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Certain natural solid materials adjust to their ambient environ-

mentally applied mechanical loads by slowly changing their

overall shape and their local density or microstructure. These

materials include living bone, living wood and certain saturated

porous geological materials. The theory of adaptive elasticity

attempts to model these complex stress adaptatior processes with

a simple continuum model. The model is composed of a porous

anisotropic linear elastic solid perfused with, and surrounded

by, a fluid. The chemical reactions of the stress adaptation

process are modeled by the transfer of mass from the fluid to the

porous solid matrix, and vice versa. As a result of the chemical

reactions mass is transferred to (from) the solid matrix so that

it either increases (decreases) the overall size of the body or

increases (decreases) the density of the body. The rates of

these chemical reactions are very slow compared to the character-

istic time of inertia effects. The rate of change of the overall

size and shape of the body is controlled by surface strain, and

the rate of change of density at a point is controlled by the

local matrix strain.
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The details of this model, as well as its physical motivation,

are described and applied to several problems of interest. The

problems described include the devolution of initial density

inhomogeneities and the shape changes in a hollow circular

cylinder due to changes in the axial load. The application of

these results to living animals and trees is discussed.

1. Introduction

There are three major portions of this paper. In the first portion

the observations and experiments of stress adaptation of overall shape and

of local microstructure in living bones, living trees and certain saturated

porous geological materials are reviewed. This material is presented in

the first three sections following the introduction. The second portion of

the paper describes the development of a continuum model for the stress

adaptation process. This material is combined in sections five, six and

seven. The third and final portion of the paper concerns applications of

the theory to some elementary problems in bone mechanics. These

applications are described in the latter part of section six and in section

eight.

2, Stress adaptation in bone

Functional adaptation is the term used to describe the ability of

organisms to increase their capacity to accomplish their function with an

increased demand and to decrease their capacity with lesser demand. Living

bone is continually undergoing processes of growth, reinforcement and

resorption which are collectively termed "remodeling". The remodeling

processes in living bone are the mechanisms by which the bone adapts its

overall structure to changes in its load invironment. The time scale of

the remodeling processes is on the order of months or years. Changes in

life style which change the loading environment, for example taking up

jogging, have remodeling times on the order of many months. Bone

remodeling associated with trauma has a shorter remodeling time, on the

order of weeks in humans. The time scales of these remodeling processes

should be distinguished from developments in bone due to growth, which have

a time scale on the order of decades in humans, and the developments due to

natural selection which have a time scale of many lifetimes.

It is necessary to describe the nature of bone as a material before
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describing the remodeling processes that occur in bone. Experiments have

shown that bone can be modeled as an inhomogeneous transversely isotropic

or orthotropic elastic material, with the degree of anisotropy varying

inhomogeneously also.

There are two major classes of bone tissue which significantly

contribute to the structural strength of the skeletal system. They are

called cancellous and cortical bone. Cortical bone is the hard tissue on

the outer surface or cortex of the femur (that is, thigh bone). It is

dense, it contains no marrow and its blood vessels are microscopically

small. Cancellous bone occurs in the interior of the femur. It consists

of a network of hard, interconnected filaments called "trabeculae" inter-

spersed with marrow and a large number of small blood vessels. Cancellous

bone is also called trabecular bone or spongy bone. Generally cancellous

bone is structurally predominant in the neighborhood of the joints and

cortical bone is structurally predominant in the central sections of a

femur away from the joints. Bone tissue contains an abundance of extra-

cellular material or matrix. The volume fraction of the matrix is orders

of magnitude larger than the volume fraction of bone cells. The matrix

accounts for virtually all the structural strength of bone.

The concept of stress or strain induced bone remodeling was first

publicized by the German anatomist Wolff [32], and is often called Wolff's

law. Bassett and Becker [2], Shamos, Lavine and Shamos [25], Justus and

Luft [77], and Somjen, Binderman, Berger and Hare I I [27], have proposed

various mechanisms for bone remodeling in terms of certain electrical and

chemical properties of bone. The distinction made by Frost [J2] between

surface and internal remodeling is followed here. Surface remodeling

refers to the resorption or deposition of the bone material on the external

surface of the bone. The details of the process of deposition of new

lamina at the surface of a bone are described by Currey [9], Internal

remodeling refers to the resorption or reinforcement of the bone tissue

internally by changing the bulk density of the tissue. The study of

Kazarian and Von Gierke [7S] very graphically illustrated internal

remodeling in cancellous bone. In this study 16 male Rhesus monkeys were

immobilized in full body casts for a period of sixty days.* Another set of

* The Editor records his horror that such experiments are performed in the
name of science.
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l6 male Rhesus monkeys were used as control and allowed the freedom of

movement possible in a cage. A subsequent comparison of the bone tissue of

the immobilized monkeys with the tissue of the control monkeys showed

considerable resorption of the bone tissue of the immobilized monkeys.

Qualitative radiographic techniques demonstrated increased bone resorption

in the metaphysis of the axially-loaded long bones, as well as the loss of

cortical bone. Mechanical testing of the bone tissue also reflected the

remodeling loss in the immobilized monkeys.

The effect of an increased loading environment on the remodeling of

bone tissue is illustrated in a Latvian study reported by Shumski i, Merten

and Dzenis [261. In this study the acoustic velocity in tibia of nine

groups of individuals was determined ultrasonically. The nine groups were

highly trained athletes (masters of sports, candidates for master of

sports, and first degree athletes), swimmers, biathlon athletes, middle

distance runners, high jumpers, hurdlers, track and field athletes, second

and third degree middle distance runners, and some non-athletic

individuals. The data from this study is presented in Table I. It is easy

to see that the acoustic velocity in the tibia increases with the group's

athletic expertise. Acoustic velocity is proportional to the square root

of the Young's modulus and inversely proportional to the square root of the

bulk density, thus there is an implication of greater modulus which

implies bone deposition and increased density of the bone tissue with

increasing athletic expertise.

Surface remodeling can be induced in the leg bones of animals by

superposing axial and/or bending loads. Woo et oil [33] has shown that

increased physical activity (jogging) in pigs can cause the periosteal

surface of the leg bone to move out and the endosteal surface to move in.-

Meade et at [22] superposed a constant compressive force along the axis of

the canine femur by an implanted spring system. This study showed a

quantifiable increase in cross section area with increasing magnitude of

the superposed compressive force. Liskova and Hert [20] have shown that

intermittent bending applied to the rabbit tibia can cause the periosteal

surface to move out. Surface remodeling can also be induced in the leg

bones of animals by reducing the loads on the limb. In two studies Uhthoff

and Jaworski [37] and Jaworski et at [J6] immobilized one of the forelimbs

of beagles. In the study of Uhthoff and Jaworski [31], young beagles were
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TABLE I

The acoustic velocity in the human tibia. This data is from Shumski i,

Merten and Dzenis [26].

Group
No.

1

2

3

k

5

6

7

8

9

Group Characteristics

Individuals not participating in sports

Third-degree middle-distance runners

Second-degree middle-distance runners

First-degree middle-distance runners

Swimmers, 2 masters of sports, 2
candidates for master of sports, and 6
first-degree athletes

Biathlon athletes, candidates for master
of sports

High jumpers, k candidates for master of
sports, 6 first-degree athletes

First-degree hurdlers

First-degree track-and-field athletes

Acoustic Velocity in m/s

Right Leg

1257

1315

ll*30

1656

13U6

1502

1775

1702

1876

Left Leg

1270

-

-

1710

1365

ll*90

i860

1576

1820

used and it was found that the endosteal surface showed little movement

while there was much resorption on the periosteal surface. However, in the

study with older beagles (Jaworski et at [76]), it was observed that the

periosteal surface showed little movement while on the endosteal surface

there was much resorption.

The feedback mechanism by which the bone tissue senses the changes in

load environment and initiates the deposition or resorption of bone tissue

is not well understood. The two candidates are a piezo-electric effect

that occurs in bone and the calcium ion concentration. These mechanisms

are described in further detail by Cow in and Hegedus [5]. A fairly

comprehensive survey of the electromechanical properties of bone was

accomplished recently by Guzelsu and Demi ray [74],
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3. Stress adaptation in trees

Functional adaptation also occurs in trees and plants. Trees adapt

their shape and structure to their environmental loading in a manner

qualitatively similar to that observed in bones. The exact mechanism of

stress adaptation in trees is unknown, but a combination of mechanical

stress and the hormone auxin have been suggested by a number of studies

[35], 1361.

It has been observed that threes growing in dense forest strands have

smaller trunk diameter than trees growing at the edge of the strand and are

more inclined to be blown over than those at the edge. It has also been

observed that nursery trees grown close together in containers are tall

and spindly while those placed further apart are greater in trunk diameter.

An interesting experiment which quantified this phenomenon was reported by

Neel and Harris [Z3], [7]. These environmental horticulturists obtained

eight matching pairs of young sweet-gum trees (Liquidambar). The trees

were placed in four gallon cans in a greenhouse. Each morning at 8.30 for

27 mornings, one tree in each pair was shaken for 30 seconds. At the end

of the 27 day period the shaken trees had reached a height which was only

20$ of the height of the unshaken trees. However, the trunks of the shaken

trees were larger than those of the unshaken trees. At a distance of 5 cm

from the ground the diameter of the shaken trees had increased by 8.3 mm

while those of the unshaken had increased by only 6.8 mm. The wood fiber

length and the vessel member length were significantly shorter in the

shaken trees. Although the authors did not measure the elastic moduli, the

changes in the wood tissue microstructure suggests that the elastic moduli

are different in the shaken and unshaken trees. One would reasonably

expect the moduli to be higher in the unshaken trees.

The wood tissue that is deposited on an external surface of a tree

trunk in response to a superposed bending moment in a particular direction

is called reaction wood. Reaction wood is visible when a transverse

section of the tree trunk is viewed because it distorts the growth rings.

In a tree that has been bent in a particular direction the growth rings

will not be circular, but they will be distorted ovals in the particular

direction associated with the bending. The additional wood tissue

deposited will increase the area moment of inertia of the trunk cross

section and decrease the stress experienced by the wood tissue.
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The elastic properties of wood are best modeled by orthotropic linear

elasticity theory. The Young's modulus in the direction of the wood grain

is the largest Young's modulus. The Young's moduli are the largest at the

base of the tree and they decrease in magnitude for wood located at a

distance up the tree away from the ground, generally increasing with limb

diameter.

4. Stress adaptation in certain porous solid geological materials

The effect known as "pressure solution" in the geophysical literature

suggests that functional adaptation to stress is not restricted to organic

materials. Pressure solution is described as the increasing solubility of

a saturated porous solid matrix with increasing solid matrix strain. Three

recent reports by Sprunt and Nur [2£, 29, 30] attempt to quantify this

effect. The materials studied were all porous and saturated and included

sandstone, limestone, dolomitic limestone, marble, quartzite and

novaculite. These materials all adapted their microstructure by surface

resorption or by changing their porosity. These microstructural changes

were found to be proportional to the strain in the solid matrix and not the

effect of a transport mechanism.

Although Sprunt and Nur report on experimental situations in which

there was resorption of the solid matrix material, they indicate that they

believe that this result is due to the fact that they employed an open

system. They state "If our system were closed, we would expect solution

only in the regions of large compressive stress and deposition in the

regions of tension or small compressive stress. Examples of pressure

solution in both open and closed systems are well known in nature. Large

net reductions in rock mass, where material is dissolved along stylolites

and removed from the rock formation (for example, [131, [27]). Pressure

shadows which form by solution of material at points of high stress around

a stiff inclusion accompanied by transfer and recrystallization of the same

material at points of lower stress around the same inclusion [3], [JO], are

examples of natural closed systems". The 1935 experiments of RusselI [24]

support the deposition aspect of the pressure solution effect. RusselI

used a smooth-surfaced crystal of ammonium alum in a saturated alum

solution at constant temperature to demonstrate that material dissolved

from one part of a crystal because of local stress may be redeposited on
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another part of the same crystal where the strain is relatively less.

The sandstone experiments reported by Sprunt and Nur [2S, 29] employed

a different geometry from their experiments on the other geological

materials reported in [30]. The sandstone experiments were performed on a

hollow circular cylinder where the matrix stress was induced by mechanical

pressure applied to the external cylindrical surface. The experiments on

the other materials were performed on specimens in the shape of rectangular

parallelopipeds with a cylindrical hole. The matrix stress was induced by

a compressive load in one direction. The experimental observations

reported in the sandstone experiments were porosity changes while the

observations reported in the experiments with other materials were surface

resorption. It would then appear that there is a difference between

surface and internal pressure solution effects. Most likely the difference

in these effects is not in the basic mechanics of the reaction, but in the

rate at which the reaction occurs. One would suspect that the reaction can

proceed at a more rapid rate on the free surface because of the greater

mobility of the solvent.

5. Modeling of the stress adaptation process

At this early stage of development, the stress adaptation processes in

bone, trees and saturated porous solid geological materials can be

described by the same model. A description of this model is presented in

this section. To make the presentation of the model easier, we develop it

in two parts and then combine the parts. Thus, in the following section a

theory of surface remodeling is presented and, in the section following, a

theory of internal remodeling is presented.

The theories of surface and internal remodeling use a simple two

constituent model. The solid matrix is modeled as a porous anisotropic

linear elastic solid. The basic model is then a porous, anisotropic linear

elastic solid perfused with a fluid. In the model of the stress adaptation

process chemical reactions convert the fluid into the porous solid matrix

and vice versa. As a result of the chemical reactions mass, momentum,

energy and entropy are transferred to or from the porous solid matrix. The

rates of these chemical reactions depend on matrix strain and are very slow

compared to the characteristic time of inertia effects. Thus, inertia

effects are neglected and the stress in the matrix considered here is the
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actual stress averaged over a time period greater than any inertia effects.

At this point the discussion naturally bifurcates into the

consideration of the two parts which constitute the complete model, namely

the surface remodeling theory and the internal remodeling theory. The

distinction between the two theories is made upon the locations at which

the chemical reactions occur and the way in which mass is added or removed

from a material body. In the theory of surface remodeling the chemical

reactions occur only on the external surfaces of the body and mass is

added or removed from the body by changing the external shape of the body.

During surface remodeling the interior of the body remains at constant bulk

density. In the theory of internal remodeling the chemical reactions occur

everywhere within the porous solid matrix of the body and mass is added by

changing the bulk density of the matrix and without changing the exterior

dimensions of the body. In both cases the rate and direction of the

chemical reaction at a point are determined by the strain at the point. It

is important to note that these two theories are neither contradictory nor

incompatible, but combine easily for a single body in which there are both

overall shape changes and density changes.

The theory of surface remodeling acknowledges the observed fact that

external changes in body shape are induced by changes in the loading

environment of the body. This theory postulates a causal relationship

between the rate of surface deposition or resorption and the strain in the

surface of the body. The body is considered to be an open system with

regard to mass transport and the mass of the body will vary as the external

shape of the body varies. This theory is described by Cow in and Van

Buskirk [S] and Cowin and Firoozbakhsh [4]. The theory of internal

remodeling postulates a causal relationship between the rate of deposition

or resorption of the solid matrix at any point and the strain at that point

in the solid matrix. A schematic diagram of this model is shown in Figure

1 (p. 66). The fact that living bone and living wood tissue are encased

in a living organism and that the geological materials are saturated, is

reflected in the model by setting the elastic porous solid in a bath of the

perfusant. The mechanical load is applied directly to the porous structure

across the walls of the perfusant bath as illustrated. The system

consisting of the elastic porous solid and its perfusant bath is considered

to be closed with respect to mass, heat energy, and entropy transfer, but
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HEAT AND MASS SEALS

POROUS STRUCTURE

ISOTHERMAL
PBRFUSANT

FIGURE 1. A schematic model of the remodeling mechanism postulated.

open with respect to momentum transfer from loading. The system consisting

of only the elastic porous solid without its entrained perfusant is open

with respect to momentum transfer as well as mass, energy, and entropy

transfer. The solid matrix is taken as the control system since the

changes in the mechanical properties of the solid matrix alone determine

the changes in the mechanical properties of the whole body.

The theory of internal remodeling is developed in a series of papers:

Cow in and Hegedus [5], Hegedus and Cow in [15], Cow in and Nachlinger [6],

and Cow in and Van Buskirk [7].

6. The theory of surface remodeling

The model for surface remodeling employed assumes that solid matrix

can be modeled as a linear elastic body whose free surfaces move according

to an additional specific constitutive relation. The additional

constitutive relation for the movement of the free surface is the result of

a postulate that the rate of surface deposition or resorption is

proportional to the change in the strain in the surface from a reference
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value of strain. At the reference value of strain there is no movement of

the surface. In order to express the constitutive equation for the surface

movement in equation form some notation is introduced. Let Q denote a

surface point on the tody and let n denote an outward unit normal vector

of the tangent plane to the surface of the body at Q . Let U denote the

speed of the remodeling surface normal to the surface, that is to say U

is the velocity of the surface in the n direction. The velocity of the

surface in any direction in the tangent plane is zero because the surface

is not moving tangentially with respect to the body. Let E. .{Q) denote

the cartesian components of the strain tensor at Q . Small strains are

assumed. The hypothesis for surface remodeling is that the speed of the

remodeling surface is linearly proportional to the strain tensor,

where E. .(Q) is a reference value of strain where no remodeling occurs
I'd

and C..(n, Q) are surface remodeling rate coefficients which are, in

general, dependent upon the point Q and the normal n to the surface at

Q . The surface remodeling rate coefficients and the reference values of

strain are phenomenological coefficients of the body surface and must be

determined by experiment. It is assumed here that the surface remodeling

rate coefficients C. . are not site specific, that is to say they are

independent of the position of the surface point Q . It is also

postulated above that surface remodeling rate coefficients are independent

of strain. Equation (l) gives the normal velocity of the surface at the

point Q as a function of the existing strain state at Q . If the strain

state at Q , E. .(Q) , is equal to the reference strain state E\ .(Q)
I'd i-d

then the velocity of the surface is zero and no remodeling occurs. If the

right hand side of (l) is positive, the surface will be growing by

deposition of material. If, on the other hand, the right hand side of (l)

is negative, the surface will be resorbing. Equation (l) by itself does

not constitute the complete theory. The theory is completed by assuming

that the body is composed of a linearly elastic material. Thus, the

complete theory is a modification of linear elasticity in which the

external surfaces of the body move according to the rule prescribed by
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equation (l). A boundary value problem will be formulated in the same

manner as a boundary value problem in linear elastostatics, but it will be

necessary to specify the boundary conditions for a specific time period.

As the body evolves to a new shape, the stress and strain states will be

varying quasi-statically. At any instant the body will behave exactly as

an elastic body, but moving boundaries will cause local stress and strain

to redistribute themselves slowly with time.

This theory has been applied to the problem of a hollow circular

cylinder subjected to an axial load by Cowin and Firoozbakhsh [4]. The

results suggest that the stable response of the cylinder to an increased

compressive axial load is to increase its cross sectional area by movement

of the external surface of the cylinder outward and the internal surface

inward. On the other hand, the stable response of the cylinder to a

decreased compressive axial load is to decrease its cross sectional area

by movement of the external surface of the cylinder inward and the internal

surface outward. When the theory is applied to the bending of a rod, it

predicts deposition of material on the concave side and resorption on the

convex side.

7. The theory of internal remodeling

The rationale underlying the theory of internal remodeling was out-

lined in Section 5. The adapting body is modeled as a chemically reacting

elastic porous medium in which the rate of reaction is strain controlled

(Cowin and Hegedus [5]). The porous medium has two components: a porous

elastic solid representing the matrix structure and a perfusant. Mass is

transferred from the porous elastic solid to the fluid perfusant and vice

versa by the chemical reaction whose rate is strain controlled. The mass

of the porous elastic solid is changed by increasing or decreasing its

porosity, but not by changing the overall dimensions of the body.

The small strain theory of internal bone remodeling is an adaptation

of the theory of equilibrium of elastic bodies. The theory models the bone

matrix as a chemically reacting porous elastic solid. The bulk density p

of the porous solid is written as the product of y and V ,

(2) p = yv

where y is the density of the material that composes the matrix structure
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and v is the volume fraction of that material present. Both y and V

are considered to be field variables. We let E, denote the value of the

volume fraction v of the matrix material in an unstrained reference

state. The density y of the material composing the matrix is assumed to

be constant, hence the conservation of mass will give the equation

governing E, . It is also assumed that there exists a unique zero-strain

reference state for all values of E, . Thus E, may change without

changing the reference state for strain. One might imagine a block of

porous elastic material with the four points, the vertices of a tetra-

hedron, marked on the block for the purpose of measuring the strain. When

the porosity changes, material is added or taken away from the pores, but

if the material is unstrained it remains so and the distances between the

four vertices marked on the block do not change. Thus E, can change while

the zero-strain reference state remains the same. The change in volume

fraction from a reference volume fraction E, is denoted by e ,

(3) « = £ - ?Q .

The basic kinematic variables, and also the independent variables, for the

theory of internal bone remodeling are the six components of the strain

matrix E. . and the change in volume fraction e of the matrix material

from a reference value E, .

The governing system of equations for this theory are (Hegedus and

Cow in [7 5])

(5)

(7) e = a(e) + A..(e)E]<m ,

where a{e), A..(e) and C. .. (e) are material coefficients dependent

upon the change in volume fraction e of the adaptive elastic material

from the reference volume fraction E, , and where the superimposed dot

indicates the material time derivative. Equation (1+) represents the
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strain-displacement relations for small strain, valid in the present theory

as well as in the theory of elasticity. Equation (5) represents the

condition of equilibrium in terms of stress. Equation (6) is a

generalization of Hooke's law, T. . - C. -jE, , in which the elastic

coefficients C. .. now have a dependence upon the change in the reference

volume fraction e and are denoted by [£,Q+e)c. -^(e) . In the case when

the change in volume fraction e vanishes and the reference volume

fraction £_ is one, (6) coincides with the generalized Hooke's law.

Equation (7) is the remodeling rate equation and it specifies the rate of

change of the volume fraction as a function of the volume fraction and

strain. A positive value of e means the volume fraction of elastic

material is increasing while a negative value means the volume fraction is

decreasing. Equation (7) is obtained from the conservation of mass and the

constitutive assumption that the rate of mass deposition or absorption is

dependent upon only the volume fraction e and the strain state E. . .
I'd

The linear dependence upon strain shown in (7) occurs as a result of the

small strain assumption. A uniqueness theorem for this theory was given by

Cow in and Nachlinger [6].

The system of equations (6) and (7) is an elementary mathematical

model of the volumetric stress adaptation process. Equation (6) is a

statement that the moduli occurring in Hooke's law actually depend upon the

volume fraction of solid matrix material present. Equation (7) is an

evolutionary law for the volume fraction of matrix material. We will now

describe how the model works in terms of equations (6) and (7) using, to

fix ideas, a hollow circular cylinder subjected to an axial compressive

load. Suppose for t < 0 the hollow circular cylinder has been under a

constant stress for a long time. The body is then in remodeling

equilibrium and the volume fraction field e is steady (e = 0) . From

equation (7) we can see that this means there is a particular steady strain

associated with the steady stress and from equation (6) we can see that the

elastic coefficients C{_-j]<m
 are steady. Now, at t = 0 the axial applied

compressive stress is increased to a new value and held at the new value

for all t > 0 . This stress history is illustrated in Figure 2. From

equation (6) it follows that the strain will jump to a new value at t = 0
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STRESS

STRAIN

STIFFNESS

TIME

FIGURE 2. An illustration of the internal remodeling response to
jumps in the constant applied stress. The response of the
strain, e, e and bone stiffness to the illustrated stress
history is shown.

and from equation (7) it follows that e will jump to a non zero value.

These jumps are also illustrated in Figure 2. Since e is non zero for

t > 0 , equation (7) shows that e will change with time and the normal

physics of remodeling suggests that e will increase as a result of the

increased strain. Since e is increasing for t > 0 , the elastic
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coefficients ^--^ie) will increase (se<? Figure 2). It follows from (6)

that if the stress is constant and the elastic coefficients are increasing,

then the strain must decrease in time. Since the strain is decreasing in

time, it follows from (7) that one remodeling rate e will decrease and

that e will continue to change, but more and more slowly. Thus for very

large times e will tend to zero and the body will evolve to a new value

of e and a new value of strain that is compatible with the increased

stress state applied at t = 0 . Remodeling of the cylinder is then

complete. The process just described as well as the process associated

with a jump reduction in stress are illustrated in Figure 2.

The theory described above involves the functions a{e), A . .(e) and

C- •-, (e) characterizing the material properties. There is no data in the

literature on the values of the functions a(e) and A. .(e) and the data

on C--^{e) suggests that it can be approximated as a linear function of

e . Hegedus and Cow in [7 5] introduced an approximation scheme that gave

C. ., (e) as a linear function of e . This scheme involved a series

3 i i 2 i i2
expansion in which terms of the order e , \E\e , and \E\ e were

neglected and terms of the order e, \E\, \E\e and e retained. The

scheme showed that A..(e) was also linear in e while <x{e) was

quadratic in e , thus the constitutive relations (6) and (7) were

approximated by

(8) T. . = WjP.., -yeC. ., ]#7
VQ { 0 13km VQKm] km

and

(9) e = an + a e + eoe
2 + A0. .E. . + eA1. .E. . ,

0 1 2 ^3 %d ij ij '

Where Cijkm' °ijkm> V V C2' 4j and 4j are constants-

8. Devolution of inhomogeneities under steady homogeneous stress

To study the devolution of an inhomogeneous body into a homogeneous

one we subject an inhomogeneous body which is in mechanical and remodeling

equilibrium for t < 0 to a homogeneous steady stress state for t > 0 .
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We consider an inhomogeneous, adaptive elastic material body which is in

mechanical and remodeling equilibrium for time t < 0 . By mechanical and

remodeling equilibrium it is meant that there exists a steady stress

T?.(X) , a steady strain £?-(x) and a steady volume fraction field e (x)

which satisfy equations (h), (5), (8) and (9) identically. At i = 0 the

stress field T. .(x) is changed to the steady homogeneous field T*. . and

the body force, if it was not zero for t < 0 , is set to zero for t > 0 .

Since the body force is zero and the stress is homogeneous, the equation of

equilibrium (5) is satisfied identically. The strain tensor for t > 0

can be determined by inversion of (8), thus

(10) E..(x, t) = IK0..! -eK.. C1 K° , \T*
v 13 ' { ichn VQTS rspq pqkm) km

where K. ., is defined by

(11) £,/?., C° = 6. 6. .
0 vjkm kmpq z-p Qq

The representation (10) for the strain tensor is then substituted into the

remodeling rate equation (9) to obtain the differential equation governing

the evolution of e(x, t) , thus

(12) e(x, t) = A{e2(x, t)-2Be(x, t)+c} , e(x, 0) = eQ(x) ,

where A, B and C are constants, A = a ,

(13) 5 = _ - i-- fC ^..K°.. VT*A°..K0.. C1 K° .T*

2<2p { 1 VQ tjmk mk 13 IQTS rspq pqmk mk

and

(lU) C = — L +A°. .K0.. V T * } .
c [ 0 ij ijmk mk)

The initial condition indicated as the second part of (12) requires that

the Inhomogeneity at time t = 0 be that associated with the mechanical

and remodeling equilibrium state that existed for t < 0 .

The solution to the differential equation (12) is presented by

Firoozbakhsh and Cowin [//]. In order to discuss this solution we
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introduce the notation e , e for the solutions to the quadratic equation

e2 - 2Be + C = 0 ,

(15) ex, e2 = B ± [B
2-C)h ,

and we employ the convention e t e when e and e are real.

Insight into the behavior predicted by the differential equation (12) at a

fixed value of X can be obtained by considering its representation in the

phase plane. In Figure 3 the solution to the remodeling rate equation (12)

is plotted in the case when e and e are real and distinct, for both

A > 0 and A < 0 . In this case the remodeling rate equation is a

parabola in e and e which crosses the e axis at two points and opens

up or down depending on the sign of A . These parabolas are sketched in

Figure 3. The arrowheads on the parabolas indicate the direction a

solution will evolve in a positive time for a given value of & . Thus,

for example, the fact that e -*• e in infinite time for e and e

real, A > 0 and e > e is indicated by the arrowheads on the parabola

to the left and the right of e being directed towards e . The arrow-

heads to the right of e are oppositely directed for A > 0 indicating

that e "*• °° in finite time for e and e real and distinct. A

completely analogous description holds for the case A < 0 shown in Figure

3. Hegedus and Cowin [J5] have shown that the solution to (12) is stable

only if e and e are real and distinct and, under those conditions on

e and e , e(x, t) is given by

(16) e(x, t) - [eo(x)_e2]+[ei_eo(x)]exp[(sgn4)(t/T)]

where sgn A means the sign of A and where

(17) T = |4 | i
 1 ^ >

is called the remodeling time constant. The precise conditions under which

the differential equation (12) yields stable solutions which tend to

finite, physiologically possible values for e(x, t) are discussed by
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A > 0
A < 0

FIGURE 5. Phase plane representations of the remodeling rate equation. The
arrowheads indicate the evolution of the solution in positive
time.

Firoozbakhsh and Cowin £J7J. The result (l6) shows that an inhomogeneous

adaptive elastic body will become homogeneous under the action of a steady-

homogeneous stress field.

In order to illustrate this result we consider a particular case.

Specifically we consider a cylindrical body of length 2l which is

initially inhomogeneous along the axis of the cylinder, but which is

homogeneous in each transverse plane of the cylinder. For the purposes of

this illustration the initial inhomogeneity is assumed to be sinusoidal,

(18) e(x, 0) = 0.1 sin —f-

where we have taken the axis of the cylinder to be in the a:_ direction.

The steady homogeneous stress this body is subjected to for all t > 0 is

a constant compressive stress of magnitude P along its axis, thus

(19) T* = -P , all other T*. . = 0 .

The orthotropic elastic constants for human cortical bone are taken from
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1.151 -

1.51 -

1.251

t = UT

0.151 -

0.51 "

FIGURE 4. Devolution of an i n i t i a l inhomogeneity. A graphical representa t ion
of the so lu t ion e [x , t) given by (22) .
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Knets and Malmeister [79] and the dependence of these constants upon the

change in volume fraction e is estimated from the microstructure

dependence data given by Wright and Hayes [34], thus

(20) -±- = O.O55(l-lle) , -^-=0.0165(1-116) , -^ 0.033(l-lle) ,E E E

where the units are {GPa) . The reference volume fraction 5- is

0.892 for (20). We assume that A > 0 and that the rate coefficients

have the following values:

An AT T ~\
aQ = 1.5 x 10 sec , c± = -15 x io~° sec , c^ = 2.5 x 10~' sec

(21)

Since A > 0 the solution for e [x , t) is

0.129 [h.It-sin (TCC Jl)) +0.hk (sin (TO /l)-1.29)e"*^T

(22) e k , *) = 3 -2 —-rrz ,
i {k.It-sin[™3/l)) + (sin [vx3/l)-l.29]e"

C/T

where T is 12.73 x 10 sec or about 1U7 days. This result is plotted

in Figure h for various values of time. From this illustration of the

temporal evolution of the sine wave inhomogeneity one can see that, as time

progresses, the amplitude of the sine wave decreases, rapidly at first and

then more slowly. At large times the sine wave becomes a straight line

signifying that the cylinder has become homogeneous.
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