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Small Coverings with Smooth Functions
under the Covering Property Axiom

Krzysztof Ciesielski and Janusz Pawlikowski

Abstract. In the paper we formulate a Covering Property Axiom, CPAprism, which holds in the iterated

perfect set model, and show that it implies the following facts, of which (a) and (b) are the generaliza-

tions of results of J. Steprāns.

(a) There exists a family Fof less than continuum many C1 functions from R to R such that R
2 is covered

by functions from F, in the sense that for every 〈x, y〉 ∈ R
2 there exists an f ∈ F such that either

f (x) = y or f (y) = x.

(b) For every Borel function f : R → R there exists a family F of less than continuum many “C1”

functions (i.e., differentiable functions with continuous derivatives, where derivative can be infinite)

whose graphs cover the graph of f .

(c) For every n > 0 and a Dn function f : R → R there exists a family F of less than continuum many

Cn functions whose graphs cover the graph of f .

We also provide the examples showing that in the above properties the smoothness conditions are the

best possible. Parts (b), (c), and the examples are closely related to work of A. Olevskiı̌.

1 Basic Notation

Our set theoretic terminology is standard and follows that of [9]. In particular, |X|
stands for the cardinality of a set X and c = |R|. The Cantor set 2ω will be denoted
by a symbol C. We use the term Polish space for a complete separable metric space
without isolated points. A subset of a Polish space is perfect if it is closed and contains
no isolated points. For a Polish space X symbol perf(X) will stand for a collection

of all subsets of X homeomorphic to the Cantor set C. Thus, in general, perf(X) is
just a (co-initial) subfamily of the family of perfect subsets of X, though these two
collections coincide if X is zero dimensional. For a fixed 0 < α < ω1 and 0 < β ≤ α,
a symbol πβ will stand for the projection from Cα onto Cβ . We will always consider

C
α with the following standard metric ρ: fix an enumeration {〈βk, nk〉 : k < ω} of

α × ω and for distinct x, y ∈ Cα define

(1) ρ(x, y) = 2− min{k<ω : x(βk)(nk)6=y(βk)(nk)}.

An open ball in C
α with a center at z ∈ C

α and radius ε > 0 will be denoted by
Bα(z, ε). Notice that in this metric any two open balls are either disjoint or one is a
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subset of the other. Also for every γ < α

(2) πγ[Bα(s, ε)] = πγ[Bα(t, ε)] for every s, t ∈ C
α with s ↾ γ = t ↾ γ.

It is also easy to see that any Bα(z, ε) is a clopen set.
We will use standard notation for the classes of differentiable partial functions

from R into R. Thus, if X is an arbitrary subset of R without isolated points we will

write C0(X) or C(X) for the class of all continuous functions f : X → R and D1(X)
for the class of all differentiable functions f : X → R, that is, those for which the
limit

f ′(x0) = lim
x→x0

x∈X

f (x) − f (x0)

x − x0

exists and is finite for all x0 ∈ X. Also, for 0 < n < ω, we will write Dn(X) to
denote the class of all functions f : X → R which are n-times differentiable with all

derivatives being finite and Cn(X) for the class of all f ∈ Dn(X) whose nth derivative
f (n) is continuous. The symbol C∞(X) will be used for all infinitely many times
differentiable functions from X into R. In addition, we say that a function f : X →
R is in the class “Dn(X)” if f ∈ Cn−1(X) and it has an nth derivative, which can
be infinite; f is in the class “Cn(X)” when f is in “Dn(X)” and its nth derivative
is continuous when its range [−∞,∞] is considered with the standard topology.
“C∞(X)” will stand for all functions f : X → R which are either in C∞(X) or, for

some 0 < n < ω, they are in “Cn(X)” and f (n) is constant equal to ∞ or −∞.
(Thus, in general, “C∞(X)” is not a subclass of “Cn(X)”.) In addition, we assume that
functions defined on a singleton are in the C∞ class, that is, C∞({x}) = R

{x}. We
will use these symbols mainly for X’s which are either in the class perf(R) or are the

singletons. In particular, Cn
perf will stand for the union of all Cn(P) for which P ⊂ R

is either in perf(R) or a singleton. The classes Dn
perf , C∞

perf , and “C∞
perf” are defined the

similar way. We will drop parameter X if X = R. In particular, Dn
= Dn(R) and

Cn
= Cn(R). The relations between these classes for n < ω are given in a chart below,

where arrows → indicate the strict inclusions (.

Dn+1

��

Cn+1oo

��

Cn “Dn+1”oo “Cn+1”oo

Chart 1.

In addition, for F ⊂ R
2 we define F−1

= {〈y, x〉 : 〈x, y〉 ∈ F}, and for F ⊂ P(R
2)

we put F−1
= {F−1 : F ∈ F}.

2 Axiom CPAprism

Axiom CPAprism is a simpler version of the axiom CPA which is described in [13].
The main notion needed for the axiom is that of a prism and prism-density.
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Let A be a non-empty countable set of ordinal numbers and let Φprism (A) be the
family of all continuous injections f : CA → CA with the property that

(3) f (x) ↾ α = f (y) ↾ α ⇔ x ↾ α = y ↾ α for all α ∈ A and x, y ∈ C
A

or, equivalently, such that for every α ∈ A

f ↾↾ α
def
= {〈x ↾ α, y ↾ α〉 : 〈x, y〉 ∈ f }

is a one-to-one function from CA∩α into CA∩α. Functions f from Φprism (A) were first
introduced in a more general setting in [19], where they are called projection-keeping

homeomorphisms. Note that

(4) Φprism (A) is closed under compositions

and that for every ordinal number α > 0

(5) if f ∈ Φprism(A) then f ↾↾ α ∈ Φprism (A ∩ α).

For 0 < α < ω1 let
Pα = {range( f ) : f ∈ Φprism (α)}.

Note that

(6) if f ∈ Φprism (α) and P ∈ Pα then f [P] ∈ Pα.

Indeed, if P = g[Cα] for some g ∈ Φprism (α) then, by condition (4), we have f [P] =

f [g[Cα]] = ( f ◦ g)[Cα] ∈ Pα.
We will write Φprism for

⋃

0<α<ω1
Φprism (α) and define

Pω1

def
=

⋃

0<α<ω1

Pα = {range( f ) : f ∈ Φprism}.

Following [19] we will refer to elements of Pω1
as iterated perfect sets.

The simplest elements of Pω1
are cubes (in C

A), that is, the sets of the form C =
∏

a∈A Ca, where Ca ∈ perf(C) for each a ∈ A. (This is justified by a function
f = 〈 fa〉a∈A ∈ Φprism (A), where each fa is a homeomorphism from C onto Ca.)
In particular, since any open ball Bα(z, ε) (in the metric given by (1)) is a cube in Cα,

it belongs to Pα. In fact, more can be said:

(7) if Bα
def
= {B ⊂ C

α : B is clopen in C
α}, then Bα ⊂ Pα.

This is the case, since any clopen E in Cα is a finite union of disjoint open balls, each
of which belongs to Pα, and it is easy to see that Pα is closed under finite unions of

open balls.
In general, the structure of elements of Pω1

can be considerably more complex.
However, there is only one non-trivial fact about Pω1

that we will use in this paper:
the family Pω1

satisfies the following fusion lemma.
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Lemma 2.1 (Fusion Lemma) Let 0 < α < ω1, A ∈ {Bα, Pα}, and let 〈Dk ⊂
[A]<ω : k < ω〉 be such that for every k < ω the following holds.

(P1) (Dk is A-open): If {E0, . . . , En} ∈ Dk and E ′
0, . . . , E ′

n ∈ A are such that E ′
i ⊂ Ei

for every i ≤ n then {E ′
0, . . . , E ′

n} ∈ Dk.

(P2) (sequence splits): If {E0, . . . , En} ∈ Dk and {Ei
0, Ei

1} ∈ Dk+1 for every i ≤ n is
such that Ei

0 ∪ Ei
1 ⊂ Ei then {Ei

j : i ≤ n & j < 2} ∈ Dk+1.
(P3) (Dk is nicely A-dense): For every E ∈ A and γ < α there are disjoint E0, E1 ∈ A

such that E0 ∪ E1 ⊂ E, {E0, E1} ∈ Dk, and πγ[E0] = πγ[E1].

Then there exists a sequence 〈Ek ∈ Dk : k < ω〉 with the property that its fusion Q =
⋂

k<ω

⋃

Ek belongs to Pα.

Although the lemma looks quite complicated, it should be stressed that in all its

applications we will be checking only condition (P3), since the other two conditions
will be trivially satisfied. The proof of Lemma 2.1 will be postponed to the end of this
paper.

The only other fact we will use on Pω1
(or, more precisely, on cubes) is the follow-

ing:

Claim 2.2 If G ⊂ Cω is comeager in Cω then it contains a perfect cube
∏

i<ω Pi .

Proof It follows easily, by induction on coordinates, from the following well-known

fact.

For every comeager subset H of C×C there are perfect set P ⊂ C and a comea-

ger subset Ĥ of C such that P × Ĥ ⊂ H.

(See [20, Exercise 19.3]. Its version for R
2 is also proved in [14, condition (⋆), p.

416].)

To state CPAprism we need a few more definitions. For a fixed Polish space X let
Fprism(X) (or just Fprism, if X is clear from the context) be the family of all continuous

injections f : E → X, where E ∈ Pω1
. Each such injection f is called a prism in X

and is considered as a coordinate system imposed on P = range( f ).1 We will usually
abuse this terminology and refer to P itself as a prism (in X) and to f as a witness
function for P. A function g ∈ Fprism is subprism of f provided g ⊂ f . In the above

spirit, we call Q = range(g) a subprism of a prism P. Thus, when we say that Q is
a subprism of a prism P ∈ perf(X), we mean that Q = f [E], where f is a witness
function for P, E ∈ Pω1

, and E ⊂ dom( f ). A family E ⊂ perf(X) is Fprism-dense
provided

∀ f ∈ Fprism ∃g ∈ Fprism (g ⊂ f & range(g) ∈ E).

Using (4) it is easy to show that

Fact 2.3 E ⊂ perf(X) is Fprism-dense if and only if

∀α < ω1 ∀ f ∈ Fprism, f : C
α → X, ∃g ∈ Fprism (g ⊂ f & range(g) ∈ E).

1In the language of forcing a coordinate function f is simply a nice name for an element from X.
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Thus, to establish Fprism-density we can always assume that the witness function f
for the prism P is in a standard form, that is, defined on the entire set Cα.

Now we are ready to state the axiom.

CPAprism: c = ω2 and for every Polish space X and every Fprism-dense family E ⊂
perf(X) there is an E0 ⊂ E such that |E0| ≤ ω1 and |X \

⋃

E0| ≤ ω1.

The proof of the consistency of CPAprism can be found in [12, Prop. 4.2]. (See
also [13].) We finish this section with yet another lemma which will be used in our
applications.

Lemma 2.4 For every 0 < α < ω1, E ∈ Pα, a Polish space X, and a continuous
function f : E → X there exist 0 < β ≤ α and P ∈ Pα, P ⊂ E, such that f ◦ π−1

β is a
function on πβ[P] ∈ Pβ which is either one-to-one or constant.

Lemma 2.4 is a particular case of [19, Thm. 20]. It can be also easily deduced from
Lemma 2.1. (See also [13, Lemma 3.2.5].)

3 Covering Results and Their Discussion

The main consequence of CPAprism we discuss in this paper is the following theorem.

Theorem 3.1 These facts follow from CPAprism:

(a) For every Borel measurable function g : R → R there exists a family of functions
{ fξ ∈ “C∞

perf” : ξ < ω1} such that

g =

⋃

ξ<ω1

fξ .

Moreover for each ξ < ω1 there exists an extension f̄ξ : R → R of fξ such that

(i) f̄ξ ∈ “C1” and

(ii) either f̄ξ ∈ C1 or f̄ξ is a homeomorphism from R onto R such that f̄ −1
ξ ∈ C1.

(b) There exists a sequence { fξ ∈ R
R : ξ < ω1} of C1 functions such that

R
2
=

⋃

ξ<ω1

( fξ ∪ f −1
ξ ).

The essence of Theorem 3.1 lies in the following real analysis fact. Its proof is
combinatorial in nature and uses no extra set-theoretical assumptions.

Proposition 3.2 Let g : R → R be Borel and 0 < α < ω1.

(a) For every continuous injection h : C
α → R there exists an E ∈ Pα such that

g ↾ h[E] ∈ “C∞
perf” and there is an extension f : R → R of g ↾ h[E] such that

f ∈ “C1” and either f ∈ C1 or f is a self-homeomorphism of R with f −1 ∈ C1.
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(b) For every continuous injection h : Cα → R
2 there exists an E ∈ Pα such that either

F = h[E] ⊂ R
2 or its inverse, F−1, is a function which can be extended to a C1

function f : R → R.

With Proposition 3.2 in hand, the proof of Theorem 3.1 becomes an easy exercise.

Proof of Theorem 3.1 (a) Let g : R → R be a Borel function and let E be the family
of all P ∈ perf(R) such that

g ↾ P ∈ “C∞
perf” and there is an extension f : R → R of g ↾ P such that f ∈ “C1”

and either f ∈ C1 or f is a self-homeomorphism of R with f −1 ∈ C1.

By Proposition 3.2(a), family E is Fprism-dense: if P ∈ perf(R) is a prism witnessed
by h : Cα → R from Fprism, then Q = h[E], as in the proposition, is a subprism of P

with Q ∈ E. So, by CPAprism, there exists an E0 ∈ [E]≤ω1 such that |R \
⋃

E0| ≤ ω1.
Let E1 = E0 ∪ {{r} : r ∈ R \

⋃

E0}. Then the family {g ↾ P : P ∈ E1} satisfies the
theorem.

(b) Let E be the family of all P ∈ perf(R
2) such that either P or P−1 is a function

which can be extended to a C1 function f : R → R. By Proposition 3.2(b) family

E is Fprism-dense, so there exists an E0 ∈ [E]≤ω1 such that |R \
⋃

E0| ≤ ω1. Let
E1 = E0 ∪ {{x} : x ∈ R

2 \
⋃

E0}. For every P ∈ E1 let fP : R → R be a C1 function
which extends either P or P−1. Then family { fP : P ∈ E1} is as desired.

The proof of Proposition 3.2 will be left to section 4. Meanwhile we would like to
present a discussion of Theorem 3.1.

First we want to reformulate Theorem 3.1 in a language of a covering number cov
defined below, where X is an infinite set (in our case X ⊂ R

2 with |X| = c) and

A, F ⊂ P(X):

cov(A, F) = min({κ : (∀A ∈ A)(∃G ∈ [F]≤κ) A ⊂
⋃

G} ∪ {|X|+}).

If A ⊂ X we will write cov(A, F) for cov({A}, F). Notice the following mono-
tonicity of the cov operator: for every A ⊂ B ⊂ X, A ⊂ B ⊂ P(X), and F ⊂ G ⊂
P(X)

cov(A, G) ≤ cov(B, G) ≤ cov(B, F) and cov(A, G) ≤ cov(B, G) ≤ cov(B, F).

In terms of the cov operator, Theorem 3.1 can be expressed in the following form,
where Borel stands for the class of all Borel functions f : R → R:

Corollary 3.3 CPAprism implies that

(a) cov
(

Borel, “C∞
perf”

)

= ω1 < c;

(b) cov(Borel, “C1”) = ω1 < c;
(c) cov(Borel, C1 ∪ (C1)−1) = ω1 < c;
(d) cov(R

2, C1 ∪ (C1)−1) = ω1 < c.
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Proof The fact that all numbers cov(A, G) listed above are ≤ ω1 follows directly
from Theorem 3.1. The other inequalities follow from Examples 7.6 and 7.8.

Theorem 3.1(b) and Corollary 3.3(d) can be treated as generalizations of a result
of Steprāns [26] who proved that in the iterated perfect set model we have

cov(R
2, (“D1”) ∪ (“D1”)−1) ≤ ω1.

This clearly follows from Corollary 3.3(d) since C1 ( “D1”. (See survey article [4].
See also [11, Cor. 9] for more information how to “locate” Steprāns’ result in [26].)

The following proposition shows that Theorem 3.1 is, in a way, the best possible.
(Parts (i), (ii), and (iii) relate, respectively, to items (b), (c) and (d), and (a) from
Corollary 3.3.)

Proposition 3.4 The following is true in ZFC.

(i) cov(Borel, C1) = cov(“C1”, C1) = cov(“C1”, D1
perf) = c. Moreover,

cov(“Cn”, Cn) = cov(“Cn”, Dn
perf) = c for every 0 < n < ω.

(ii) cov(Borel, C2 ∪ (C2)−1) = cov(“C2”, D2
perf ∪ (D2

perf)
−1) = c, and

cov(R
2, C2 ∪ (C2)−1) = cov(“C2”, D2

perf ∪ (D2
perf)

−1) = c.

(iii) cov(Borel, C∞
perf) = cov(“C1”, C∞

perf) = cov(“C1”, D1
perf) = c, and

cov(Borel, “C∞”) = cov(C1, “C∞”) = cov(C1, “D2”) = c. Moreover,
cov(Cn, “Dn+1”) = c for every 0 < n < ω.

Proof (i) follows immediately from Examples 7.2 and 7.3.

(ii) follows from monotonicity of cov operator and Example 7.1.

The first part of (iii) follows from (i). The remaining two parts follow, respectively,

from Examples 7.4 and 7.5.

Corollary 3.3 and Proposition 3.4 establish the values of the cov operator for all
classes in Chart 1 except for cov(Dn, Cn) and cov(“Dn”, “Cn”). These are established

in the following theorem, whose proof will be left to Section 6.

Theorem 3.5 If CPAprism holds, then for every 0 < n < ω,

cov(Dn, Cn) = cov(“Dn”, “Cn”) = ω1 < c.

With this theorem in hand we can summarize the values of the cov operator be-

tween the classes from Chart 1 in the following graphical form. Here the mark “c”
next to the arrow means that the covering of the larger class by the functions from
the smaller class is equal to c and that this can be proved in ZFC. The mark “< c”
next to the arrow means that it is consistent with ZFC (and it follows from CPAprism)

that the appropriate cov number is < c. (From Examples 7.6, 7.7, and 7.8 it follows
that all these numbers are greater than or equal to min{cov(M), cov(N)} > ω. So
under the continuum hypothesis CH or Martin’s Axiom MA all these numbers are
equal to c.)
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D1

c

��

C1

c

��

<c

oo

C0 “D1”
<c

oo “C1”
<c

oo

Dn+1

c

��

Cn+1

c

��

<c

oo

Cn “Dn+1”
c

oo “Cn+1”
<c

oo

Chart 2. Values of cov operator: for n = 0 (left) and n > 0 (right).

The values of cov next to the vertical arrows are justified by cov(“Cn”, Dn) = c

(Proposition 3.4(i)), while the symbols “<c” below the horizontal arrows follow from
Theorem 3.5. The remaining arrow of the right part of the chart is the restatement
of the last part of Proposition 3.4(iii), while its counterpart in the left part of the

chart follows from Corollary 3.3(b): cov(C, “C1”) = cov(Borel, “C1”) < c is a conse-
quence of CPAprism. Finally let us mention that in Corollary 3.3(b) there is no chance
to increase family Borel in any essential way and keep the result. This follows from
the following fact:

(8) cov(Sc, C) = cov(R
R, C) ≥ cof(c),

where Sc stands for the family of all symmetrically continuous functions f : R → R

which are, in particular, continuous outside of some set of measure zero and first

category. (See [10, Cor. 1.1] and the remarks below on the operator dec.)
Number cov(A, F) is very closely related to the decomposition number,

dec(A, F) = min
(

{κ ≥ ω : (∀A ∈ A)(∃ a partition G ∈ [F]κ of A)} ∪ {|X|+}
)

,

which was first studied by Cichoń, Morayne, Pawlikowski, and Solecki [7] for the

Baire class α functions. (More information on dec(F, G) can be found in a survey
article [8, sec. 4].) It is easy to see that if A and F are some classes of partial func-
tions and Fr denotes all possible restrictions of functions from F, then cov(A, F) =

dec(A, Fr). In particular, for all situations relevant to our discussion above, the op-
erators cov and dec have the same values.

Our number cov is also related to the following general class of problems. We say
that the families A, F ⊂ P(X) satisfy the Intersection Theorem, which we denote by

IntTh(A, F),

if for every A ∈ A there exists an F ∈ G such that |A ∩ F| = |X|. If A = {A} we will
write IntTh(A, F) in place of IntTh(A, F). This kind of theorem has been studied
for a big part of the last century. In particular, in the early 1940’s Ulam asked in the

Scottish Book [21, Problem 17.1] if IntTh(C, Analytic) holds, that is, whether for every
f ∈ C there exists a real analytic function g : R → R which agrees with f on a perfect
set, (see [27].) In 1947 Zahorski [29] gave a negative answer to this question by
proving that the proposition IntTh(C∞, Analytic) is false. In the same paper, he also
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raised a natural question which has become known as the Ulam–Zahorski Problem:
Does IntTh(C, G) hold for G = C∞ (or G = Cn or G = Dn)? Here is a quick summary

of what is known on this problem, (see [4].)

Zahorski [29]: ¬ IntTh(C∞, Analytic).

Agronsky, Bruckner,
Laczkovich, Preiss [1]: IntTh(C, C1).

Olevskiı̌ [24]: IntTh(C1, C2).

Olevskiı̌ [24]: ¬ IntTh(C, C2) and ¬ IntTh(Cn, Cn+1) for n ≥ 2.

We are interested in these problems since for the families A, F ∈ P(R
n) of uncount-

able Borel sets

(9) ¬ IntTh(A, F) =⇒ cov(A, F) = c

as, in this situation, if ¬ IntTh(A, F) then there exists an A ∈ A, |A| = c, such that

|A ∩ F| ≤ ω for every F ∈ F. Thus in the examples relevant to Proposition 3.4
instead of proving cov(A, F) = c, in fact we will be showing a stronger fact that
¬ IntTh(A0, F) for appropriate A0 ⊂ A ∈ A.

4 Proof of Proposition 3.2

Proposition 3.2 will be deduced from the following fact, which is a generalization of
a theorem of Morayne [23]. (Morayne proved his results for E and E1 being perfect

sets, that is, for α = 1.) For a set X, we will use symbol ∆X to denote the diagonal in
X ×X, that is, ∆X = {〈x, x〉 : x ∈ X}. We will usually write simply ∆ in place of ∆X ,
since X is always clear from the context.

Proposition 4.1 Let 0 < α < ω1, E ∈ Pα, h : E → R be a continuous injection, and
G be a function from (h[E])2 \∆ into [0, 1] which is continuous and symmetric, that is,
such that G(x, y) = G(y, x) for all x, y ∈ (h[E])2 \ ∆. Then there exists an E1 ∈ Pα,

E1 ⊂ E, such that G is uniformly continuous on (h[E1])2 \ ∆.

The proof of Proposition 4.1 will be presented in the next section. In the proof of

Proposition 3.2 we will also use the following lemma.

Lemma 4.2 Let g : R → R be Borel, 0 < α < ω1, and E ∈ Pα. For every continuous
injection h : E → R there exist subset E1 ∈ Pα of E and a “C1” function f : R → R such
that f extends g ↾ h[E1].

In addition we can require that either f ∈ C1 or

(⋆) f ′ ↾ h[E1] is constant equal to ∞ or −∞ and f is a self-homeomorphism of R such

that f −1 ∈ C1.

Proof First note that there exists an E ′ ∈ Pα, E ′ ⊂ E, such that

(10) g ↾ h[E ′] is continuous.
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Indeed, let h0 ∈ Φprism be such that E = h0[Cα] and let U be a comeager subset of
h[E] = (h◦h0)[Cα] such that the restriction g ↾ U is continuous. Then (h◦h0)−1(U )

is comeager in C
α and, by Claim 2.2, there is a perfect cube Q ⊂ (h ◦ h0)−1(U ). The

set E ′
= h0[Q] ∈ Pα has the desired property since h[E ′] = h[h0[Q]] ⊂ U .

Now let k : [−∞,∞] → [0, 1] be a homeomorphism and let G be defined on
(h[E ′])2 \ ∆ by

G(x, y) = k
( g(x) − g(y)

x − y

)

.

Then, by Proposition 4.1, there exists an E ′
1 ∈ Pα, E ′

1 ⊂ E ′, such that G is uniformly

continuous on (h[E ′
1])2 \ ∆. So, there exists a uniformly continuous extension of

G ↾ (h[E ′
1])2 \ ∆ to Ĝ ↾ (h[E ′

1])2. Clearly k−1(Ĝ(x, x)) is the derivative (possibly
infinite) of g0 = g ↾ h[E ′

1] for every x ∈ h[E ′
1], so g0 ∈ “C1(h[E ′

1])”.
Now, if (g ′

0)−1(R) is non-empty then, as in the argument for (10) we can find an

E1 ∈ Pα, E1 ⊂ E ′
1, such that h[E1] ⊂ (g ′

0)−1(R). This obviously implies

g ↾ h[E1] ∈ C1
perf . But we also know that the difference quotient function g(x)−g(y)

x−y
is

uniformly continuous on (h[E1])2 \∆. So, by Whitney’s extension theorem [28] (see
also Lemma 6.1), we can find a C1 extension f : R → R of g ↾ h[E1].

So, assume that (g ′
0)−1(R) = ∅. Then either (g ′

0)−1(∞) or (g ′
0)−1(−∞) is non-

empty and open in h[E ′
1]. Assume the former case. Similarly as above we can find an

E ′ ′
1 ∈ Pα, E ′ ′

1 ⊂ E ′
1, such that g ′

0[h[E ′ ′
1 ]] = {∞}. Then, by a version of Whitney’s

extension theorem from [3, Thm. 2.1], we can find a “C1” extension f0 : R → R of

g ↾ h[E ′ ′
1 ].

But then there exists an open interval J in R intersecting h[E ′ ′
1 ] on the closure

of which f ′
0 is positive. So f1 = f0 ↾ cl( J) is strictly increasing and the derivative of

f −1
1 is continuous, non-negative, and bounded. Thus there exists a homeomorphism

f2 : R → R extending f −1
1 with f2 ∈ C1. Now put f = f −1

2 and take an E1 ∈ Pα with
E1 ⊂ E ′ ′

1 ∩ h−1( J). It is easy to see that E1 and f are as required.

Proof of Proposition 3.2(a) By Lemma 4.2 we can find an E0 ∈ Pα for which there

is an extension f : R → R of g ↾ h[E0] such that f ∈ “C1” and either f ∈ C1 or f is a
self-homeomorphism of R with f −1 ∈ C1. Thus, it is enough to find a subset E ∈ Pα

of E0 for which g ↾ h[E] ∈ “C∞
perf”.

If there exists a subset E ∈ Pα of E0 and n < ω such that

(11) f = g ↾ h[E] ∈ “Cn
perf” and f (n) has a constant value ∞ or −∞,

then this E is as desired. So assume that there is no such E. We will use Fusion Lemma
2.1 with A = Pα to find a subprism E of E0 for which g ↾ h[E] ∈ C∞

perf .
First notice that we can assume that E0 = Cα, since we can replace h with h ◦ h0,

where h0 ∈ Φprism is such that E0 = h0[C
α]. For k < ω let Dk ⊂ [Pα]<ω be the

collection of all finite families E of pairwise disjoint sets each of a diameter less than
2−k such that

(12) g ↾
⋃

{h[E] : E ∈ E} ∈ Ck
perf .

We need to show that Dk’s satisfy the assumptions of Lemma 2.1.

https://doi.org/10.4153/CJM-2005-020-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-020-8


Small Coverings with Smooth Functions under the Covering Property Axiom 481

It is obvious that the conditions (P1) and (P2) are satisfied. To see that (P3) holds
for k < ω fix Ē ∈ Pα and γ < α. Applying Lemma 4.2 k-times and using the fact

that (11) is false, we can find a sequence Ē = P0 ⊃ · · · ⊃ Pk from Pα such that
g ↾ h[Pi] ∈ Ci

perf for each i ≤ k. Take disjoint E0, E1 ∈ Pα subsets of Pk, each of

diameter less than 2−k, such that πγ[E0] = πγ[E1]. It is easy to see that E0 and E1

satisfy the requirements of the condition (P3).

Now, by Lemma 2.1, there exist Ek ∈ Dk such that E =
⋂

k<ω

⋃

Ek ∈ Pα. Clearly
g ↾ h[E] ∈ C∞

perf for such an E.

Proof of Proposition 3.2(b) Let πx and πy be the projections of R
2 onto x-axis and

y-axis, respectively, and consider functions hx = πx ◦ h and hy = πy ◦ h. Applying
Lemma 2.4 two times we can find βx, βy ≤ α and E = Py ⊂ Px from Pα such that
hx ◦π−1

βx
is a function on πβx

[Px] ∈ Pβx
, hy ◦π−1

βy
is a function on πβy

[Py] ∈ Pβy
, and

each of these functions is either one-to-one or constant. Notice that

(13) either hx or hy is one-to-one on E.

To see this, first note that for every z ∈ E we have

h(z) = 〈πx ◦ h(z), πy ◦ h(z)〉 = 〈(hx ◦ π−1
βx

)(πβx
(z)), (hy ◦ π−1

βy
)(πβy

(z))〉.

Since h is one-to-one this implies that max{βx, βy} = α. By symmetry, we can
assume that α = βx. Thus, hx = hx ◦ π−1

βx
is either one-to-one or constant on

Px = πβx
[Px]. If hx is one-to-one on Px, then (13) holds. So, assume that hx is

constant on Px. Then πx ◦ h = hx is constant on E ⊂ Px, and so hy = πy ◦ h must be
one-to-one on E, since h is one-to-one. Thus, (13) holds.

By symmetry, we can assume that hx is one-to-one on E. So πx ◦ h is a one-to-one
function from E onto πx[h[E]] ⊂ R. In particular, F0 = h[E] ⊂ R

2 is a function

from πx[h[E]] into R. Then, by Lemma 4.2 used with g = F0 and h = πx ◦ h ↾ E, we
can find a subset E1 ∈ Pα of E and a function f : R → R extending h[E1] = g ↾ h[E1]
such that either f or f −1 belongs to C1.

5 Proposition 4.1: A Generalization of a Theorem of Morayne

Our proof of Proposition 4.1 is based on the following lemmas, the first of which is

a version of a theorem of Galvin [16, 17]. (For the proof see [20, Thm. 19.7] or [6].
Galvin proved his results for α = 1.)

Lemma 5.1 For every 0 < α < ω1 and every continuous symmetric function h from
(Cα)2 \ ∆ into 2 = {0, 1} there exists a P ∈ Pα such that h is constant on P2 \ ∆.

Proof For j < 2 let G j be the set of all s ∈ C
α such that

(∀β < α)(∀ε > 0)(∃t ∈ C
α) 0 < ρ(s, t) < ε & s ↾ β = t ↾ β & h(s, t) = j
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and notice that

(14) each G j is a Gδ-set and C
α

= G0 ∪ G1.

Indeed, to see that G j is a Gδ-set it is enough to note that for every β < α and ε > 0

the set

Gβ,ε
j = {s ∈ C

α : (∃t ∈ C
α) 0 < ρ(s, t) < ε & s ↾ β = t ↾ β & h(s, t) = j}

is open in Cα. So let s ∈ G
β,ε
j and take t ∈ Cα witnessing it, that is, such that

0 < ρ(s, t) < ε, s ↾ β = t ↾ β, and h(s, t) = j. We can choose basic open
neighborhoods U and V of s and t , respectively, such that U × V \ ∆ ⊂ h−1( j).

In addition we can assume that πβ[U ] = πβ[V ] and that each of the sets U and

V has diameter less than δ = (ε − ρ(s, t))/3. Then s ∈ U ⊂ Gβ,ε
i since for every

s ′ ∈ U there exists a t ′ ∈ V , t ′ 6= s ′, with s ′ ↾ β = t ′ ↾ β (since πβ[U ] = πβ[V ]),
h(s ′, t ′) ∈ h[U ×V \ ∆] = { j} and

0 < ρ(s ′, t ′) ≤ ρ(s ′, s) + ρ(s, t) + ρ(t, t ′) ≤ δ + ρ(s, t) + δ < ε.

Thus each G
β,ε
j is open and G j is a Gδ-set.

To see the second part of (14) assume, by way of contradiction, that there exists an

s ∈ C
α \ (G0 ∪G1). Let β0, ε0 and β1, ε1 witness that s /∈ G0 and s /∈ G1, respectively.

Put ε = min{ε0, ε1} > 0 and β = max{β0, β1} < α and find t ∈ Cα such that
t ↾ β = s ↾ β, ρ(s, t) < ε, and t(β) 6= s(β). Then there exists a j < 2 such that
h(s, t) = j and this, together with t ↾ β j = s ↾ β j and ρ(s, t) < ε j , contradicts the

choice of β j and ε j . This finishes the proof of (14).
Next, find a j < 2 and a basic clopen set U in Cα such that G j is residual in U .

Replacing Cα with U , if necessary, we can assume that G j is residual in Cα. Using
Fusion Lemma 2.1 with A = Bα, we will find a P ∈ Pα for which P2 \ ∆ ⊂ h−1( j).

For each k < ω let Dk ⊂ [Bα]<ω be the collection of all families {Pi : i < m} of
sets of diameter less than 2−k such that

(15) Pi × Pn ⊂ h−1( j) for all i < n < m.

It is obvious that the Dk’s satisfy conditions (P1) and (P2) from Lemma 2.1. Thus,

we need only to check (P3).
So, take E ∈ Bα and γ < α. It is enough to find disjoint E0, E1 ∈ Bα, subsets of

E, such that πγ[E0] = πγ[E1] and

(16) E0 × E1 ⊂ h−1( j).

For this choose an s ∈ E ∩ G j and let ε0 > 0 be such that Bα(s, ε0) ⊂ E. By the

definition of G j we can find a t ∈ C
α for which 0 < ρ(s, t) < ε0, s ↾ γ = t ↾ γ, and

h(s, t) = j. In particular s, t ∈ E and 〈s, t〉 ∈ h−1( j). Since h is continuous we can
find an ε > 0 small enough that E0 = Bα(s, ε) and E1 = Bα(t, ε) are disjoint subsets
of E for which (16) holds.

https://doi.org/10.4153/CJM-2005-020-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2005-020-8


Small Coverings with Smooth Functions under the Covering Property Axiom 483

Now, by Lemma 2.1, there exist Ek =
{

Pk
i : i < mk

}

∈ Dk such that

P =

⋂

k<ω

⋃

i<mk

Pk
i ∈ Pα.

It is enough to show that P2 \ ∆ ⊂ h−1( j). To see this, take different s, t ∈ P and let
k < ω be such that the distance between s and t is greater than 2−k. Then they must

belong to different Pk
i ’s from Ek and so, by (15), 〈s, t〉 ∈ h−1( j).

We will also need the following simple fact, which must be well known.

Lemma 5.2 There exists a continuous function h : C → [0, 1] with the following
property. If X is a zero-dimensional Polish space, then for every continuous function
f : X → [0, 1] there exists a continuous g : X → C such that f = h ◦ g.

Proof Let {Uσ : σ ∈ 2<ω} be an open basis for [0, 1] such that U∅ = [0, 1] and,
for every σ ∈ 2k, Uσ = Uσˆ0 ∪ Uσˆ1 and diam(Uσ) ≤ 21−k. For every s ∈ 2ω let
h(s) ∈ [0, 1] be such that {h(s)} =

⋂

n<ω cl(Us↾n). It is clear that h is continuous.

To see that h is as required take X and f as in the lemma. For every σ ∈ 2<ω

choose an open set Vσ ⊂ f −1(Uσ) such that V∅ = X, Vσˆ0 and Vσˆ1 are disjoint, and

Vσˆ0 ∪Vσˆ1 = Vσ . This can be easily done by induction on the length of σ using zero-
dimensionality of X.2 Thus for every n < ω the sets {Vσ : σ ∈ 2n} form a clopen
partition of X.

Define g(x) as the unique s ∈ C for which x ∈
⋂

n<ω Vs↾n. Clearly g is continuous.
Moreover, if g(x) = s then

x ∈
⋂

n<ω

Vs↾n ⊂ f −1
(

⋂

n<ω

cl(Us↾n)
)

= f −1({h(s)}) = f −1({h(g(x))})

so that f (x) ∈ {h(g(x))}. Hence f = h ◦ g.

The next lemma is already a very close approximation of Proposition 4.1.

Lemma 5.3 If α < ω1 and H is a continuous symmetric function from a set (Cα)2\∆

into C then there exists an E ∈ Pα such that H is uniformly continuous on E2 \ ∆.

Proof For n < ω define hn : (Cα)2 \ ∆ → 2 by hn(s, t) = H(s, t)(n). Thus each hn

satisfies the assumptions of Lemma 5.1.

Using Fusion Lemma 2.1 with A = Pα we will find an E ∈ Pα for which each hn

is uniformly continuous on E2 \ ∆. Then clearly H = 〈hn : n < ω〉 is also uniformly
continuous on this set.

2Recall that every second countable zero-dimensional space X is strongly zero-dimensional, see e.g.,
[18, Thm. 6.2.7]. In particular, for every open cover {W0,W1} of X there are disjoint clopen sets V0 ⊂ W0

and V1 ⊂ W1 such that V0 ∪V1 = X.
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For k < ω let Dk ⊂ [Pα]<ω be the collection of all families {Pi : i < m} of pair-
wise disjoint sets such that

(17) hk is constant on Pi × Pi \ ∆ for each i < m.

Clearly sets Dk’s satisfy conditions (P1) and (P2) from Lemma 2.1. Thus, we need to
verify only (P3).

So, fix k < ω, E ∈ Pα, and γ < α. It is enough to find disjoint subprisms E0, E1

of E such that πγ[E0] = πγ[E1] and

hk is constant on E j × E j \ ∆ for each j < 2.

Let f ∈ Φprism(α) be such that E = f [Cα] and let h : (Cα)2 \ ∆ → 2 be defined
by h(s, t) = hk( f (s), f (t)). Then h satisfies the assumptions of Lemma 5.1 so there

exists a P ∈ Pα such that h is constant on P2 \∆. Choose disjoint subsets E0, E1 ∈ Pα

of P such that πγ[E0] = πγ[E1]. (If g ∈ Φprism(α) is such that P = f [Cα] and
Bi = {x ∈ Cα : x(γ)(0) = i} then we can put Ei = g[Bi].) Then E0 and E1 satisfy
(P3).

Now, by Lemma 2.1, there exist Ek =
{

Pk
i : i < mk

}

∈ Dk such that

E =

⋂

k<ω

⋃

i<mk

Pk
i ∈ Pα.

Notice that if
{

Pk
i : i < mk

}

belongs to Dk then hk is uniformly continuous on

(

⋃

i<mk

Pk
i

) 2

\ ∆ =

(

⋃

i 6=n

Pk
i × Pk

n

)

∪
⋃

i<mk

(

Pk
i × Pk

i \ ∆
)

.

So each hk is uniformly continuous E2 \ ∆ ⊂
(
⋃

i<mk
Pk

i

) 2
\ ∆.

Proof of Proposition 4.1 Let f0 ∈ Φprism(α) be such that E = f0 [Cα] and put

(18) F = G ◦ 〈h ◦ f0, h ◦ f0〉 : (C
α)2 \ ∆ → [0, 1].

Note also that

(19) F = h0 ◦ H

for some continuous symmetric function from H : (Cα)2 \ ∆ → C and continu-
ous h0 : C → [0, 1]. This follows immediately from Lemma 5.2 used with f =

F ↾ {〈x, y〉 ∈ Cα × Cα : x < y}, where < is the lexicographical order on Cα. (We

use the lexicographical order in which C
α is identified with 2α×ω and α×ω is ordered

in type ω. Then the set {〈x, y〉 ∈ Cα × Cα : x < y} is open in Cα × Cα.)
Then by Lemma 5.3, there exists an E0 ∈ Pα such that H is uniformly continuous

on (E0)2 \ ∆. So H can be extended to a uniformly continuous function Ĥ on (E0)2.

Then the function

Ĝ = h0 ◦ Ĥ ◦ 〈h ◦ f0, h ◦ f0〉
−1

= h0 ◦ Ĥ ◦ 〈( f0)−1 ◦ h−1, ( f0)−1 ◦ h−1〉
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is also uniformly continuous on (h[ f0[E0]])2. Put E1 = f0[E0] and notice that it is as
desired.

Indeed, clearly E1 ∈ Pα and E1 ⊂ E. Moreover, it is not difficult to see that
G ↾ (h[E1])2 \∆ = Ĝ ↾ (h[E1])2 \∆. So G is uniformly continuous on (h[E1])2 \∆.

6 Theorem 3.5: on cov (D
n,Cn) < c

In the proof we will use the following lemma.

Lemma 6.1 For n < ω let f ∈ Cn and let P ⊂ R be a perfect set for which the
function F : P2 \ ∆ → R defined by

F(x, y) =
f (n)(x) − f (n)(y)

x − y

is uniformly continuous and bounded. Then f ↾ P can be extended to a Cn+1 function.

Proof This follows from the fact that f ↾ P satisfies the assumptions of Whitney’s
extension theorem. To see this, notice first that F naturally extends to a continuous
function on P2 with F(a, a) = f (n+1)(a). Next, for q = 1, 2, 3, . . . and a ∈ P let

ηq(a) = sup

{
∣

∣

∣

∣

f (n)(x) − f (n)(a)

x − a
− f (n+1)(a)

∣

∣

∣

∣

: 0 < |x − a| <
1

q

}

.

In the second part of the proof of [15, Thm. 3.1.15] it is shown that if

(20) lim
q→∞

sup{ηq(a) : a ∈ P} = 0,

then f ↾ P satisfies the assumptions of Whitney’s extension theorem. However we
have

f (n)(x) − f (n)(a)

x − a
− f (n+1)(a) = F(x, a) − F(a, a),

so uniform continuity of F clearly implies (20).

Proof of Theorem 3.5 The lower bound inequalities

cov (Dn, Cn) > ω and cov (“Dn”, “Cn”) > ω

follow from Example 7.7. So it is enough to prove only that these numbers are ≤ ω1.
To prove cov (Dn, Cn) ≤ ω1, take an f ∈ Dn and note that, by CPAprism, it is

enough to show that the set

E = {E ∈ perf(R) : (∃h ∈ Cn(R)) h ↾ E = f ↾ E}

is Fprism-dense. So fix a prism P in R and let k : [−∞,∞] → [0, 1] be a home-
omorphism. Applying Proposition 4.1 n times in the same way as in the proof
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of Lemma 4.2, we find a subprism E of P such that for each i < n the function
k ◦ Fi : E2 \∆ → [0, 1] is uniformly continuous, where Fi : E2 \∆ → R is defined by

Fi(x, y) =
f (i)(x) − f (i)(y)

x − y
.

So each Fi can be extended to a continuous function F̄i : E2 → [−∞,∞]. Note also
that since F̄i(x, x) = f (i+1)(x) ∈ R, as f ∈ Dn, we in fact have F̄i[E2] ⊂ R.

Next, starting with f0 = f we use Lemma 6.1 to prove by induction that for
every i < n there exists an fi+1 ∈ Ci+1(R) extending fi ↾ E. Then the function

h = fn ∈ Cn(R) witnesses that E ∈ E.
To prove cov (“Dn”, “Cn”) ≤ ω1, take an f ∈ “Dn”. As before, it is enough to

show that

E ′
= {E ′ ∈ perf(R) : (∃h ∈ “Cn(R)”) h ↾ E ′

= f ↾ E ′}

is Fprism-dense. So fix a prism P in R and find E, Fi ’s, and F̄i ’s as above. Note that Fi ’s
are well defined since f ∈ “Dn” ⊂ Cn−1. By the same reason we have that F̄i[P2] ⊂ R

for all i < n − 1. However, F̄n−1 can have infinite values.

Proceeding as in the proof of Lemma 4.2, decreasing E if necessary, we can assume
that either the range of F̄n−1 is bounded or F̄n−1 ↾ P2 ∩ ∆ is a constant equal to ∞
or −∞. If F̄n−1 is bounded, then taking E ′

= E we are done as in the previous case.
So assume that F̄n−1[P2 ∩ ∆] = {∞}. (The case of −∞ is handled by replacing f

with − f .) Then f (n−1) and E satisfy the assumptions of Brown’s version of Whitney’s
extension theorem [3, Thm. 2.1]. So, we can find a “C1” extension g : R → R of
f (n−1) ↾ E such that g ′[E] = ( f (n−1)) ′[E] = {∞} and g ′[R \ E] ⊂ R. By (n − 1)-
times integrating g we can find a G : R → R such that G(n−1)

= g. Then G ∈ “Cn”.

Next notice that G − f ∈ Cn(E), since (G − f )(n−1)
= g − f (n−1) ≡ 0 on E. Now,

proceeding as above for the case of f ∈ Cn, we can find a subprism E ′ of E and a
function ĥ ∈ Cn(R) extending G − f ↾ E ′. Then function h = G − ĥ belongs to
“Cn” as a difference of functions from “Cn” and Cn. Moreover, h extends f ↾ E ′ since

h = G − ĥ = G − (G − f ) = f on E ′. So, h witnesses E ′ ∈ E ′.

7 Examples Related to cov Operator

We will start with the examples needed for the proof of Proposition 3.4 which give c

as a lower bound for the appropriate numbers cov(A, F).

Example 7.1 There exist a homeomorphism h : R → R and a perfect set P ⊂ R

such that h, h−1 ∈ “C2”, h ′′ ↾ P ≡ ∞, and (h−1) ′ ′ ↾ h[P] ≡ −∞. In particular

¬ IntTh
(

h ↾ P, D2
perf ∪ (D2

perf)
−1

)

and

cov
(

“C2”, D2
perf ∪ (D2

perf)
−1

)

= cov
(

h, D2
perf ∪ (D2

perf)
−1

)

= c.

Proof First notice that there exist a strictly increasing homeomorphism h0 from R

onto (0,∞) and a perfect set P ⊂ R such that

(21) h0 ∈ “C1” and h ′
0 ↾ P ≡ ∞.
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Indeed, let C be an arbitrary nowhere dense perfect subset of [2, 3) with 2 ∈ C
and let d(x) denote the distance between x ∈ R and C . Let f0 : (0,∞) → [0,∞)

be defined by f0(x) = x−2 for x ∈ (0, 1] and f0(x) = d(x) for x ∈ [1,∞). Then
f0 is continuous and f0(x) = 0 precisely when x ∈ C . Define a strictly increasing
function f from (0,∞) onto R by a formula f (x) =

∫ x

1
f0(t) dt . Then f ′

= f0 and
f (x) = 1− 1

x
on (0, 1). It is easy to see that h0 = f −1 and P = f [C] ⊂ (0,∞) satisfy

(21).
Now put h(x) =

∫ x

0
h0(t) dt . Then clearly h is strictly increasing since h0 is posi-

tive. Also, h is onto R, as on (−∞, 0) we have h0(x) =
1

1−x
and so h(x) = − ln(1−x).

It is easy to see that h ′
= h0, so by (21), h ∈ “C2” and h ′ ′ ↾ P ≡ ∞. Also, if g = h−1

then g ′(x) = 1/h ′(g(x)) = 1/h0(g(x)) > 0 is strictly decreasing and h−1
= g ∈ C1.

Thus, to see that h−1
= g ∈ “C2” and that (h−1) ′′ ≡ −∞ on h[P] = h[ f [C]]

it is enough to differentiate g ′(x) (note that the differentiation formulas are valid
if just one of the terms is infinite) to get g ′ ′(x) = −[h ′(g(x))]−2h ′ ′(g(x))g ′(x) =

−h ′ ′(g(x))(g ′(x))3. Thus, h and P have the desired properties.

To see the additional part, note first that for every f ∈ D2
perf functions f and h ↾ P

may agree on at most countable set S, since at any point x of a perfect subset Q of S
we would have

(h ↾ Q) ′ ′(x) = ∞ 6= ( f ↾ Q) ′′(x).

Similarly, | f ∩ (h ↾ P)| ≤ ω for every f ∈ (D2
perf)

−1. This clearly implies the addi-

tional part.

Example 7.2 There exists a perfect set P ⊂ R and a function f ∈ “C1” such that
f ′(x) = ∞ for every x ∈ P. In particular ¬ IntTh

(

f ↾ P, D1
perf

)

and

cov
(

Borel, C1
)

= cov
(

“C1”, C1
)

= cov
(

“C1”, D1
perf

)

= cov
(

f , D1
perf

)

= c.

Proof If f is a function h0 from (21) then it has the desired properties.
For such an f and any function g ∈ D1

perf the intersection f ∩ g must be finite. So

c ≥ cov
(

Borel, C1
)

≥ cov
(

“C1”, D1
perf

)

≥ cov
(

f , D1
perf

)

≥ c.

Monotonicity of cov operator gives the other equations.

Example 7.3 For every 0 < n < ω there exists an f ∈ “Cn” and a perfect set P ⊂ R

such that ¬ IntTh( f ↾ P, Dn
perf) so that

cov(“Cn”, Cn) = cov(“Cn”, Dn
perf) = cov( f , Dn

perf) = c.

Proof For n = 1 this is a restatement of Example 7.2. The general case can be done
by induction: If f is good for some n and F is a definite integral of f then F ∈ “Cn+1”
and ¬ IntTh(F ↾ P, Dn+1

perf) = c.

Example 7.4 There exists an f ∈ C1 and a perfect set P ⊂ R such that |( f ↾ P)∩g| ≤
ω for every g ∈ “D2”. In particular ¬ IntTh( f ↾ P, “D2”) and

cov
(

C1, “D2”
)

= cov
(

f , “D2”
)

= c.
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Proof In [1, Thm. 22] the authors construct a perfect set P ⊂ [0, 1] and a func-
tion f ∈ C1 which have the desired properties. The argument for this is implicitly

included in the proof of [1, Thm. 22].
Function f has the property that f ′(x) = 0 for all x ∈ P. Now, assume that

some g ∈ “D2” agrees with f on a perfect set Q ⊂ P. Then clearly we would have
(g ↾ Q) ′ ′ ≡ [(g ↾ Q) ′] ′ ≡ [( f ↾ Q) ′] ′ ≡ [0] ′ ≡ 0. On the other hand, in [1,

Thm. 22] it is shown that for such a g we would have g ′ ′(x) ∈ {±∞} for every
x ∈ Q, a contradiction.3

Example 7.5 For every 0 < n < ω there exist an f ∈ Cn and a perfect set P ⊂ R

such that ¬ IntTh( f ↾ P, “Dn+1”) and

cov
(

Cn, “Dn+1”
)

= cov
(

f , “Dn+1”
)

= c.

Proof For n = 1 this is a restatement of Example 7.4. The general case can be done
by induction: If f is good for some n and F is a definite integral of f then F ∈ Cn+1

and ¬ IntTh(F ↾ P, Dn+1
perf) = c.

Next we will describe the examples showing that the cov(A, F) numbers con-
sidered in Corollary 3.3 and Theorem 3.5 have values greater than ω. In what fol-
lows cov(M) (cov(N), respectively) will stand for the smallest cardinality of a family
F ⊂ P(R) of measure zero sets (nowhere dense, respectively) such that R =

⋃

F.

Example 7.6 There exists a function f ∈ D1 such that

cov
(

f , “C1” ∪ (D1)−1
)

≥ cov(M) > ω.

In particular

cov
(

Borel, “C1”
)

≥ cov
(

D1, “C1”
)

≥ cov(M) > ω

and

cov
(

Borel, C1 ∪ (C1)−1
)

≥ cov
(

D1, C1 ∪ (C1)−1
)

≥ cov(M) > ω.

Proof We will construct the function f only on [0, 1]. It can be easily modified to a
function defined on R.

Let E ⊂ [0, 1] be an Fσ-set of measure 1 such that Ec
= [0, 1]\E is dense in [0, 1].

It is well known that there exists a derivative g : [0, 1] → [0, 1] such that g[E] ⊂ (0, 1]

and g[Ec] = {0}. (See e.g., [5, p. 24].) Let f : [0, 1] → R be such that f ′
= g. We

claim that this f is as desired.
Indeed, by way of contradiction assume that for some κ < cov(M) there exists

a family {hξ ∈ R
R : ξ < κ} ⊂ “C1” ∪ (D1)−1 such that f ⊂

⋃

ξ<κ hξ . Since hξ

are closed subsets of R
2 and the graph of f is compact, we see that the x-coordinate

3Actually, the calculation in [1, Thm. 22] is done under the assumption that g ∈ C2, but it works also
under our weaker assumption that g ∈ “D2”.
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projections Pξ = πx[ f ∩ hξ] are closed. So, [0, 1] is covered by less than cov(M)
closed sets Pξ . Thus, there exists an η < κ such that Pη has non-empty interior

U = int(Pη).
Now, if hη ∈ “C1” then h ′

η = f ′
= g on U , which is impossible, since h ′

η is
continuous, while g is not continuous on any non-empty open set. So assume that
hη ∈ (D1)−1. Note that f is strictly increasing as an integral of function g which is

strictly positive a.e. So f −1 is strictly increasing and agrees with h = h−1
η ∈ D1 on an

open set f [U ]. But then if x ∈ U \ E then h ′( f (x)) = ( f −1) ′( f (x)) =
1

f ′(x)
= ∞,

which contradicts h ∈ D1.

Note also that if f from Example 7.6 is replaced by its (n − 1)-st antiderivative
then we get also the following example.

Example 7.7 For any 0 < n < ω1 there exists an f ∈ Dn such that

cov (Dn, “Cn”) ≥ cov
(

f , “Cn”
)

≥ cov(M) > ω.

Example 7.8 There exists an f ∈ C0 such that

cov(C0, “D1
perf”) ≥ cov( f , “D1

perf”) ≥ cov(N) > ω.

Moreover, for every n < ω if F ∈ Cn is such that F(n)
= f then

cov(Cn, “Dn+1
perf”) ≥ cov(F, “Dn+1

perf”) ≥ cov(N) > ω

and

cov
(

Borel, “C∞
perf”

)

≥ cov
(

Cn, “C∞
perf”

)

≥ cov
(

F, “C∞
perf”

)

≥ cov(N) > ω.

Proof A continuous function f justifying cov( f , “D1
perf”) ≥ cov(N) was pointed

out by Morayne: just take any f ∈ C for which there is a set A ⊂ R of positive
measure for which | f −1(a)| = c for all a ∈ A. (See [26, Thm. 6.1].)

To see the additional part, let G = {gξ : ξ < κ} be an infinite subset of “Dn+1
perf” ∪

“C∞
perf” such that F ⊂

⋃

G. We need to show that κ ≥ cov(N). For this, first note
that for every ξ < κ the domain of F ∩ gξ can be represented as a union of a perfect

set Pξ (which can be empty) and a countable (scattered) set Sξ . Let S =
⋃

ξ<κ Sξ and
note that it has cardinality at most κ. Since F ↾ Pξ = gξ ↾ Pξ , by an easy induction
on i ≤ n we can prove that

(22) F(i) ↾ Pξ = (gξ ↾ Pξ)(i) provided gξ ∈ “Di
perf” and Pξ 6= ∅.

Thus, if gξ ∈ “Dn+1
perf” and Pξ 6= ∅, then f ↾ Pξ = F(n) ↾ Pξ = (gξ ↾ Pξ)(n) ∈ “D1

perf”.

On the other hand, if gξ ∈ “C∞
perf” \ “Dn+1

perf” then Pξ = ∅. Indeed, otherwise there is

an i ≤ n such that gξ ∈ “Di
perf” and g(i)

ξ is constant equal to ∞ or −∞. So, by (22),

for any x ∈ Pξ a real number Fi(x) belongs to {−∞,∞}, a contradiction.
Thus F = { f ↾ Pξ : ξ < κ & Pξ 6= ∅} ∪ { f ↾ {x} : x ∈ S} ⊂ “D1

perf” has
cardinality at most κ and it covers f . So, by the first part, κ ≥ cov(N).
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8 Proof of Fusion Lemma 2.1

Notice that if P ∈ Pα and 0 < β < α then

(23) P ∩ π−1
β (P ′) ∈ Pα for every P ′ ∈ Pβ with P ′ ⊂ πβ[P].

Indeed, let f ∈ Φprism (β) and g ∈ Φprism (α) be such that f [Cβ] = P ′ and g[Cα] = P.
Let Q = (g ↾↾ β)−1[P ′] = (g ↾↾ β)−1 ◦ f [Cβ]. Then, Q ∈ Pβ since, by (5),

(g ↾↾ β)−1 ◦ f ∈ Φprism(β). Thus π−1
β (Q) belongs to Pα and P ∩ π−1

β (P ′) =

g[π−1
β (Q)] ∈ Pα.

For a fixed 0 < α < ω1 let {〈βk, nk〉 : k < ω} be an enumeration of α×ω used in
the definition (1) of the metric ρ and let

(24) Ak = {〈βi, ni〉 : i < k} for every k < ω.

Lemma 8.1 (Master Fusion Lemma) Let 0 < α < ω1 and for every k < ω let
Ek =

{

Es ∈ Pα : s ∈ 2Ak
}

. Assume that for every k < ω, s, t ∈ 2Ak , and β < α we

have:

(i) the diameter of Es is less than or equal to 2−k,
(ii) if r ∈

⋃

i<ω 2Ai and r ⊂ s then Es ⊂ Er ,
(iii) if s ↾ (β × ω) = t ↾ (β × ω) then πβ[Es] = πβ[Et ],

(iv) if s ↾ (β × ω) 6= t ↾ (β × ω) then πβ[Es] ∩ πβ[Et ] = ∅.

Then Q =
⋂

k<ω

⋃

Ek belongs to Pα.

Proof For x ∈ Cα let x̄ ∈ 2α×ω be defined by x̄(β, n) = x(β)(n).

First note that, by conditions (i) and (iv), for every k < ω the sets in Ek are

pairwise disjoint and each of the diameter at most 2−k. Thus, taking into account
(ii), function h : Cα → Cα defined by

h(x) = r ⇐⇒ {r} =

⋂

k<ω

Ex̄↾Ak

is well defined and is one-to-one. It is also easy to see that h is continuous and that
Q = h [Cα]. Thus, we need to prove only that h ∈ Φprism (α), that is, that h is
projection-keeping.

To show this fix β < α, put S =
⋃

i<ω 2Ai , and notice that, by (i) and (iii), for
every x ∈ Cα we have

{h(x) ↾ β} = πβ

[

⋂

{Ex̄↾Ak
: k < ω}

]

=

⋂

{πβ[Ex̄↾Ak
] : k < ω}

=

⋂

{πβ[Es] : s ∈ S & s ⊂ x̄}

=

⋂

{πβ[Es] : s ∈ S & s ↾ (β × ω) ⊂ x̄}.
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Now, if x ↾ β = y ↾ β then for every s ∈ S

s ↾ (β × ω) ⊂ x̄ ⇔ s ↾ (β × ω) ⊂ ȳ,

so h(x) ↾ β = h(y) ↾ β.

On the other hand, if x ↾ β 6= y ↾ β then there exists k < ω big enough such
that for s = x̄ ↾ Ak and t = ȳ ↾ Ak we have s ↾ (β × ω) 6= t ↾ (β × ω). But then
{h(x) ↾ β} and {h(y) ↾ β} are subsets of πβ[Es] and πβ[Et ], respectively, which, by

(iv), are disjoint. So, h(x) ↾ β 6= h(y) ↾ β.

Proof of Lemma 2.1 Let us define D−1 = {{C
α}}. It is enough to construct a

sequence 〈Ek ∈ Dk−1 : k < ω〉 satisfying conditions (i)–(iv) from Lemma 8.1. This
will be done by induction on k < ω.

We start with E0 = {Cα}. Clearly at this stage (i)–(iv) are satisfied. So, assume
that for some k < ω a sequence 〈E j : j ≤ k〉 satisfying (i)–(iv) is already defined. We

will construct Ek+1.

Let {si : i < 2k} be an enumeration of 2Ak . Thus Ek = {Esi
: i < 2k}. Also, let

γ = max{β0, . . . , βk} < α, and for every i, m < 2k put

βm
i = max{β ≤ γ : si ↾ (β × ω) = sm ↾ (β × ω)}.

As a first step of the proof we will construct, by induction on m ≤ 2k, the sequences

〈{Em
si
∈ A : i < 2k} : m ≤ 2k〉 and 〈P

j
m ∈ A : j < 2 & m < 2k〉 such that for every

n < m ≤ 2k and i < 2k,

(a) Em def
= {Em

si
∈ A : i < 2k} satisfies (iii),

(b) En
si
⊃ Em

si
,

(c) P0
n and P1

n are disjoint subsets of En
sn

such that {P0
n, P1

n} ∈ Dk and πγ[P0
n] =

πγ[P1
n] = πγ[En+1

sn
].

We start with putting E0
si

= Esi
for every i < 2k. So, (a)–(c) clearly hold. Next,

if for an m < 2k family Em satisfying (iii) is already constructed, apply (P3) to find

disjoint P0
m, P1

m ∈ Dk subsets of Em
sm

for which πγ[P0
m] = πγ[P1

m]. Then for i < 2k we
put

(25) Em+1
si

= Em
si
∩ π−1

βm
i

(πβm
i

[P0
m]) =

{

x ∈ Em
si

: x ↾ βm
i ∈ πβm

i
[P0

m]
}

.

Notice that πβm
i

[P0
m] ⊂ πβm

i
[Em

sm
] = πβm

i
[Em

si
], so by (23), Em+1

si
∈ A. Also, by the

inductive assumption (a),

πβm
i

[Em+1
si

] = πβm
i

[Em
si

] ∩ πβm
i

[P0
m] = πβm

i
[Em

sm
] ∩ πβm

i
[P0

m] = πβm
i

[P0
m].

Since βm
m = γ, this implies immediately (c). It is clear that (b) holds. Thus, it is

enough to show that Em+1 satisfies (iii). So, pick β < α and different i < j < 2k

such that si ↾ (β × ω) = s j ↾ (β × ω). If β ≤ βm
i then also β ≤ βm

j and πβ[Em+1
si

] =
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πβ[P0
m] = πβ[Em+1

s j
]. So, assume that β > βm

i and β > βm
j . Then βm

i = βm
j and

πβ[Em+1
si

] =
{

πβ(x) : x ∈ Em
si

& πβ(x) ↾ βm
i ∈ πβm

i
[P0

m]
}

=
{

πβ(x) : x ∈ Em
s j

& πβ(x) ↾ βm
j ∈ πβm

j
[P0

m]
}

= πβ[Em+1
s j

].

So Em+1 satisfies (iii). This finishes the construction.
Next for i < 2k put E ′

si
= E2k

si
⊂ Esi

and notice that

(P3 ′) for every n < 2k there are disjoint F0
sn
, F1

sn
∈ A such that F0

sn
∪ F1

sn
⊂ E ′

sn
,

{F0
sn
, F1

sn
} ∈ Dk, and πγ[F0

sn
] = πγ[F1

sn
] = πγ[E ′

sn
].

Indeed, for j < 2 define F
j
sn = P

j
n ∩π−1

γ (πγ[E ′
sn

]) and note that F
j
sn ∈ A by (23), since

πγ[E ′
sn

] ⊂ πγ[En+1
sn

] = πγ[P
j
n]. So {F0

sn
, F1

sn
} ∈ Dk by (P1). The equations hold since,

by (c),

πγ[F j
sn

] =
{

πγ(x) : x ∈ P j
n & x ↾ γ ∈ πγ[E ′

sn
]
}

=
{

πγ(x) : x ∈ En+1
sn

& x ↾ γ ∈ πγ[E ′
sn

]
}

= πγ[E ′
sn

].

Finally, F
j
sn = {x ∈ P

j
n : x ↾ γ ∈ πγ[E ′

sn
]} is a subset of E ′

sn
since P

j
n ⊂ En+1

sn
and, by

(25), if x ∈ En+1
sn

\ E ′
sn

then x ↾ γ /∈ πγ[E ′
sn

]. So, (P3 ′) holds.

Next, by induction on i < 2k, choose a sequence 〈x
j
i ∈ F

j
si : j < 2 & i < 2k〉 such

that for every j < 2 and m ≤ i < 2k,

(26) x0
i ↾ βk = x1

i ↾ βk, x0
i (βk) 6= x1

i (βk), and x
j
i ↾ βm

i = x j
m ↾ βm

i .

By (P3 ′) it is easy to find x0
0 and x1

0 satisfying (26). So, assume that for some 0 <

i < 2k we already have defined 〈x
j
m : j < 2 & m < i〉. To find x0

i and x1
i let

β = max{βm
i : m < i} and choose an n < i which witnesses it, that is, such that

β = βn
i . Since, by (a) and (P3 ′), πβ[F

j
si ] = πβ[F

j
sn ] for j < 2, we can find an x0

i ∈ F0
si

extending x0
n ↾ β. Then x0

i ↾ βm
i = x0

n ↾ βm
i = x0

m ↾ βm
i for all m < i.

Next, if βk < β, as above we choose an x1
i ∈ F1

si
extending x1

n ↾ β and note that
(26) is satisfied since this was the case for i = n. So, assume that β ≤ βk ≤ γ. Then,
by (P3 ′), we can find an x1

i ∈ F1
si

extending x0
i ↾ βk such that x1

i (βk) 6= x0
i (βk). Then

(26) holds as well.

Finally, for s ∈ 2Ak and j < 2 let sˆ j stand for s ∪ {〈〈βk, nk〉, j〉} ∈ 2Ak+1 , and for
i < 2k define

Esi ˆ j = F j
si
∩ Bα(x

j
i , 2−k).

Let Ek+1 = {Es : s ∈ 2Ak+1}. To finish the proof it is enough to show that Ek+1 satisfies

(i)–(iv) from Lemma 8.1. Thus, (i) follows from the fact that Esi ˆ j ⊂ Bα(x
j
i , 2−k); (ii)

is justified by Esi ˆ j ⊂ F
j
si ⊂ E ′

si
⊂ Esi

; and (iii), (iv) can be easily deduced from (P3 ′),
(26), and (2).
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