
Book review

Alan F. Blackwell, Emma Cocker, Geoff Cox, Alex
McLean and Thor Magnusson, Live Coding: A User’s
Manual. Cambridge, MA: MIT Press, 2022. ISBN:
9780262544818. doi: https://doi.org/10.7551/mitpress/
13770.001.0001

What is live coding? This is the question at the start and
at the heart of Live Coding: A User’s Manual, by Alan
Blackwell, Emma Cocker, Geoff Cox, Alex McLean
and Thor Magnusson. The authors offer a fairly direct
answer in the first chapter:

Live coding involves showing the screen or making visible
the coding process as part of a live performance. Broadly
speaking, it describes the improvisatory real-time com-
position of predominantly computer-generated
audiovisual material, in which the writing of code itself
(or other executable instructions) is presented as a live
event for an audience. Alongside witnessing the coder
engaged in the live act of coding (laboring at their
laptop), the code itself is also presented – typically
projected – in real time as it is being worked on as a
visible part of the performance. (p. 3)

This may suffice to give the unfamiliar reader some
idea of what live coding looks like in practice. The
cover art, by Joana Chicau, also illustrates the idea by
depicting the code used to generate it. However, the
general aim of the book is to consider live coding as
expansively as possible, investigating it less as a
particular technique or method than as a philosophy
or critical orientation towards art, technology and
their relationship. Thus, the question ‘What is live
coding?’ and its implications pervade the book’s
352 pages.
Chapter 1 serves as an introduction to both live

coding and to the book itself. It begins by disabusing
the reader of any confusion regarding the title: ‘If you
are expecting a conventional user’s manual, then put
this book down’ (p. 1). The authors explain that the
book is not a user’s manual for live coding, but rather
an exposition of how live coding itself can serve as a
user’s manual. They proceed to address the funda-
mental question ‘What is live coding?’, offering
general phrases such as ‘writing software in real time’,
‘changing rules while following them’, ‘conversational
programming’, ‘thinking in public’ and ‘on-the-fly or
just-in-time performance’, while noting the difficulty
(and danger) of attempting to define a practice that
has self-redefinition at its core. It seems easier to say
what live coding is about than what it is: ‘Live coding

is about people interacting with the world, and each
other, in real time, via code. Live coding is about
making software live’ (p. 2). This latter statement
refers to live coding’s ‘critical orientation toward the
otherwise conventionalized work of programming and
software engineering’ and how it poses ‘questions and
challenges to some of the underpinning values and
ideologies of a wider computational culture’ (p. 3).
Live coding shows the screen and ‘unveils the
underlying operational layer of activity beneath : : :
computational performance’ (p. 4), a ‘critical gesture’
in opposition to the tendency towards smart devices
that are ever more imperceptibly integrated into life
and thus ever harder to question. The authors ‘argue
that all performance practices (including music) offer a
special way of understanding software and that this
has radical potential for all software – not only for
artists, their audiences, and art theorists but also for
engineers, philosophers, and activists’ (p. 5). In short,
‘live coding helps us to gain new insights about what
software can be’ (p. 6).
Chapter 2 explains where live coding came from,

tracing its Partial Histories through interviews with 17
live coders (or live coding groups) and situating it
within the broader histories of computer music,
electronic music and personal computing. The authors
follow the artistic and technical interests of a disparate
generation of ‘geeky artists’ from their formative years
in the 1980s into the early 2000s, a time when ‘code
was slowly entering public consciousness’ (p. 19).
Adrian Ward and Alex McLean formed slub and
wrote a ‘Generative Manifesto’, venues and festivals
served as sites for art activism, James McCartney
demonstrated SuperCollider at ICMC 2000, and
Julian Rohrhuber released the Just In Time program-
ming library (JITLib). In this heady atmosphere,
Rohrhuber and Renate Wieser convened the
Changing Grammars symposium in 2004, a ‘live
audio programming symposium’ that became ‘the
watershed moment of live coding, as the meeting at
which [the Temporary Organisation for the Promotion
of Live Algorithm Programming] was formed and
immediately after which the TOPLAP manifesto was
first drafted’ (p. 21). In addition to this personal
narrative, the authors point to precursors such as
Forth (especially Doug Collinge’s Moxie package for
timed procedures and Dave Anderson and Ron
Kuivila’s work on threading), SuperCollider (inherit-
ing from both the MUSIC-N family of computer
music languages and Smalltalk), the Morpheus
generative album, and Rohrhuber’s work on proxies.

Organised Sound 28(2): 315–318 © The Author(s), 2023. Published by Cambridge University Press. doi:10.1017/S1355771823000432

https://doi.org/10.1017/S1355771823000432 Published online by Cambridge University Press

https://doi.org/10.7551/mitpress/13770.001.0001
https://doi.org/10.7551/mitpress/13770.001.0001
https://doi.org/10.1017/S1355771823000432
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1355771823000432&domain=pdf
https://doi.org/10.1017/S1355771823000432


The remainder of the chapter addresses the growth of
the live coding community, issues of inclusion and
diversity (further addressed in Chapter 8), institutions
and hierarchies, the phenomena of algoraves, and the
future of live coding.

Where Chapter 2 traces the paths of a relatively
small set of individuals and ideas into the past,
Chapter 3 changes tack and presents an expansive
view of live coding in the present. The Expositions
consist of statements and photographs from 42
different live coders (or groups), from Aji to
Xambó. Though necessarily incomplete (much like
the preceding Partial Histories), this collection none-
theless gives an impressive sense of the wide variety of
people, places and perspectives involved in live coding
today. The group comprises artists, composers,
dancers, educators, instrumentalists, language design-
ers, musicians, organisers, performers, poets,
researchers and tool builders. Although no formal
prompts or questions are provided, the practitioners’
statements share recurring themes: Why and how did
they get into live coding? How is it integrated into their
practice? What is its value? How does the technical
context affect the quality or reception of the music (or
visuals, dance, or poetry)? What are the key challenges
(especially social and cultural) for the live coding
community? What may become of live coding in the
future – what unrealized potential or unmet hazards
await? The live coders offer a range of answers to these
questions and more in this fascinating set of
expositions.

Chapter 4 shifts from the book’s practice-focused
portion to its speculative side, which subdivides neatly
into concept chapters (notation, liveness, time-critical-
ity) and philosophy chapters (epistemology, politics).
Chapter 4 is the first concept chapter, concerned with
Notation, how it ‘resonates with different meanings
and values within different disciplinary traditions’
(p. 128), and the implications for the interdisciplinary
practice of live coding. Live coding is a ‘supremely
notational practice’ in that code is ‘even more explicit
than staff notation’, and yet it ‘finds itself caught
between two worlds: it is too ephemeral to be score-
based culture and yet too centered on text to be oral
culture’ (p. 130). Like Chapter 1, Chapter 4 tries to
give a sense of what live coding is by saying what it is
about: ‘disrupting the deterministic logic between
notation and process, bringing it into a creative
feedback loop’ (p. 131) of improvised editing, with the
result that live coders ‘do not become coded but rather
embody code’ (p. 132), working in notation without
following it themselves. The authors connect live
coding to live art, weaving and the history of notation
to support their argument. They go on to establish the
significance of the ‘environment in which live coders
express themselves’ which ‘exemplif[ies] certain views

on what is important’ (p. 134) and ‘prescribes a
particular world of possibilities’ (p. 146), as in
TidalCycles’s emphasis on pattern, supported by
mininotation, or Orca’s spatial grid, where control
can flow in any direction. Other topics include the
potential for predictive, self-modifying and recorded
live coding; the exploratory role of notation in live
performance; the distinction between prescription and
perception (as the results of executing prescriptive
notation may nonetheless be surprising); and issues of
authenticity, vis-à-vis Nelson Goodman’s notions of
autographic and allographic art. Finally, they discuss
notation as a social project, drawing on Christopher
Alexander’s work on pattern languages, Adorno’s
views on the centrality of scores, and Cornelius
Cardew’s Scratch Orchestra, concluding that live
coding offers ‘radical potential’ to ‘keep it live’ in
music and other notational forms because it is
simultaneously ‘notation and execution’ (p. 157).
Picking up on Chapter 4’s final theme, Chapter 5

deals with Live Coding’s Liveness(es) and ‘how
diverse live coding practice – improvisational and
compositional – enrich a wider theoretical debate on
the issue of liveness’ (p. 159). As in Chapter 4, live
coding ‘requires that its very liveness be understood
from more than one epistemological and ontological
perspective’. Accordingly, much of the chapter is
devoted to examining live coding through different
lenses: ontologies of liveness, experiences of liveness,
concepts of vitality and flow, and technological
‘degrees of liveness’. The authors observe that ‘speed
and immediacy can easily become mistaken for
liveness’, resulting in an emphasis on efficiency and
flow over risk, reflection, and ‘the critical value : : :
within moments of delay and technical resistance’ (p.
170). The authors identify this confusion with the
‘fetishization’ of immediacy over liveness and ‘the loss
of reflection space and intervals’ in contemporary life,
asking ‘How can the relation between liveness,
immediacy, and efficiency be uncoupled?’ Their
answer is live coding’s capacity for risk and serendip-
ity, as code is ‘a material (or even collaborator) that
the coder works with and can be surprised by’ (p. 171).
Furthermore, live coding is ‘a critical practice engaged
in the interrogation and exposition of its own means of
production’ that (per Simon Yuill) ‘creates a virtue by
exposing something that is normally concealed’,
reflected in the showing of the screen (p. 179). The
authors connect this to the community’s ‘[s]trongly
held copyleft and creative commons principles’ that
‘underpin live coding as a community in “common”’
(p. 178). Other themes in this chapter include human–
machine entanglement, the body, performance prac-
tices beyond music and visuals (such as live art and
choreography), and the performativity of code.

316 Book Review

https://doi.org/10.1017/S1355771823000432 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771823000432


Chapter 6 proceeds from liveness to Time Criticality
in Live Coding, focusing on ‘the disjunction between
algorithmic or machine time and the performer’s
embodied experience of lived time’ (p. 181). As in
Chapter 4, live coding languages play a significant
role, as they ‘embody different technical and indeed
philosophical understandings of [their] creators’
(p. 183), contrasting with the logic of time in
imperative languages and addressing the ‘fundamental
incommensurability lying at the heart of live coding’ (p.
185): ‘changing rules as they are followed’ while
satisfying history and causality. Per Rohrhuber, the
two basic approaches are the state picture (‘continu[-
ing] with the state left behind by the previous version
of the code’), found in live coding systems such as
Extempore and Sonic Pi, and the causal picture
(‘recalculat[ing] the history of the process as though
the code has always been as it is now’), realized in
various ways by the SuperCollider (with JITLib),
TidalCycles and Hydra environments. Human per-
ceptions of time present their own difficulties, as they
are shaped by ‘competing – even contradictory –

rhythms, regulations, and philosophical rhetoric’ (p.
187) and reshaped by contemporary technologies that
give rise to the ‘work-life indeterminancy’ endemic to
modern ‘liquid times’ (p. 188). In response, the authors
ask how live coding can ‘contribute toward new
understanding about our contemporary temporal
experience’ and ‘draw together human and machine
registers of time in ways that are not reductive to
either’ (p. 203). The ensuing discussion draws on the
philosophies of Bergson, Husserl and Heidegger to
establish the notion of a ‘three-part present’ (p. 192),
which the authors argue finds expression in live coding
as the performer attends to the past-of-the-present
(code history, the buffer), present-of-the-present
(current state) and future-of-the-present (scheduled
or soon-to-be-executed code) continually while per-
forming. Further discussion touches on non-Western
conceptions of time, kairos vs. chronos, ‘slow coding’ in
opposition the ‘accelerated temporalities of contem-
porary life’ (p. 199), and the problem of ending
(linking the halting problem to the ‘endless loop’ of
live coding systems).
Chapter 7 moves from performance to philosophy by

asking What Does Live Coding Know? (not what live
coders know, as might be addressed by a conventional
user’s manual). It begins with the history of program-
ming, from the era of mainframes and ‘formal processes
of bureaucratic translation’ (p. 207) through sweeping
changes brought about by falling hardware costs and a
‘transformed understanding of the practice’ (p. 208)
associated with 1960s counterculture and the research
agendas of Douglas Engelbart and later Alan Kay. The
twin threads of Smalltalk (to GUIs, agile programming,
wikis, and software design patterns) and Lisp (to the

read-eval-print loop or REPL, Emacs, and the free
software movement) are identified as crucial lineages in
the development of live programming, wherein ‘creative
engineers : : : engage in craft practices of modifying the
tools they use for their own work’ (p. 212). These
developments lead into a wider discussion of program-
ming as craft, drawing on theories of craft and creative
knowledge, culminating in the conclusion that ‘live
coding is a craft – and given this craft, it seems that code
must be its material’ in spite of its apparent immateriality
(p. 217). A related question is the purpose of code: ‘for
live coders, code is not an instrument of control for
imposing order on a chaotic world’, as in software
engineering, but instead ‘an activity that generates chaos
in a highly technical world’, ‘creative rather than
regulative’ (p. 213). This analysis shifts the conversation
fromwhat live coding knows to what it does. The authors
argue that it ‘pressures the if-then thinking of computa-
tional logic toward the what-if of speculative
experimentation’ (p. 219), that it has the critical potential
‘to speculate on the emergent forms of human and non-
human knowledge’ that result from feedback loops
between humans and ‘epistemological technologies’ such
as the computer, and that it ‘offers a useful paradigm in
which to establish how the know-how of code is exposed
in order to more fully understand how code subjects and
objects mutually create and define each other’ (p. 228).
After seven chapters addressing ‘What is live coding?’

in seven ways, the eighth poses the question politically,
askingWhat Does Live Coding Want? in the world. The
authors paint a picture of that world as one of ‘corporate
data repositories, increasing levels of automation, and
global digital infrastructure’ (p. 229), where ‘the big-data
revolution [extracts] value from creative work to enrich
those who own the infrastructure’ (p. 234), with ‘ever-
increasing global precarity’ and overlapping crises
(p. 242). In the face of all this, what can live coding
do? According to the authors, a great deal: ‘a radically
open aesthetic practice’, it can ‘subversively undermin[e]
some of the more insidious infrastructural and ideologi-
cal values inherent to computational culture’ and help
‘mobilize an engagement with social justice in the face of
algorithmic corporate regimes and governmentality that
threaten to undermine freedom of thought and action’
(p. 231). It ‘reverses the homogenization of creative
technology, particularly music technology where intelli-
gent beat trackers, arpeggiators, autotuners, mastering
tools, or harmonizers present music that has been
algorithmically averaged to meet audience expectations’
(p. 234). It accommodates alternative visions for
machine learning, artificial intelligence and smart devices
that empower users instead of controlling them, offering
‘a way to keep humans engaged as authors rather than
supervisors of automation’ and ‘bring back [technolo-
gies] from the world of mass production and control to
the world of craft’ (p. 237). The authors temper this

Book Review 317

https://doi.org/10.1017/S1355771823000432 Published online by Cambridge University Press

https://doi.org/10.1017/S1355771823000432


world-saving spirit with a sober view of the limitations of
movements such as free/libre open-source software, open
science, and live coding, drawing attention to how ‘the
ideals of openness are easily co-opted for purposes of
oppression’ (p. 238) and to the ‘long networks in which
live coding participates and on which it depends’, from
open-source software to mineral extraction (p. 239).
Reiterating the challenges facing the wider world, the
authors acknowledge that it is ‘tempting to see
conditions of practice as : : : outside of one’s influence
or control’ (p. 243) but urge against apathy: live coders
can create conditions of practice by building the (virtual
and physical) environments that foster and shape
communities.

In live coding, ‘patterns may unfold over multiple
scales’ (p. 154), and the same goes for Live Coding:
A User’s Manual. Several themes recur throughout the
book, including human–machine entanglement, com-
munity & inclusivity, and the difficulty of pinning live
coding down. Indeed, in the introduction the authors
declare that ‘it is this pluriversal capacity of live coding
to resist or trouble any easy classification, categoriza-
tion, or explanation that we take as our provocation
for (the impossibility, or at least the challenge of)
writing this book’ (p. 1). This capacity manifests in
every chapter: in the many possible answers to ‘What
is live coding?’ in Chapter 1, in the partial histories and
paths of Chapter 2, and in the diverse practices and
paths in the expositions of Chapter 3. But it is
especially present in the second, ‘speculative and
conceptual’ part of the book. The authors weave a rich
tapestry of references, unspooling a formidable body
of work in order to consider their subject from
multiple critical perspectives. This exposes the curious
reader to many ways of thinking and offers numerous
threads to follow. In some places, however, the sheer
density of references and shifts in viewpoint risks
tangling up the reader in their dizzying warp and weft.

This likely results from the coauthoring process, which
the five authors discuss candidly in the first chapter

Each and every chapter has been coauthored in various
ways. Certainly, this has been a complex undertaking. At
times, different contributing voices become tangible
through a perceived shift in style or semantics or through
the meeting of different – even seemingly incompatible –
references or ideas. : : : In places, the transition from one
voice to another might appear smooth and seamless;
elsewhere, the reader might notice the sudden break or
change in tack. (p. 7)

And the last:

: : : we have explored ways for bringing different and
diverging ideas and perspectives on live coding into

dialogue without homogenizing them within a single
authorial view : : : As the book evolved, the differentia-
tion of individual authorial voice became more
complicated (woven together) through the collaborative
process of coproduction and reciprocal thinking with.
(p. 242)

This complication reflects both the difficulty of
composing a monograph with five authors and the
difficulty of writing a book about live coding. As the
authors note, ‘live coding can be conceived of as a
practice of complication’, from ‘the Latin plicare,
meaning “to fold, weave”. Complicate then means to
fold or weave together’ (p. 241). Thus, the authors
weave together ‘diverse practices and theories’,
reflecting live coding’s operation ‘at the threshold
between these different practices and disciplinary
perspectives : : : in the style of the book itself’ (p.
7). This complication is a source of strength and also
ambivalence; without a ‘single authorial view’, it falls
to the reader to see five views at once.
Live Coding: A User’s Manual is open-access,

available under ‘a copyleft CC-BY-SA license that in
so many ways reflects the ethos of the live-coding
community’ (p. xv). (Read it at livecodingbook.toplap.
org or the MIT Press.) The authors draw a parallel
between the book and live coding itself, which ‘is process
driven, endlessly subject to revision and modification –

like this book, which remains open to further develop-
ment through the use of creative commons licenses’
(p. 231), and they ‘offer the various chapters as
necessarily works in progress, open to further timely
updates, that reflect the subject matter of the book as a
dynamic form and practice’ (p. xv). This is echoed in the
book’s closing words: ‘Live coding wants to be undone,
unraveled, unwoven, and rewoven anew’ (p. 243).
I have reviewed the book in this spirit, unweaving

and reweaving fragments into a scrap that hopefully
gives some sense of the whole cloth. Although it is by
no means concerned solely with sound, I expect that
readers of Organised Sound will find Live Coding: A
User’s Manual an intriguing and inimitable mono-
graph that is grounded in the sonic arts, with
particularly rich connections to the history of
computer music in Chapter 2, to algorithmic music,
the history of notation, and art theory in Chapter 4,
and to media theory and performance research in
Chapter 5, and insightful reflections on the interweav-
ing of art, technology and society throughout.

Ian Clester
Email: ijc@gatech.edu

318 Book Review

https://doi.org/10.1017/S1355771823000432 Published online by Cambridge University Press

https://livecodingbook.toplap.org
https://livecodingbook.toplap.org
https://orcid.org/0009-0006-2383-4739
https://orcid.org/0009-0006-2383-4739
mailto:ijc@gatech.edu
https://doi.org/10.1017/S1355771823000432

	temp:book:TitleC_1

