scale but rather an artefact of tonal enchaînement
patterns (i.e., tonally syntactic chord progressions,
dissonance resolution conventions and so on).

4. PIECES, SLABS, WEDGES, CASES AND
STUDIES

4.1. Learning generative transformations in neo-
Riemannian spaces

At least two trends in algorithmic music and
composition can be distinguished in the massive grove

of new music techniques and technologies: on one
hand, generative techniques, such as OMax, DYCI2,
Somax (Assayag et al. 2006); and on the other hand, a
perpetual search for understanding inner structures of
musical composition through neo-Riemannian and
transformational theories (some examples include
Lewin 1987; Lerdahl 1996; Tymoczko 2011; Cohn
2012). Concepts from transformational theories, such
as chordal distance and spatial embeddings, have been
used in generative techniques to steer the generation
of music from pure randomness to some sense of
coherent aesthetics. The ability to choose notes among
the infinitude of possible assemblies of frequencies
has been at the core of contemporary music research
since Xenakis’s exploration into stochasticity and his
development of sieve theory (Xenakis 1992; Solomos
2015), Messiaen’s quest for modes of limited transpo-
sition (Messiaen 2000), and Cage’s chance music, to
the usage of partials and microtonality generated from
sound analyses in the spectral school (Murail 2004,
2005). The quest for theories of compositional choice
is foundational to the design of algorithms and
processes of generative music.
Figure 5 shows the embeddings-into-nearest-

neighbour graphs of segments obtained from
distance matrices using the Spiral Array distance
(Chew 2014) and computed for different works (i.e.,
Rach2 and Schoenberg’s Klavierstücke, op.11, no.
3). Different pieces yield different structures (which
is reminiscent of the work on generative meshing in
the new architectural geometry field). These graphs
and structures can be used as terrain for a random
walk steered by the concavities and convexities of
the terrain. We start from an input chord and the
algorithm chooses some optimal path based on the
data it has learned from the different works.
Reproducing the genre or style of the piece is not
the primary goal of such methods. Following the
concept of reconstruction paradoxes, we can say
that the reconstituted wholes rarely display all the
properties of the original works. Figure 6 shows
examples of such reconstructions. Figure 7 shows a
piece generated from a random walk in a space
learned from ‘O Fortuna’ from Carmina Burana by
Carl Orff. The random walks generated on a single
channel were then orchestrated using Orchidea, a
software developed at IRCAM (Maresz 2013).
The generated random walks sometimes preserve

some characteristics of the original corpus (in ‘O
Fortuna’, the grandiloquence could still be per-
ceived), however, reconstruction paradoxes (in the
perception of tonality and metric rhythm especially)
still occur in the generated artefacts. The random
walk algorithms are described in Algorithms 1
and 2.

82 Philon Nguyen and Eldad Tsabary

https://doi.org/10.1017/S1355771823000237 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771823000237


Figure 3. Sketch for the work Morphogenesis (2022): reconstruction of Bee9 using a segmentation window of length on
average μ= 2.0512s steered using Boulez’s Notations for orchestra. The result reminds the pointillism of early serial post-

Webernian music.
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4.2. Distance-based automated orchestration

Automated orchestration designs have offered a smaller
number of candidates for review than algorithmic
composition. Orchidea, the latest creation of the Orch*

series developed at IRCAM by Carmine-Emanuele
Cella, uses a customisable database of sounds to output
an optimal instrumentation using genetic algorithms
(Maresz 2013). IRCAM has also developed another

Figure 4. (a) An excerpt of the piano part (MIDI layout) of the first movement of Rachmaninov’s Piano Concerto no. 2 (bb.
38–42); (b) a reconstruction of the piano part of Rachmaninov’s Piano Concerto No. 2 steered using Boulez’s Notations for
orchestra. Multitrack polyphonic MIDI files are reconstructed using neural networks (for simplicity, only the piano parts are
shown here). Syncopations and disjunctions are introduced in the reconstruction. While (a) is clearly tonal (post-romantic), (b)
is clearly modern: a reconstruction paradox occurs when a reconstruction from the parts of a whole no longer yields the same

properties as the whole.

Figure 5. (left) A generative transformation learning algorithm is learned from transformation matrices (i.e., similarity
distance matrices); (centre) two-dimensional Euclidean space embedding using the multidimensional scaling (MDS)

algorithm; (right) the network community graphs for (a) segments generated from Schoenberg’s Klavierstücke, op. 11, no. 3
and (b) segments generated from Rach2.
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piece of software, Orchestral Piano by Leopold Crestel
(Crestel and Esling 2017), where orchestration rules are
learned from real orchestration of piano reductions.
The machine-learning algorithms then learn association
predictions from the piano reduction and orchestration
data using variants of Restricted Boltzmann Machines
(RBM, cRBM and FGcRBM). Finally, Handelman
and Sigler (2012) proposed an automated orchestration
method based on the concept of z-chains.
We demonstrate a technique that is based on some

chordal distance measure (e.g., chromagrams, Estrada
distance, Costère distance and Chew distance) that has
a lightweight learning phase (i.e., updating a distance
matrix) and that can therefore be used in real time with
minimal footprint (storing a transformation matrix,
which in the case of subsets of 12 notes is 4096×4096).
A first learning phase where an existing MIDI
orchestration of some work A is segmented and
tagged by its pitch-class content (i.e., the multichannel
MIDI signal is collapsed, and duplicate pcs across all
octaves are deleted) is performed. A second-genera-
tion phase is performed with MIDI from some work B
that is used for generating sketches: each segment of
work B is matched to some segment in Work A and a
reconstruction of A is generated, steered by B.
This process is explained in Algorithms 1 and 3 (in

Figure 8). Algorithm 1 is shared between the random
walk algorithm and the distance-based automated
orchestration algorithm; as the generation of a
transformation matrix uses the same techniques. This
process can be used to handle timbre as well in the
distance-based automated orchestration algorithm.
Timbre, here, is extracted from the information on
the channels/instruments provided in the MIDI file.
Creating a distinct transformation matrix for the
channel information in addition to the note information
(pitch-class sets, or harmony) is possible. Joining both
transformation matrices using a weighing strategy is
also possible.

4.3. Recursive neural networks for steered orchestral
concatenative synthesis

Neural networks in music synthesis have been studied
extensively since the idea was first put forth (Lewis and
Todd 1988; Lewis 1998). Also, more recent RNN,
ConvNets, GAN, VAE and concatenative synthesis-
based techniques in music synthesis have notably
been experimented with in IRCAM’s automated
accompaniment libraries (e.g., OMax, DYCI2,
Somax).
Here we demonstrate the use of a robust and well-

tested techniqueused inspeechrecognition/classification
(the so-called spoken digit classification problem) using
RNNs and apply it to music synthesis. As usual, neural
networks are sensible to input data and training
parameters.
We generated three sets of input data using

Beethoven’s Symphony no. 9 (4th movement) or
Bee9. One with an average segment length of
μ= 0.137405s (a short segment length corresponding
to a segment generated at each onset of the MIDI file
modulo a precision parameter handling notes not
hitting the same exact onset), one with an average
μ= 1.04207s (a coarse segment length where segments
could contain many onsets – motifs) and a coarser
segmentation with average μ= 2.05122s.
Different datasets used to train the RNN yielded

different properties in the generated music. Shorter
segmentsyielded lessdiversity in thegeneratedsegments.
Coarser segments yieldedmorediversity in the segments.
Coarser segments also increased the recognisability of
the input corpus. Reconstruction paradoxes are clear in
the generated material, even in longer segments in the
Bee9 example. This is illustrated in Figure 9.

5. ALGORITHMS

Algorithm 1 is identical for the random walk and
distance-based orchestration algorithms and one can

Figure 6. (a) A random walk based on Schoenberg’s Klavierstücke, op. 11, no. 3; (b) a random walk based on a piano
reduction of Rach2. Both random walks were steered by chordal distance measures (e.g., chromagrams, Estrada distance,

Costère distance and Chew distance).

Towards Deconstructivist Music 85

https://doi.org/10.1017/S1355771823000237 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771823000237


Figure 7. Excerpt from the cantata for choir and piano The Fall of Rome, 1. The Last Harangue (2022). The source material
used for training the model was ‘OFortuna’ from Carl Orff’s Carmina Burana. From the model, a random walk was generated

and the result was orchestrated using the software Orchidea developed at IRCAM (Maresz 2013).
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Figure 8. Algorithms 1–4 discussed in this article.
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overload the other. When dealing with orchestration,
the MIDI files used are multichannel: the feature
extraction and embedding algorithm (Algorithm 1)
learns the pitch-class space and collapses the channel
information to keep only the pc-set data (note that this
technique can be extended by learning the timbral
embedding space and storing the MIDI channel
information on another segment).

Algorithms 2 and 3 assume that a transformation
matrix was learned using Algorithm 1. In the case of
Algorithm 2, a single channel segment is returned. In the
case of Algorithm 3, multichannel information is
returned.
Algorithm 4 assumes a trained RNN of the type

described in Figure 10. The RNN effectively classifies
orchestral audio segments to their MIDI polyphonic

Figure 9. (a) Histogram showing the index of the chosen segments (i.e., such an index is the label of some set of notes/channels/
onsets/durations with duplicate notes deleted) and the number of such indices returned by a recursive neural network trained
on a fine-grained segmentation (the average segment size was μ= 0.1374s) – the fine-grained segmentation corresponded to a
segmentation where each new onset generated a segment; (b) histogram for a coarse segmentation (μ= 1.0420s); (c) histogram
for a coarser segmentation (μ= 2.0512s). Coarse segmentations could contain multiple onsets where a given segment contained

a continuous succession of segments from the source material (i.e., Bee9), effectively increasing continuity. Finer
segmentations yielded less diversity in the segments chosen and more repetition. Coarser segmentations yielded more diversity

with the coarsest segmentation producing a Gaussian mixture. These neural networks were trained for the piece
Morphogenesis (2022).

Figure 10. Example of architecture from the Wolfram Language and Mathematica software for a recursive neural network
trained on audio segments and their corresponding MIDI segments. Audio inputs are encoded into MFCC coefficients.

A segment number is decoded. The segment number corresponds to the MIDI data of the segment.
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multichannel counterparts (additional technicalities
are necessary to handle MIDI files with more than 16
channels).

6. CONCLUSION

The study of deconstruction in music promises to be a
testbed for many new works. Reconstruction para-
doxes are real consequences of many generative
and algorithmic music techniques that are being
studied in new music (e.g., neural networks, random
walks, concatenative synthesis, variational autoen-
coders, machine learning). When comparing Figures
4a (Rach2 non-deconstructed) and 4b (Rach2 decon-
structed), we can see that the excerpt generated by AI
has an embedded deconstructivist ‘logic’ to it: the
traditional patterns of enchaînement do not seem to
hold. The AI deconstructivist creations may share
some traits and parameters with their component parts
and the original pieces these parts were extracted
from (mostly at the microtemporal domain); but they
demonstrate unique aesthetical features, distinguish-
able by the absence of traditional enchaînement
conventions – resulting from the dismantling of their
original syntactic tonal/metric contexts. As we continue
to research and create in the area of deconstructivist
AI music, other paradoxes, phenomena and epiphanies
are bound to be discovered, leading to a growing body
of works and theoretical base.

Acknowledgements

We wish to thank the following for providing
permission to reproduce artworks and scores in our
paper: Edition Peters for the work FontanaMix (1958)
by John Cage; the John Cage Trust, Edition Peters
and MOMA/Scala/Art Resource for the works II from
Mushroom Book (1972) by John Cage; Casa Ricordi
for the work Introduction: Rhizome – From Five Piano
Pieces for David Tudor (1959); Edition Peters for
the work Lemma-Icon-Epigram (1981) by Brian
Ferneyhough; MOMA/Scala/Art Resource for the
picture of the Project for a Monument to the Third
International (1919) by Vladimir Tatlin; and Studio
Libeskind for the drawing Micromegas (1979).

REFERENCES

Assayag, G. and Bloch, G. 2007. Navigating the Oracle: A
Heuristic Approach. Proceedings ICMC’07, the
International Comp. Music Association, Copenhagen,
405–12.

Assayag, G., Bloch, G., Chemilliera, M., Cont, A. and
Dubnov, S. 2006. OMax Brothers: A Dynamic
Topology of Agents for Improvization Learning.
AMCMM ’06: Proceedings of the 1st ACM Workshop

on Audio and Music Computing Multimedia, New York,
125–32.

Attinello, P. 1992. Signifying Chaos: A Semiotic Analysis of
Sylvano Bussotti’s Siciliano. Repercussions 1(2): 84–110.

Audry, S. 2021. Art in the Age of Machine Learning.
Cambridge, MA: MIT Press.

Boden, M. 2009. What is Generative Art? Digital Creativity
20(1/2): 21–46.

Bogue, R. 2014. Scoring the Rhizome: Bussotti’s Musical
Diagram. Deleuze Studies 8(4): 470–90.

Briot, J.-P., Hadjeres, G. and Pachet, F. 2020. Deep
Learning Techniques for Music Generation. New York:
Springer.

Carsault, T. 2017. Automatic Chord Extraction and Musical
Structure Prediction through Semi-Supervised Learning:
Application to Human-Computer Improvisation. Master’s
diss., ATIAM, Université Pierre-et-Marie Curie.

Cage, J. 1958. Fontana Mix. London: Peters Edition.
Chernikhov, I. 1931. The Construction of Architectural and

Machine Forms (Konstruktsiya Arhitekturnyih i
Mashinnyih Form). Leningrad: Izdanie Leningradskogo
obschestva arhitektorov.

Chew, E. 2014. Mathematical and Computational Modeling
of Tonality: Theory and Applications. Berlin: Springer.

Cohn, R. 2012. Audacious Euphony: Chromatic Harmony
and the Triad’s Second Nature. Oxford: Oxford
University Press.

Corbussen, M. 2002. Deconstruction in Music. The Jacques
Derrida – Gerd Zacher Encounter. PhD diss., Erasmus
University Rotterdam.

Crestel, L. and Esling, P. 2017. Live Orchestral Piano: A
System for real-Time Orchestral Music Generation. 14th
Sound and Music Computing Conference 2017, Espoo,
Finland.

Dannenberg, R. B. 1993. Software Support for Interactive
Multimedia Performance. Journal of New Music Research
22(3): 213–28.

Deleuze, G. 2013. Mille plateaux: Capitalisme et
schizophrénie, 2. Collection Critique. Paris: Les Editions
de Minuit.

Dubnov, S., Assayag, G. and El-Yaniv, R. 1998. Universal
ClassificationApplied toMusical Sequences.Proceedings of
the International Computer Music Conference, Michigan.

Eco, U. 1965. L’oeuvre ouverte. Paris: Éditions du Seuil.
Edwards, M. 2011. Algorithmic Composition: Computational

Thinking in Music. Communications of the ACM 54(7):
58–67.

Ferneyhough, B. 1981. Lemma-Icon-Epigram. London:
Peters Edition.

François Pachet, J. M., Roy, P. and d’Inverno, M. 2013.
Reflexive Loopers for Solo Musical Improvisation.
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, 2205–8.

Handelman, E. and Sigler, A. 2012. Automatic
Orchestration for Automatic Composition. AIIDE
Workshop AAAI Technical Report WS-12-16.

Hidalgo, A. and Ipinza, C. 2016. Cartografiar lo intangible,
El Sonido. Ponencia VI Congreso Internacional de
Expresión Gráfica, Córdoba, Argentina.
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